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Abstract: Volatility, which represents the magnitude of fluctuating asset prices or returns, is used in
the problems of finance to design optimal asset allocations and to calculate the price of derivatives.
Since volatility is unobservable, it is identified and estimated by latent variable models known
as volatility fluctuation models. Almost all conventional volatility fluctuation models are linear
time-series models and thus are difficult to capture nonlinear and/or non-Gaussian properties of
volatility dynamics. In this study, we propose an entropy based Student’s t-process Dynamical model
(ETPDM) as a volatility fluctuation model combined with both nonlinear dynamics and non-Gaussian
noise. The ETPDM estimates its latent variables and intrinsic parameters by a robust particle filtering
based on a generalized H-theorem for a relative entropy. To test the performance of the ETPDM, we
implement numerical experiments for financial time-series and confirm the robustness for a small
number of particles by comparing with the conventional particle filtering.

Keywords: finance; volatility fluctuation; Student’s t-process; entropy based particle filter; relative
entropy

1. Introduction

Asset allocation and pricing derivatives have been studied in both academia and
industry as significant problems in financial engineering and quantitative finance. For
these problems, various methodologies have been developed based on the variation of
asset returns. In an idealized situation, the variation of returns has been assumed to
follow the Gaussian distribution [1]. However, it is known that the variation of returns
follows non-Gaussian distributions with fat tails [2]. To explain this observed fact, volatility,
which quantifies the magnitude of fluctuating returns, has been introduced and utilized.
Volatility, in particular, is often used as an indicator for constructing asset allocations
that focus on macroeconomic fundamentals, and there are many studies related to them.
Both researchers and investors have begun to attend to develop mathematical models of
volatility fluctuations. For example, Yuhuang et al. investigated the impact of fundamental
data on oil price volatility by focusing on time-varying skewness and kurtosis [3]. Hou et al.
studied volatility spillovers between the Chinese fuel oil futures market and the stock index
futures market, taking into account the time-varying characteristics of the markets [4].

In general, volatility is defined as the variance of a conditional Gaussian distribution
for the variation of returns, namely, given as a latent variable in the literature of Bayesian
statistical modeling. Based on this idea, various time-series models for the dynamics of
asset returns have been developed and proposed. Such time-series models are generally
called volatility fluctuation models, on which forecasting, state estimation and smoothing
can be implemented.

In recent years, volatility fluctuation models with a machine learning technique have
been proposed [5]. Since volatility is a latent variable, it is necessary for machine learning
models to incorporate latent variables into their own methodology. The Gaussian process
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is a candidate, such as a Bayesian learning model [6], and its applications for several
problems in finance have been reported [7,8]. The Student’s t-process is an extension of the
Gaussian, for non-Gaussian distributed data such as asset returns. It has been proposed [9]
and applied to the analysis of financial time-series and asset allocations, and it is confirmed
for this model to estimate robustly [10].

This study extends the Student’s t-process latent variable model to a dynamic latent
variable model incorporating the structure of time-series. To estimate dynamic latent vari-
ables, we used the particle filter method [11]. The particle filter is used to estimate the latent
variables. Conventional particle filters have problems called weight bias and the particle
impoverishment problem (PIP), directly affecting the estimation accuracy [12]. Then, the
merging particle method [13] and Monte Carlo filter particle filter [14] have been proposed.
However, these methods are computationally expensive because they need a large number
of particles. Therefore, we used an Entropy-based particle filter (EBPF), which constructs
a parametric prior distribution on the generalized H-theorem for relative entropy [15]. It
is expected to prevent the bias of particle weights and the loss of particle diversity while
reducing the computational cost. Using EBPF in this experiment, and comparing it with
conventional methods, we confirmed that it is effective for finance problems.

In summary, to estimate robustly and avoid the particle filter’s problem, we combined
t-process dynamical model and EBPF. We call the proposed model an entropy based
Student’s t-process dynamical model (ESTDM), in the following. We will verify this
model’s usefulness. The remains of this paper are summarized as follows—Section 2
introduces related statistical and machine learning models. In Section 3, we derive and
propose ESTDM with its filtering method. In Section 4, we show the performance of
volatility estimation using the proposed method and discuss the results. Section 5 is
devoted to our conclusions and future perspectives.

2. Related Work
2.1. Volatility Fluctuation Models

One of the most basic and utilized volatility fluctuation models is the GARCH
model [16] given as follows:

xt∼N (0, σ2
t ), (1)

σ2
t = α0 +

q

∑
j=1

αjσ
2
t−j +

p

∑
i=1

βix2
t−i, (2)

where xt is a time-dependent random variable sampled from a Gaussian distribution with
mean 0 and variance σ2

t , and the time evolution of the variance is given by Equation (2).
The parameters αj and βi take positive values, which can be estimated by observed data.
Positive integers p and q are the order of the regression, respectively. Then this model is
known as the GARCH(p, q) model. For the sake of simplicity, the order parameters are often
fixed as p = q = 1. Various families of GARCH model have been developed and proposed
in the area of econometrics and quantitative finance [17]. For instance, asymmetric effect
has been introduced into a multivariate GARCH model [18,19].

2.2. Gaussian Process

For any finite number of vectors {x1, x2, · · ·, xn} and a stochastic process f (·), if the
joint probability density function { f (x1), f (x2), · · ·, f (xn)} is a Gaussian distribution, f (·)
is called a Gaussian process [6]. Since the Gaussian process samples an infinite-dimensional
vector, the mean value function m(·) and the covariance function K(·, ·) are introduced
as follows:

m(x) = E[ f (x)], (3)

K(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′))T]. (4)
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Then, given a matrix X = [x1, x2, · · ·, xn]T, p( f |X) = N (m(X), K(X, X)) is the probability
density function of the Gaussian process. When we explicitly state that the stochastic
process f is sampled from the Gaussian process, we write f∼GP(m, K). Without loss
of generality, the mean function of the Gaussian process is often assumed to be zero.
The covariance function is represented by the kernel function k(·, ·), which is a positive
symmetric bi-variate function, satisfying

K(x, x′) = k(x, x′). (5)

Hence, K(X, X) is a positive definite symmetric matrix. As a kernel function, for example,
the radial basis function

kRBF(x, x′) = αexp(−l−2||x− x′||2) (6)

is often used. Here, α and l are hyper parameters.
For a pair of observed dataD = {(x1, y1), (x2, y2), · · ·, (xn, yn)}, let X = [x1, x2, · · ·, xn]T,

Y = [y1, y2, · · ·, yn]T. The hyper parameters of the Gaussian process can be estimated by
gradient and Monte Carlo methods on D. From the trained Gaussian process, the prediction
Y∗ = [y∗1 , y∗2 , · · ·, y∗m]T for unknown input X∗ = [x∗1 , x∗2 , · · ·, x∗m]T is sampled from the condi-
tional Gaussian distributionN ( f ∗, K∗). The mean function f ∗ and the covariance function
K∗ of the conditional Gaussian distribution are given by

f ∗ = mX + KX∗ ,XK−1
X,XY, (7)

K∗ = KX∗ ,X∗ − KX∗ ,XK−1
X,XKX,X∗ . (8)

It is seen that the mean and covariance functions of the Gaussian process propagate the
information of previously observed data to predicted values.

2.3. Student’s t-Process

In the Gaussian process, it is assumed for the probability density function to be the
Gaussian distribution. Thus, when we apply the Gaussian process to data following a
probability distribution with fat tails, such as financial time-series, it is impossible to
perform an accurate estimation. A model that extends the Gaussian process to such data
is the Student’s t-process [9]. The Student’s t-process is a stochastic process f (·) with ν
degrees of freedom and a Student’s t-distribution defined as follows:

T (m, K, ν) =
Γ
(

ν+n
2
)

[(ν− 2)π]
n
2 Γ
(

ν
2
)
|KX,X |

1
2

[
1 +

1
ν− 2

(Y−mX)
TK−1

X,X(Y−mX)

]− ν+n
2

. (9)

Here, m(·) and K(·, ·) are the mean and covariance functions, respectively, and Γ(·) is the
gamma function. When the stochastic process f (·) is a Student’s t-process, it is denoted by
f∼T P(m, K; ν). As with the Gaussian process, the mean function of the Student’s t-process
is often assumed to be zero without loss of generality.

The predictive distribution of the Student’s t-process is also the Student’s t-distribution
T (m∗, K∗, ν∗), where degrees of freedom, mean and covariance functions are then updated
as follows:

ν∗ = ν + n, (10)

m∗ = mX + KX∗ ,XK−1
X,X(Y−mX) (11)

K∗ =
ν− β− 2
ν− n− 2

[
KX∗ ,X∗ − KX∗ ,XK−1

X,XKX,X∗
]

β = (Y−mX)
TK−1

X,X(Y−mX). (12)
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Unlike the Gaussian process, in the Student’s t-process, we can confirm that the effect of
the number of data is reflected in the update equations of the degrees of freedom and the
covariance function.

2.4. Student’s t-Process Latent Variable Model

In the Student’s t-process latent variable model, the input matrix X is given as a latent
variable. Assume that the observed data y∈RD and the latent variable x∈RQ are related
as y = f (x) by the Student’s t-process f∼T P(m, K; ν). When we let Y∈RD×N be the
sequence of N observed data, and X∈RQ×N be the sequence of N latent variables, we can
define the following model as Student’s t-process latent variable model [10]:

p(Y|X) =
Γ
(

ν+D
2

)
[(ν− 2)π]

D
2 Γ
(

ν
2
)
|KX,X |

1
2

[
1 +

1
ν− 2

(Y−mX)
TK−1

X,X(Y−mX)

]− ν+D
2

. (13)

Since the Student’s t-distribution converges to the Gaussian distribution in the limit of
ν→∞, we can see that the Student’s t-process latent variable model embraces the Gaussian
process latent variable model [20].

3. Proposed Model
3.1. Student’s t-Process Dynamical Model

Since volatility fluctuations cannot be observed directly, they are modeled as dynamic
latent variables, such as the family of GARCH models, most of which are given by linear
time-series models [18]. To describe nonlinear dynamics of volatility fluctuations, we
extend the Student’s t-process latent variable model to dynamic latent variables, namely,
Student’s t-process dynamical model (TPDM), which is expected to be robust for both
observable and unobservable with outliers.

Suppose pt represents an asset price at time t, the log-return is given by rt = log (pt/pt−1).
Let σ2

t denote the volatility of rt. Here, for an observable rt and a latent variable σ2
t , we

provide a volatility fluctuation model by a TPDM as follows:

rt∼T (0, σ2
t ; ν), (14)

vt ≡ log σ2
t , (15)

vt = f (vt−1, rt−1; ν) + εt (16)

εt∼N (0, σ2
n), (17)

where the observable rt as centered at 0 and following a Student’s t-distribution with ν
degrees of freedom, whose parameter is given by σ2

t . The dynamic latent variable vt is
defined by Equation (15) to take the whole real number as its range of value. The time
evolution of the dynamic latent variable vt is given by Equation (16) with a Gaussian white
noise whose variance is σn. The stochastic process f on the right-hand side of Equation (16)
follows a Student’s t-process given by

f∼T P(m, K; ν), (18)

m(ξt−1) = avt−1 + bxt−1, (19)

k(ξt−1, ξ ′t−1) = γ exp (−l−2||ξt−1 − ξ ′t−1||2), (20)

where ξt = (xt, vt) , and the hyper parameters are θ = (ν, σn, a, b, γ, l). Given a series of
observed data r1:T = {r1, r2, · · ·, rT}, it is possible to obtain the volatility fluctuations by
estimating a series of dynamic latent variables v1:T = {v1, v2, · · ·, vT}.

3.2. Particle Filter

Particle filter is a method of state estimation by Monte Carlo sampling, where a large
number of particles approximates posterior distributions. Hence, it can be applied to
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nonlinear systems, where posterior distributions are intractable [21]. For N particles, let
{vi

1:t−1}N
i=1 and Wi

t−1 (i = 1, 2, · · ·, N) be the realizations of the dynamic latent variables
and their associated weights up to time t− 1, respectively. The weights are normalized to
∑N

i=1 Wi
t−1 = 1. With these values, the posterior distribution p(v1:t−1|x1:t−1) at time t− 1

can be approximated as follows [22]:

p̂(v1:t−1|x1:t−1) =
N

∑
i=1

Wi
t−1δ(v1:t−1), (21)

where δ(·) is the Dirac’s delta function. In other words, the posterior distribution is
approximated by a mixture of the delta functions.

It is however known that an insufficient number of particles fails to approximate
the posterior distribution by the degeneracy of ensemble. Indeed, each particle’s weights
become unbalanced and biased toward a tiny number of particles as the time step pro-
gresses [11,12]. To overcome this problem, a huge amount of particles is used for filtering
processes in practice.

3.3. Entropy-Based Particle Filter

In the use of the conventional particle filter, it is necessary to sample a large number
of particles for accuracy. That leads to the growth of estimation time. In the case of online
estimation, reducing run time is desired. For this purpose, we introduce a robust particle
filter for a small number of particles.

Let us reconsider approximating the probability density function for the dynamic
latent variable, Q(v, t), called a background distribution. In the conventional particle
filter, the background distribution is approximated by the mixture of delta functions. This
approximation works well only when the background distribution exhibits an extensively
sharp peak. Nevertheless, the delta function has no width, and the distribution peaks only
at a single point.

To improve the accuracy for the approximation of the background distribution, we
replace the mixture of the delta functions with that of Gaussian distributions as

Q̂(v, t) =
M

∑
i=1

Wi
tN (µi

t, σ2,i
t ), (22)

where µi
t, σ2,i

t (1 ≤ i ≤ M) are the mean and variance of the Gaussian distributions at t.
Unlike the delta function, the Gaussian distribution has a certain width in its distribution.
Hence, the mixture of the Gaussian distributions is capable of fitting properly to data with
large variance and fat tails.

With the use of finite samples from the background distribution Q(v, t), the poste-
rior/filter distribution P(v, t) is inferred by the minimum principal for relative entropy,
which is known as an entropy based particle filter [15]. The relative entropy (Kullback-
Liebler divergence) between the filter distribution P(v, t) and the background distribution
Q(v, t) are defined as follows [23–25]:

H[P|Q] =
∫

Ωv
P(v, t) log

(
P(v, t)
Q(v, t)

)
dv, (23)

where Ωv is the domain of the dynamic latent variable vt. On the properties of the relative
entropy as a quasi-distance for probability density functions, the filter distribution is
obtained as the minimizer for the relative entropy in Equation (23). Combined with
the entropy based particle filter, the state estimation of the ESTDM is implemented. An
overview of its algorithm is explained in the following Algorithm 1.
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Algorithm 1 Entropy Based Student’s t-Process Dynamical Model (ETPDM)

Require: Initial particles X0 =
[
X0

0 , ..., X M
0
]
, Initial particles’ weights Wi

0 = 1/M
Ensure: ∑M

i=1 Wi
t = 1.0 at any time t

1: while There are observations to be assimilated do
2: Compute importance weights proportional to the likelihood with observation xt

Wi
t ∝ p(yt|Xt) (24)

According to weights {Wi
t}, resample M particles {X j

t}M
j=1.

Then we can compute filter distribution Q′(x) at time t

Q′t =
M

∑
i=1

W j
tN (X j

t ). (25)

At the same time, we’re also able to estimate expected status vt , extracting any finite
number of samples {vk} from background density Qt

vt = E(vk). (26)

With stochastic process f ∼ T (m, k; ν), generate new particles

{X i
t+1} = f (X j

t , xt) (27)

Then we can predict distribution Q̂(x) at time t + 1

Q̂t+1 =
M

∑
i=1

Wi
tN (X i

t+1). (28)

3: return Log likelihood for estimation p(yt|vt).
4: end while

4. Numerical Experiments

In this section,we implement numerical experiments to validate the ETPDM for the
time-series of a foreign exchange rate. As a dataset, we use USD/JPY exchange rate in
2010—every 1-min sampled, 30-min sampled and 1-h sampled. Figures 1–3 show the
time-series of the log-return of the USD/JPY exchange rate rt and volatility fluctuations
estimated by respective the ETPDM, the conventional particle filter for the GARCH model
(cp-GARCH) and the conventional particle filter for the Student’s t-process dynamical
model (cp-TPDM). Warm up period of the estimations is 0 ≤ t ≤ 20, where the values of
volatility show zeros. In Figure 1a, intermittent jumps are observed, which are evidence
of the non-Gaussian behavior of rt. Indeed, the estimated volatility fluctuations show
higher peaks at the same time point of the intermittent jumps in Figure 1b–d. That means
all of the models capture the nature of volatility fluctuations of the USD/JPY exchange
rate effectively. Besides, the same can be said for other types of data sets—30-min and
1-h—in Figure 2 or Figure 3, which means that these models can be applied to data of any
sampling rate. Previous volatility estimation studies used the GARCH model with various
estimation methods. A typical example is the particle filter [26], or the Markov chain Monte
Carlo simulation [27]. In all of these studies, including this experiment, the GARCH model
has been implemented well.
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Figure 1. Overview of estimation results in 1-min chart.

Figure 2. Overview of estimation results in 30-min chart.
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Figure 3. Overview of estimation results in 1-h chart.

Figure 4 show the estimated log-likelihoods of the ETPDM, cp-GARCH and the cp-
TPDM. The likelihood tends to be higher for the ETPDM, the cp-TPDM and cp-GARCH in
that order. As mentioned in Section 2, TPDM is a superordinate model that encompasses
Gaussian process dynamical model, the GPDM, and the fact that the likelihood of the
GARCH was at a lower level than that of TPDM is consistent with the results of previous
studies comparing the GARCH and the GPDM [26]. Likelihood is the most reliable indicator
to quantify the model performance, and the EPTDM had the best performance of three
models. Besides, in the case of cp-TPDM, the log-likelihoods scatter around −0.7 in the
range of particle numbers from 10 to 500 without convergence. This means the performance
of the conventional particle filter is insufficient for the given data. On the other hand, the
log-likelihoods of the ETPDM exhibit good convergence for the particle numbers larger than
100 in Figure 4b, which indicates the ETPDM is expected to be robust for fewer sampling.

To investigate the effectiveness of particle filtering, we introduce an effective parti-
cles rate

Re f f =
1

N ∑N
i=1(W

i
t )

2
(29)

as a measure for evaluating the bias of sampled particles. This value gives the maximum
value Re f f = 1 when the weights are uniformly distributed as Wi = 1/N (i = 1, 2, ..., N).
In Figure 5a, the effective particle rates for the cp-TPDM scatter for whole particle numbers
from 10 to 500. This kind of worse performance for the effective particle rates stems from
the weight bias problem of the particle filtering. In other words, the conventional particle
filter is hard to overcome the particle impoverishment problem, even if, by increasing
particle numbers. On the contrary, for the case of the ETPDM as shown in Figure 5b, we can
see that the effective particle rate converges beyond 50%. This is the expected advantage of
the ETPDM, which stems from the finite band of each Gaussian distribution as a component
of the prior distribution. Thus, the ETPDM serves as an accurate estimation for lower
particle numbers and then would contribute to effective online estimation. Focusing on
another comparison of the ETPDM, the cp-GARCH, also looks good in the view of the
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effective particles rate. However, when we also consider the likelihood in Figure 4a, we
can say that the practical ensembles didn’t affect to performance because cp-GARCH was
less suitable for this problem than the ETPDM. This is another evidence that the ETPDM
have better potential.

Figure 4. Estimated log-likelihoods of (a) the cp-GARCH, the cp-TPDM and (b) the ETPDM.

Figure 5. Effective particle rates of (a) cp-GARCH, the cp-TPDM and (b) the ETPDM.

In order to validate the robustness for estimating intermittent return dynamics, we
investigate the degree of freedom ν of the Student’s t-process dynamical models. For
this purpose, we split time window of return fluctuations; one is low volatility window
(50 ≤ t ≤ 250) and the other is high volatility counterpart (360 ≤ t ≤ 560). The descriptive
statistics of the return fluctuations in the two windows are shown in Table 1. As is seen
in the table, kurtoses in both time windows are larger than 3, namely, corresponding
return fluctuations follow non-Gaussian statistics. Prior research has confirmed that when
the data set follows a Gaussian distribution, the strengths of models that excel at robust
estimation do not come into play [28]. Therefore, such a data set that follows a non-
Gaussian distribution is appropriate for the purpose of this experiment. Figure 6 exhibit the
log-likelihoods of the cp-TPDM and the ETPDM in (a) low volatility window and (b) high
volatility one. In these figures, the log-likelihoods of the ETPDM in both time windows
have maxima in 6 ≤ ν ≤ 7 though the estimations by the the cp-TPDM are unstable. This
result evidences the robustness of the ETPDM.
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Figure 6. Log-likelihoods of the cp-TPDM and the ETPDM in (a) low volatility window and (b) high
volatility one.

Table 1. Two types of window.

Window Type Mean Variance Skewness Kurtosis

high volatility window −1.0× 10−6 8.31× 10−4 −0.974 5.22
low volatility window 1.0× 10−6 4.41× 10−4 −0.531 3.56

5. Conclusions

In this study, we proposed the ETPDM to implement robust estimation for dynamical
latent variables of nonlinear and non-Gaussian fluctuations. In estimating the dynamic
latent variables and hyper parameters, the entropy based particle filter with the Gaussian
mixture distribution was adopted. To validate the performance of the ETPDM, we carried
out the numerical experiment for the return fluctuations of a foreign exchange rate com-
pared with the cp-GARCH and the cp-TPDM. As a result, we confirmed the advantages
of the ETPDM; (i) good convergence property, (ii) high effective particle rate and (iii)
robustness for a small number of particles.

Based on its advantages, the ETPDM is applicable for online volatility estimation for
the problem of asset allocation and derivative pricing in a short time span. As a basis
distribution for background distribution, we employed the Gaussian distribution in our
numerical experiments. Nevertheless, the framework of the entropy based particle filter
is able to be extended to other probability density functions. Additionally, we can adapt
this research to any other time-series data, not just asset data. It has the potential to be
applied to control engineering, such as the self-positioning estimation problem. These are
our future works.
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