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Summary
Background Threshold-based early warning systems (EWS) are used to predict adverse events (Aes). Machine learning
(ML) algorithms that incorporate all EWS scores prior to an event may perform better in hospitalized patients.

Methods The deterioration index (DI) is a proprietary EWS. A threshold of DI >60 is used to predict a composite AE:
all-cause mortality, cardiac arrest, transfer to intensive care, and evaluation by the rapid response team in practice.
The DI scores were collected for adult patients (≥18 y-o) hospitalized on medical or surgical services during
8-23-2021 to 3-31-2022 from four different Mayo Clinic sites in the United States. A novel ML model was
developed and trained on a retrospective cohort of hospital encounters. DI scores were represented in a high-
dimensional space using random convolution kernels to facilitate training of a classifier and the area under the
receiver operator characteristics curve (AUC) was calculated. Multiple time intervals prior to an AE were analyzed.
A leave-one-out cross-validation protocol was used to evaluate performance across separate clinic sites.

Findings Three different classifiers were trained on 59,617 encounter-derived DI scores in high-dimensional feature
space and the AUCs were compared to two threshold models. All three tested classifiers improved the AUC over the
threshold approaches from 0.56 and 0.57 to 0.76, 0.85 and 0.94. Time interval analysis of the top performing classifier
showed best accuracy in the hour before an event occurred (AUC 0.91), but prediction held up even in the 12 h before
an AE (AUC 0.80 at minus 12 h, 0.81 at minus 9 h, 0.85 at minus 6 h, and 0.88 at minus 3 h before an AE). Multisite
cross-validation using leave-one-out approach on data from four different clinical sites showed broad generalization
performance of the top performing ML model with AUC of 0.91, 0.91, 0.95, and 0.91.

Interpretation A novel ML model that incorporates all the longitudinal DI scores prior to an AE in a hospitalized
patient performs better at outcome prediction than the currently used threshold model. The use of clinical data, a
generalized ML technique, and successful multisite cross-validation demonstrate the feasibility of our model in
clinical implementation.
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Introduction
Early warning systems (EWS) in hospitals began with a
focus on enhancing patient care and reducing adverse
events, evolving from manual assessments by healthcare
professionals to technologically advanced systems.
Initially, bedside monitors allowed for continuous vital
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sign monitoring, albeit with isolated systems and no
standardized response protocols. The introduction of
Modified Early Warning Score (MEWS) improved risk
identification.

The electronic medical health record (EHR) trans-
formed clinical practice. This deluge of data, albeit
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Research in context

Evidence before this study
We searched PubMed for papers published from database
inception to September 28, 2023, using the search terms
(“deep learning” OR “artificial intelligence” OR “AI” OR
“machine learning”) AND (“deterioration index”, “early
warning system”), without any date or language restrictions.
This search returned about 454 results. The deterioration
index (DI) score was used during the COVID-19 pandemic as a
decision-making support tool. None of the articles proposes a
machine learning (ML) model for early prediction of adverse
events (AEs) using DI score. This shows the novelty of the
proposed model as a decision-making tool for early
intervention in hospitalized patients with potential risk of
experiencing an AE.

Added value of this study
Our study uses a sample size of encounters (n = 59,617)
that yielded DI scores from 52,471 unique patients. Our

findings show there is a relationship between retrospective
DI scores of a patient and the patient outcome (adverse, no
adverse). This relationship was captured by training a novel
ML approach using high-dimensional representation of the
DI scores, for the first time in literature. The leave-one-out
multisite validation showed high generalization
performance of the model on different geographically
located sites.

Implications of all the available evidence
Our study, with the state-of-the-art multisite cross-validation
performance, shows the usability of DI score in predicting
adverse events among hospitalized patients. Future work
should focus on implementing the model in clinical settings
for prospective evaluation of the model for its clinical and
cost effectiveness in a controlled set up. This work provides a
baseline for further investigation in building novel models to
predict AEs from DI score.
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important can contribute to cognitive overload and
provider burnout.1,2 Less time for face-to-face patient
care increases reliance on electronic monitoring and
highlights the need for reliable electronic alerts. The
introduction of Rapid Response Systems (RRS) enabled
timely intervention for deteriorating patients. Stan-
dardized systems like the National Early Warning Score
(NEWS) in the UK ensured consistency in monitoring
and response protocols across healthcare institutions.

Epic’s Deterioration Index (EDI) is a proprietary algo-
rithm and one of the most widely used EWS deployed in
hundreds of hospitals across the US.3,4 This system gen-
erates a patient risk score after hospital admission, and it
is then regularly calculated based on most recent available
data at 15-min intervals until discharge. A DI score value
ranges between 0 and 100, defining low (<30 green), in-
termediate (30–60 orange), or high risk (>60 red) of a
composite AE: all-cause mortality, cardiac arrest, transfer
to intensive care, and evaluation by the rapid response
team.4–6 Each generated risk score is determined based on
routinely recorded physiological, clinical, and laboratory
parameters within Epic’s EHR to support medical
decision-making. The risk score is determined based on
age, neurological assessment, cardiac rhythm, oxygen
requirement, Glasgow Coma Scale, vital sign measure-
ments (temperature, systolic blood pressure, pulse rate,
oxygen saturation, respiratory rate), and laboratory values
(hematocrit, white blood cell count, blood urea nitrogen,
potassium, sodium, blood pH, platelet count).

Accurate proactive identification of patient deteriora-
tion is essential to prevent morbidity and mortality in the
hospital setting. Clinical and laboratory parameters are
used in EWS to try to prevent adverse events (AEs),
including cardiac arrests, and death. Calculated risk
scores are used at a predetermined threshold to alert the
clinical staff.7–10 Multiple organizations agree regarding
the potential benefits of EWS in combination with Rapid
Response Teams (RRT) to save lives in the hospital
setting.10,11 Nonetheless, hesitancy and skepticism persist
due to methodological weakness, diversity of outcomes,
and lack of convincing evidence of post-implementation
impact.7,12

Machine learning (ML) can encompass big structured
clinical data and discern patterns not obvious to humans.
While there has been somemovement towards use of ML
in prediction of AEs,8,9 adoption of these methods in
healthcare has lagged behind other industries for many
reasons.3,13 Alarms based on single threshold scores may
not achieve the accuracy needed to engender trust in the
system. Trends rather than a single score or the most
recent score may be more useful and informative.14 ML
may detect deterioration associated signals before they
are clinically obvious, hopefully at a time point where risk
mitigation is feasible.15

The DI score is part of the EPIC EHR at our insti-
tution. Based on feedback from clinical users we posited
that factors other than the threshold score might
correlate better with outcome. Thus, the objective of this
study was to propose a novel ML model for automated
early prediction of AEs based on the retrospective tra-
jectory of all DI scores and compare its performance
with the currently deployed threshold model (i.e., DI
>60). The proposed model can learn from the pattern of
DI scores over time from various patients to predict
adverse events in future.

Methods
Clinical setting and study design
Mayo Clinic is an academic institution providing
healthcare at different geographical locations including
www.thelancet.com Vol 66 December, 2023
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Arizona, Florida, Minnesota, and Wisconsin in the
United States. It has an integrated EHR across all the
locations (Epic, Verona, USA).

A ML model for automated early prediction of AEs
based on the retrospective DI scores was developed.
Given the time series nature of the DI scores, a set of
random convolution filters were initialized to represent
the retrospective DI scores in a high-dimensional
feature space (n = 9996). The extracted features were
used to train a classifier. The model was cross-validated
on the study cohort for predicting AEs. It was also
trained with retrospective DI scores of occurrences at
different time intervals prior to the AE. The general-
ization performance of the model was evaluated based
on a leave-one-out cross-validation method in patient
populations from four different Mayo Clinic sites.

Ethics
We used retrospective de-identified clinical data
abstracted from EHR and the need for informed con-
sent was therefore waived. This study was reviewed and
approved by Mayo Clinic Institutional Review Board.

Datasets
The DI scores were collected for adult patients (≥18 y-o)
hospitalized on medical or surgical services during 8-23-
2021 to 3-31-2022. Patients in the intensive care unit
(ICU), emergency department, obstetrics wards and
hospice were excluded. The DI score was collected every
15 min for a total of 59,617 encounters (contributed by
52,471 unique patients) in four different locations,
Rochester, Minnesota (RST) 25,127 with 2802 AEs,
Mayo Clinic Health System (Minnesota and Wisconsin)
(MCHS) 16,330 with 779 AEs, Jacksonville, Florida
(FLA) 9695 with 825 AEs, and Scottsdale, Arizona (ARZ)
8465 with 1567 AEs. The first DI score was collected 3 h
after admission, ensuring enough time to document all
the clinical variables needed to calculate the score. The
model requires eligible subjects to have a minimum of
10 DI scores collected every 15 min. Therefore, model
prediction begins only after 5.5 h after the patient is
Fig. 1: Proposed machine learning model for adverse event pred
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admitted (3 h for the first DI score and 2.5 h to capture
the next 9 DI scores).

Model development and training
The most common application of the DI score classifies
patients with a DI score of >60 as high risk, indicating
prompt intervention to mitigate the risk of an AE. Two
threshold methods were evaluated based on this (DI
>60) hypothesis. The first method is prediction of AEs if
at least one DI >60 exists in the retrospective DI scores.
The second method is prediction of AEs only if the last
DI score before an event is >60 (or before dismissal for
those without an AE). The proposed model is described
in Fig. 1. Three different and independent classifiers
(Ridge regression classifier,16 support vector machine
(SVM),17 extreme gradient boosting (XGBoost)18) were
trained and evaluated using the high-dimensional rep-
resentation of the retrospective DI scores using random
convolution kernels.19

The AE prediction problem using DI scores was
modeled as a binary classification problem (class 0: Not
AE; class 1: AE). A bank of K 1-dimenstional fixed-
length random convolution kernels19,20 were generated.
The weights of each kernel were selected randomly from
{−1, 2}. A set of dilation factors per kernel controls the
spread of the kernel over an input DI score series. A set
of bias terms is then calculated based on the quantiles of
the convolution on the input DI score series to generate
features in a high-dimensional space (n = 9996). The
extracted features are based on the proportion of the
positive values after applying the convolution kernels
with various bias terms. Typical time series represen-
tation and classification models require all input time
series to be of the same length. Padding the time series
is a one of the major preprocessing methods to prepare
the data for such models. Given the input DI score se-
ries are of various length, this requirement limits
implementation of these models in practice. One of the
main advantages of the proposed approach is feature
representation of any-length time series without
padding. This major feature facilitates implementation
iction using the longitudinal deterioration index (DI) scores.

3
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Classifier Hyperparameters

Ridge Regularization strengths cross-validation: {1e-3, 1e-2, 1e-1, 1}
SVM Regularization parameter: 0.1; Kernel: Radial basis function
XGBoost Step size shrinkage: 0.3; Maximum depth of a tree: 10; Subsample ratio of the training instances: 0.5; Number of parallel trees: 10; Number of

estimators: 300

Table 1: Hyperparameters of the classifiers.
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of the proposed model in clinical settings. Once the
input DI score series is represented in a high-
dimensional feature space, the extracted features are
used to train a classifier.

Evaluation and cross-validation
A 10-fold cross-validation was applied and the average
and standard deviation of performance metrics were
collected. In each independent run, balanced splits of
dataset were used for training and testing. Since the
dataset was naturally imbalanced, the occurrences from
the not adverse outcome data class were randomly down
sampled to the number of occurrences in the adverse
outcome data class (n = 5973 occurrences per data class).
The test dataset was sampled from the balanced dataset
with 20% contribution from each data class (totally
n = 2390 occurrences) and the rest of the balanced
dataset was used as the training dataset (n = 7166 oc-
currences). For the multisite cross-validation, a leave-
one-out cross-validation was performed with respect to
the four Mayo Clinic sites across the USA. For each
validation site, the best performing model (XGBoost)
was trained on the data from other sites and the vali-
dation results were collected after a 10-fold cross-
validation of the model. The hyperparameters used to
train the classifiers are summarized in Table 1.

Statistical analysis
Classification performance of each model was assessed
using the area under the receiver operating curve or
AUC values. Bootstrap sampling with replacement with
10-fold cross-validation was used to obtain 95% CIs for
all performance measures. The models were developed
and evaluated using Python programming language,
version 3.9 (Python Software Foundation). The
threshold for statistical significance was 2-tailed with
P = 0.05.
Model Sensitivity Specificity

Thresholding (any) 0.25 ± 0.01 0.89 ± 0.01

Thresholding (last) 0.13 ± 0.01 0.99 ± 0.00

Ridge 0.78 ± 0.01 0.78 ± 0.01

SVM 0.42 ± 0.02 0.87 ± 0.01

XGBoost 0.85 ± 0.01 0.91 ± 0.01

Table 2: Performance (Mean ± STD) of models in predicting adverse events (
Role of the funding source
No funding to report.

Results
There were 59,617 (51.51% female) encounters, 10.02%
(41.69% female) with AEs. The overall average age was
62.07 ± 18.53 y-o, with an average age of 63.15 ± 15.92 y-
o and 61.95 ± 18.80 y-o with and without AEs,
respectively.

Adverse event prediction performance
The XGBoost classifier trained with the high-
dimensional represented features had the best 10-fold
cross-validated accuracy with Mean ± STD of
0.88 ± 0.01, F1-score 0.88 ± 0.01, sensitivity 0.85 ± 0.01,
and specificity 0.91 ± 0.01 (Table 2). All the evaluated
ML approaches have a significantly higher prediction
performance than the thresholding approaches. The
distribution of 10-fold cross-validated models with
respect to the accuracy metric shows no significant
outlier and limited variance (Fig. 2A). Accuracy evalua-
tion of the models revealed AUC 0.57 (95% CI,
0.57–0.58) for the thresholding with any DI score >60,
AUC 0.56 (95% CI, 0.56–0.56) for the thresholding with
the last DI score >60, AUC 0.85 (95% CI, 0.77–0.78) for
Ridge, AUC 0.76 (95% CI, 0.64–0.65) for SVM, and
AUC 0.94 (95% CI, 0.88–0.88) for XGBoost (Fig. 2B).
The XGBoost classifier yielded the best performance
(referred to hereafter as best model).

Adverse vs. not adverse probabilistic analysis of
classifiers
Distribution analysis of the computed probability values
of AE occurrences over 10-fold cross-validation revealed
a Mean ± STD of 0.25 ± 0.01 (95% CI, 0.25–0.26) for the
thresholding with any DI >60, 0.13 ± 0.01 (95% CI,
0.12–0.14) for the thresholding with the last DI >60,
Accuracy F1-score AUC

0.57 ± 0.01 0.53 ± 0.01 0.57 ± 0.01

0.56 ± 0.01 0.46 ± 0.01 0.56 ± 0.01

0.78 ± 0.01 0.78 ± 0.01 0.85 ± 0.01

0.65 ± 0.01 0.63 ± 0.01 0.76 ± 0.01

0.88 ± 0.01 0.88 ± 0.01 0.94 ± 0.01

AEs) from deterioration index (DI) scores after 10-fold cross-validation.

www.thelancet.com Vol 66 December, 2023
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Fig. 2: Results after 10-fold cross-validation. (A) Distribution of the collected accuracy values in predicting events. (B) Receiver operator
characteristics (ROC) curve of the classifiers trained with extracted features using random convolution kernels.

Fig. 3: Normalized count of adverse event (AE) and not AE occur-
rences over average distribution of predicted probability values
generated by the best model after averaging over 10-fold cross-
validation.

Articles
0.62 ± 0.01 (95% CI, 0.61–0.62) for Ridge, 0.59 ± 0.01
(95% CI, 0.58–0.60) for SVM, and 0.85 ± 0.01 (95% CI,
0.84–0.85) for the best model. Similarly, distribution
analysis of the generated probability values of not AE
occurrences over 10-fold cross-validation revealed a
Mean ± STD of 0.89 ± 0.01 (95% CI, 0.89–0.90) for the
thresholding with any DI score >60, 0.99 ± 0.01 (95%
CI, 0.99–0.99) for the thresholding with the last DI score
>60, 0.62 ± 0.01 (95% CI, 0.61–0.62) for Ridge,
0.58 ± 0.01 (95% CI, 0.58–0.58) for SVM, and
0.90 ± 0.01 (95% CI, 0.89–0.90) for the best model.

Normalized count of AE and not AE occurrences
over average distribution of predicted probability values
(Appendix) generated by the best model over 10-fold
cross-validation shows the greatest number of occur-
rences with correct prediction of event type fall in a
confidence range of 0.9–1.0 in prediction of not AE and
AE with 0.82 and 0.78, respectively. The normalized
count values for the probability range 0.0–0.1 is 0.05 and
0.11 for not AE and AE, respectively (Fig. 3).

Advanced prediction of adverse events
Accurate advance warning of an impending adverse
event should provide an opportunity for caregivers to
intervene. A time course analysis of the best model
(XGboost) in the hours before AEs was performed and
the AUC values calculated (Fig. 4). The Mean ± STD
accuracy was best minus 1 h prior to an AE, with AUC
0.84 ± 0.01 (95% CI, 0.83–0.84). The best model
performed well across a minus 12 h interval prior to the
event with minus 3 h AUC 0.81 ± 0.01 (95% CI,
0.80–0.81), minus 6 h AUC 0.77 ± 0.02 (95%
CI, 0.75–0.78), minus 9 h AUC 0.73 ± 0.02 (95% CI,
0.72–0.74), and minus 12 h AUC 0.72 ± 0.02 (95% CI,
0.71–0.73) (Fig. 4A). The AUC curves are in Fig. 4B.
www.thelancet.com Vol 66 December, 2023
The Mean ± STD PPV of the best model in predicting
an AEminus 1 h prior to the event is 0.80 ± 0.01 (95% CI,
0.80–0.81), minus 3 h prior to the event is 0.78 ± 0.01
(95% CI, 0.78–0.79), minus 6 h prior to the event is
0.76 ± 0.02 (95% CI, 0.74–0.77), minus 9 h prior to the
event is 0.73 ± 0.01 (95% CI, 0.72–0.73), and minus 12 h
prior to the event is 0.71 ± 0.02 (95% CI, 0.70–0.73). The
Mean ± STD NPV of the best model in predicting an AE
minus 1 h prior to the event is 0.88 ± 0.01 (95% CI,
0.87–0.88), minus 3 h prior to the event is 0.84 ± 0.01
(95% CI, 0.83–0.84), minus 6 h prior to the event is
0.78 ± 0.02 (95% CI, 0.77–0.80), minus 9 h prior to the
5
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Fig. 4: (A) Average accuracy, area under the receiver operator characteristics curve (AUC), specificity, sensitivity, and corresponding standard
deviation of the best model in prediction of the correct event using retrospective deterioration index (DI) scores for various hours before the
event. Results are reported after averaging over 10-fold cross-validation. (B) Receiver operator characteristics (ROC) curve of the best model in
prediction of the correct event using retrospective DI scores for various hours before the event. Results are reported after averaging over 10-fold
cross-validation.
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event is 0.74 ± 0.01 (95% CI, 0.73–0.75), and minus 12 h
prior to the event is 0.73 ± 0.02 (95% CI, 0.71–0.75).

Multisite cross-validation
We performed a one-leave-out multisite validation of the
best model. The validation dataset of each site reflects its
natural distribution with respect to the AE and not AE
classes and was imbalanced. A 10-fold cross-validation
was conducted per site validation. These four sites are
geographically distinct, representing patient populations
with heterogenous socio-demographic characteristics,
including rural vs. urban populations. For each valida-
tion, results revealed a Mean ± STD balanced accuracy
of 0.82 ± 0.01 for RST, 0.78 ± 0.01 for MCHS,
0.88 ± 0.01 for ARZ, and 0.81 ± 0.01 for FLA (Table 3).
The AUC curves are in Fig. 5. The results showed
generalization performance of the best model validated
on different clinic sites.

The Mean ± STD PPV of the best model in predict-
ing AEs validated on the retrospective DI scores of the
RST site is 0.96 ± 0.01 (95% CI, 0.96–0.96), MCHS site
Validation Site Sensitivity Specificity Accuracy

RST 0.66 ± 0.01 0.97 ± 0.01 0.94 ± 0.0

MCHS 0.56 ± 0.01 0.99 ± 0.01 0.97 ± 0.0

ARZ 0.76 ± 0.01 0.99 ± 0.01 0.95 ± 0.0

FLA 0.62 ± 0.02 0.99 ± 0.01 0.96 ± 0.0

For each validation site, the model is trained on the DI scores from the other sites.

Table 3: Multisite cross-validation performance (Mean ± STD) of the best mod
after 10-fold cross-validation.
is 0.98 ± 0.01 (95% CI, 0.98–0.98), ARZ site is
0.95 ± 0.01 (95% CI, 0.95–0.95), and FLA site is
0.97 ± 0.01 (95% CI, 0.96–0.97). The NPV of the best
model in predicting AEs validated on the retrospective
DI scores of the RST site is 0.75 ± 0.01 (95% CI,
0.75–0.76), MCHS site is 0.79 ± 0.02 (95% CI,
0.78–0.80), ARZ site is 0.97 ± 0.01 (95% CI, 0.96–0.97),
and FLA site is 0.81 ± 0.01 (95% CI, 0.81–0.82).
Discussion
Our study shows improved performance of an EWS, the
DI, over the established threshold danger score of 60 or
higher by application of a novel ML model to use all
scores generated for a given patient during the hospital
encounter prior to an event. DI scores represented in a
high dimensional feature space using random convo-
lution kernels were used to train a classifier, and then
tested on a comparable patient pool. Time interval
analysis of the new method showed acceptable perfor-
mance over a 12-h prediction horizon. Multisite cross
Balanced accuracy F1-score AUC

1 0.82 ± 0.01 0.84 ± 0.01 0.91 ± 0.01

1 0.78 ± 0.01 0.82 ± 0.01 0.91 ± 0.01

1 0.88 ± 0.01 0.91 ± 0.01 0.95 ± 0.01

1 0.81 ± 0.01 0.84 ± 0.01 0.91 ± 0.01

el in predicting adverse events (AEs) from deterioration index (DI) scores
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Fig. 5: Receiver operator characteristics (ROC) curve of the best
model after leave-one-out multisite validation and 10-fold cross-
validation per site.

Articles
validation using a leave-one-out approach showed broad
applicability across four geographically distinct clinical
sites with heterogenous health care populations.

Publications on this EWS are sparse, at least in part
due to the proprietary nature of the algorithm. Several
studies5,21 highlight moderate performances and several
drawbacks of using DI in predicting adverse events. The
DI has been found to have fair performance, improve
patient outcomes and reduce ICU admissions.4 How-
ever, health systems utilize DI in conflicting ways and
with substantially disparate thresholds.5

We find that the threshold approach is useful when
negative (i.e., when patients are deemed unlikely to
deteriorate) but lacks sensitivity at identifying those who
will deteriorate. Winslow et al.22 performed an analysis
using logistic regression on 27 discrete time variables to
identify patients at risk of adverse events. Similarly,
Escobar et al.23 used a logistic-regression model to
generate hourly Advance Alert Monitor (AAM) scores
based on a threshold system, where an AAM score of 5
(alert threshold) indicated a 12-h risk of clinical deteri-
oration of 8% or more. The predictors laboratory tests,
individual vital signs, neurologic status, severity of
illness and longitudinal indexes of coexisting condi-
tions, care directives, and health services indicators (e.g.,
length of stay) were used in this study and the principal
dependent variable was mortality within 30 days after an
AAM alert. The innovation that our model offers is to
use the entire series of DI scores instead of a single DI
score as in threshold approach, which improves the
predictive ability of the model significantly. Our results
show that projection of DI scores to a high-dimensional
space using random convolution kernels and training an
ML model can help predict adverse events in hospital-
ized patients using retrospective DI scores.
www.thelancet.com Vol 66 December, 2023
The performance of our novel model compared
favorably with the performance of other EWS. Liu and
others evaluated the performance of five commonly
used EWS: National Early Warning Score (NEWS),
Modified Early Warning Score (MEWS), Between the
Flags (BTF), Quick Sequential Sepsis-Related Organ
Failure Assessment (qSOFA), and Systemic Inflamma-
tory Response Syndrome (SIRS).24 Direct comparison
was not done but our model performs well based on
published literature; AUC of 0.87 (95% CI, 0.87–0.87),
for the NEWS compared with our model AUC 0.94
(95% CI, 0.88–0.88). Implementation of the NEWs has
been associated with a reduction of AE including car-
diopulmonary resuscitation and transfers to intensive
care.25 A fair comparison between different models is
not easy due to the significant differences in the care
setting, clinical data used as predictors and outcome
definitions. None of the studies identified in two recent
systematic reviews used an ML model like the one
described in our study.8,9

Feature representation of time series with random
convolution kernels is a state-of-the-art method for
classification of time series.19,20 It has achieved a better
performance than deep learning and other classification
tools with almost deterministic outcomes on standard
time series benchmark datasets.19,20,26 Particularly, this
technique works very well on limited-imbalanced data.27

From a computational complexity perspective, it is
much faster than deep learning models which is a major
factor in regular prediction of AEs. It has also been used
for various applications such as functional near infrared
spectroscopy signals classification,28 human activity
recognition,27,29 driver’s distraction detection using
electroencephalogram (EEG) signals,30 and transcription
factor binding site prediction for DNA sequences.31

The high computational complexity of existing state-
of-the-art methods for time series classification makes
these methods slow, even for smaller datasets, and
intractable for large datasets. However, high-
dimensional representations can capture complex re-
lationships in the data, which is a fundamental concept
in ML and data analysis. By leveraging these rich rep-
resentations, high-dimensional feature representations
can significantly improve the discriminative power of
ML models. In many ML tasks, including time series
classification, more features can enhance predictive
modeling accuracy. This trade-off between computa-
tional complexity and the potential for improved model
performance underscores the importance of carefully
selecting and engineering features, especially when
dealing with high-dimensional data.

The represented features in a high-dimensional
space can be classified based on the target data classes
using classifiers like Ridge, SVM, and XGBoost. While
Ridge regression is a straightforward and interpretable
linear classifier, its performance may be suboptimal
when faced with intricate non-linear feature patterns. In
7
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contrast, SVM can effectively handle both linear and non-
linear challenges. However, its performance relies on the
choice of kernel, parameter tuning, and the complexity of
the features. The computational demands of SVM are
rooted in intricate mathematical calculations for identi-
fying an optimal margin of separation between data
classes, and this complexity scales with the data size,
especially when non-linear kernels are employed. On the
flip side, XGBoost, through the amalgamation of gradient
boosting, regularization techniques, efficient parallel
processing, and other attributes, emerges as a potent and
versatile algorithm. It frequently delivers high classifica-
tion performance across a broad spectrum of ML tasks.

The limitations of this study are those traditionally
attributed to the use of ML to develop predictive
models in healthcare.32 Mistrust of a score that has
been calculated by a computer and ML models cannot
be underestimated when promoting clinical adoption.33

The algorithm used to derive the EPIC DI score is
proprietary and not available for scrutiny. Intrinsic bias
in the algorithm before the score is calculated cannot
be addressed.21 There is always the risk of inaccurate
clinical data generated by human observation, bias,
overfitting, lack of transparency and interpretability.
However, we attempted to overcome these limitations
by providing supporting analysis across disparate clinic
settings. In addition, the DI score values are generated
by the Epic electronic health record (EHR) software,
which might not be adopted by other health systems.
The other limitation of this method is a 5-h delay in
starting the prediction process. This is due to the
admission process and waiting for collecting the clin-
ical data (i.e., labs, etc.) as well as the nature of time
series prediction models, which require time series
(enough number of samples along time) to make a
prediction.

Regarding generalization of the data, the data used to
train and validate the models was collected from four
different Mayo Clinic sites across the US. However, the
model should be validated in other institutions, partic-
ularly outside the US for extended generalization per-
formance evaluation. The one-site-out cross-validation
of the model targets generalization performance
evaluation of the models using the natural imbalanced
dataset of each validation site.

This study presents a novel ML algorithm for early
prediction of adverse events in hospitalized patients
based on the Epic DI score. This model utilizes all the
retrospective scores generated for a patient throughout
their hospital stay in advance of an adverse event to make
predictions. The study’s innovation lies in using the
entire series of DI scores, rather than a single score,
which enhances predictive ability. Additionally, the
model’s performance is compared with other ML-based
approaches, emphasizing its potential for clinical use.
However, challenges such as mistrust of computer-
generated scores and data availability in different health
systems, along with a 5-h prediction delay, are acknowl-
edged as limitations.
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