
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Elias Joseph Sayour,
University of Florida, United States

REVIEWED BY

Weinan Guo,
Fourth Military Medical University,
China
Natalie Silver,
Cleveland Clinic, United States

*CORRESPONDENCE

James W. Hodge
jh241d@nih.gov

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 13 July 2022

ACCEPTED 17 August 2022
PUBLISHED 08 September 2022

CITATION

Santiago-Sánchez GS, Hodge JW and
Fabian KP (2022) Tipping the scales:
Immunotherapeutic strategies that
disrupt immunosuppression and
promote immune activation.
Front. Immunol. 13:993624.
doi: 10.3389/fimmu.2022.993624

COPYRIGHT

© 2022 Santiago-Sánchez, Hodge and
Fabian. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 08 September 2022

DOI 10.3389/fimmu.2022.993624
Tipping the scales:
Immunotherapeutic strategies
that disrupt immunosuppression
and promote immune activation

Ginette S. Santiago-Sánchez, James W. Hodge*

and Kellsye P. Fabian

Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National
Institutes of Health, Bethesda, MD, United States
Immunotherapy has emerged as an effective therapeutic approach for several

cancer types. However, only a subset of patients exhibits a durable response

due in part to immunosuppressive mechanisms that allow tumor cells to evade

destruction by immune cells. One of the hallmarks of immune suppression is

the paucity of tumor-infiltrating lymphocytes (TILs), characterized by low

numbers of effector CD4+ and CD8+ T cells in the tumor microenvironment

(TME). Additionally, the proper activation and function of lymphocytes that

successfully infiltrate the tumor are hampered by the lack of co-stimulatory

molecules and the increase in inhibitory factors. These contribute to the

imbalance of effector functions by natural killer (NK) and T cells and

the immunosuppressive functions by myeloid-derived suppressor cells

(MDSCs) and regulatory T cells (Tregs) in the TME, resulting in a dysfunctional

anti-tumor immune response. Therefore, therapeutic regimens that elicit

immune responses and reverse immune dysfunction are required to counter

immune suppression in the TME and allow for the re-establishment of proper

immune surveillance. Immuno-oncology (IO) agents, such as immune

checkpoint blockade and TGF-b trapping molecules, have been developed

to decrease or block suppressive factors to enable the activity of effector cells

in the TME. Therapeutic agents that target immunosuppressive cells, either by

direct lysis or altering their functions, have also been demonstrated to decrease

the barrier to effective immune response. Other therapies, such as tumor

antigen-specific vaccines and immunocytokines, have been shown to activate

and improve the recruitment of CD4+ and CD8+ T cells to the tumor, resulting

in improved T effector to Treg ratio. The preclinical data on these diverse IO

agents have led to the development of ongoing phase I and II clinical trials. This

review aims to provide an overview of select therapeutic strategies that tip the

balance from immunosuppression to immune activity in the TME.

KEYWORDS

immunosuppression, checkpoint blockade, immunocytokine, bintrafusp alfa, NC410,
costimulatory receptors, vaccines
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.993624/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.993624/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.993624/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.993624/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.993624&domain=pdf&date_stamp=2022-09-08
mailto:jh241d@nih.gov
https://doi.org/10.3389/fimmu.2022.993624
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.993624
https://www.frontiersin.org/journals/immunology


Santiago-Sánchez et al. 10.3389/fimmu.2022.993624
Introduction

Cancer immunoediting, which is defined by its three phases,

namely, elimination, equilibrium, and escape, can determine the

fate of a tumor cell (1, 2). Through the elimination phase tumor

cells are destroyed by the innate and adaptive immune system (1,

2). During the equilibrium phase an immune-mediated tumor

dormancy can occur through several poorly understood molecular

mechanisms. Lastly, tumor cells that evade the equilibrium phase

enter the escape phase, by losing their immunogenicity through

the effect of several immunosuppressive cell types and

dysregulated signaling molecules (2). Specifically, immune-

edited tumor cells going through the escape phase may comprise

modulation in PD-L1 expression, loss of antigen presentation or

decrease in several proinflammatory cytokines (2).

Hence, the main goal of cancer immunotherapy is to harness

the immune system to restore immune surveillance and achieve

an antitumor response. The development of immune checkpoint

blockade (ICB) therapies has revolutionized the oncology field in

the past two decades by providing durable clinical response in

several malignant tumors (3–5). To date, the U.S. Food and Drug

Administration (FDA) has approved six immune checkpoint

inhibitors (ICIs): ipilimumab, which targets cytotoxic T

lymphocyte antigen-4 (CTLA-4); pembrolizumab, nivolumab,

and cemiplimab, which target programmed cell death-1 (PD-1);

and atezolizumab, durvalumab, and avelumab, which target

programmed cell death-ligand 1 (PD-L1) (4, 6, 7).

Although the percentage of patients eligible for ICI therapy

has increased from 1.54% in 2011 to 43.63% in 2018 (4), the

portion of patients that benefits from these therapies remains

limited (8–11). For example, in metastatic colorectal cancer

(mCRC) in which the 5-year survival is 15%, only 3.5%-6.5%

of mCRC patients respond to ICB (9–11). In advanced cancers,

such as head and neck squamous cell carcinoma (HNSCC) and

advanced melanoma, only 15%-20% and 33%-44% of the

patients, respectively, benefit with pembrolizumab or

nivolumab (anti-PD-1) treatment (4, 8, 12–15). Patients who

do not benefit from immunotherapy are known to present

primary resistance, while some of the responders will relapse

after a period, presenting acquired resistance (16, 17).

Several mechanisms associated with primary resistance are:

1) lack of tumor-associated proteins (i.e., low mutational

burden), 2) absence of antigen presentation (i.e., deletion in

beta-2-microglobulin (b2M), silenced HLA), 3) genetic T cell

alterations (i.e., high oncogenic PD-L1 expression), 4) T cell

desensitization (i.e., mutations in the interferon-gamma (IFN-g)
pathway signaling), 5) lack of T cells (i.e., lack of antigen-specific

T cell receptors (TCRs)), 6) inhibitory immune checkpoints (i.e.,

VISTA, LAG-3, TIGIT, TIM-3), and 7) overpopulation of

immunosuppressive cells (i.e., tumor-associated macrophages

(TAMs)), and regulatory T cells (Tregs) (16). On other hand,

mechanisms associated with acquired resistance include the 1)
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loss of T cell function (i.e., mutations in IFN-g pathway

signaling), 2) lack of T cell recognition (i.e., defects on antigen

presentation), 3) escape of mutation variants (i.e., loss of tumor

immunogenicity), and 4) inhibitory immune checkpoints (i.e.,

VISTA, LAG-3, TIM-3) (16, 18). Melanoma and Hodgkin’s

lymphoma are among the cancers with an overall high

response rate to anti-CTL4, and anti-PD-L1 ICIs, but with a

high percentage rate of acquired resistance (18, 19).

These immunosuppressive mechanisms affect tumor-

infiltrating lymphocytes (TILs), including helper CD4+ T cells,

cytotoxic CD8+ T cells, B cells and natural killer (NK) cells (20–

22), and ultimately the effectiveness of immunomodulatory

strategies. Tumors with low or absent TILs, as in the case of

‘cold’ tumors, fail to respond to ICIs and are associated with

poor prognosis (9, 10). Therefore, new approaches are emerging

to overcome immune suppression in the TME, including ICIs in

combination with costimulatory agents, metabolic modulators,

and cancer vaccines, among others (16). This review discusses

some of the most recent immune-oncology (IO) agents used in

preclinical and clinical studies to overcome immune suppression

(see Figure 1).
Non-specific targeting of the TME

Immunotherapies targeting CTLA-4 and
the PD-1/PD-L1 axis

CTLA-4 and PD-1 are both checkpoint molecules expressed

on T cells that upon ligand recognition hamper the cytotoxic

function of effector T cells (Teff). Tumors exploit these

inhibitory pathways by upregulating cognate ligands to avoid

immune surveillance, thus allowing cancer cells to spread during

the immunoediting escape phase (2, 23). Hence, the development

of monoclonal antibodies (mAbs) targeting the so-called

immune checkpoints has changed the landscape for patients

who do not respond to conventional cancer treatments. Indeed,

to date several ICIs represent the standard-of-care (SOC) for

patients with advance melanoma, Merkel cell carcinoma, non-

small cell lung carcinoma (NSCLC), HNSCC, MSI-CRC, and

refractory Hodgkin’s lymphoma (24–27).

Ipilimumab, which targets CTLA-4, is the first-in-class

FDA-approved ICI for the treatment of melanoma that does

not respond to chemotherapy (6, 28). Induction of CTLA-4

signaling inhibits Teff cell activation, proliferation, and cytokine

secretion. Ipilimumab and other anti-CTLA-4 mAbs block the

binding of CTLA-4 on activated T cells to its ligand, B7-1

(CD80) or B7-2 (CD86), on antigen presenting cells (9),

thereby impeding this inhibitory pathway (29, 30). Moreover,

there is evidence that anti-CTLA-4 therapy in combination with

vaccine can block immunosuppression by shifting the Teff/Treg

ratio. In a poorly immunogenic melanoma mouse tumor model,
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combinatorial treatment with granulocyte-macrophage colony

stimulating factor (GM-CSF)–transduced tumor cell vaccine and

anti-CTLA-4 resulted in tumor rejection that was directly

correlated with increased Teff/Treg ratio (31). In a follow-up

study, it was elucidated that the activity of anti-CTLA-4 is

mediated via selective Treg depletion within the tumor site

(32). Although anti-CTLA-4 therapy has brought benefits in

clinical trials of melanoma, refractory mCRC, hepatocellular

carcinoma, and malignant mesothelioma, no improvement was

observed in terms of overall survival (OS) in patients with

metastatic castration-resistant prostate cancer (30). The

mechanisms underlying the resistance to current anti-CTLA-4

therapy are poorly understood. One possible mechanism is the

constitutive expression of CTLA-4 on Tregs, which can

sequester the mAb from the Teff cells (24, 33). Therefore,

combination therapies of anti-CTLA-4 with anti-PDL-1 and

other treatment modalities represent current alternatives to

circumvent immunosuppressive mechanisms present in many

cancer malignancies.

Another ICI that has changed the landscape of

immunotherapy in several advanced cancers are mAbs blocking

the PD-1/PD-L1 axis. PD-1 (CD279), a transmembrane receptor

expressed on T cells, B cells, NKs, and myeloid-derived

suppressor cells (MDSCs) (34), exerts its inhibitory signaling
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(B7-H2), leading to a cascade of immunosuppressive mechanisms

halting the cytotoxic Teff function (35–37). PD-L1 also has an

essential role in converting CD4+ T cells into Tregs, enhancing

and sustaining the expression of the transcription factor FoxP3,

and maintaining the suppressive function of Tregs. Therefore,

suppressing the activation of the PD-1/PD-L1 axis can partially

abrogate some of these immunosuppressive mechanisms.

Nivolumab and pembrolizumab, both FDA-approved anti-PD-

1 mAbs, are indicated for unresectable/metastatic melanoma, and

NSCLC, among other cancers well-described by Vaddepally et al.

(34). Avelumab, a fully human anti-PD-L1 mAb, is approved to

treat metastatic Merkel cell carcinoma, locally advanced/

metastatic urothelial carcinoma and advanced renal cell

carcinoma if combined with axitinib, a tyrosine kinase

inhibitor (34).

In contrast to nivolumab or pembrolizumab, which are IgG4

isotype antibodies, avelumab is an IgG1 isotype mAb that can

mediate antibody-dependent cell-mediated cytotoxicity (ADCC)

(38). Preclinical work from Boyerinas and colleagues showed the

ability of avelumab to induce ADCC on several human cancer

cells including lung, breast, and bladder cancer cell lines, in the

presence of peripheral blood mononuclear cells (PBMCs) or NK

cells (38). Notably, the lung cancer cell line, H460, which
FIGURE 1

Targeting approaches to overcome immune suppression in the tumor microenvironment (TME). Effects of targeting the TME in a non-specific
(blue) and specific manner (red), and by shifting Teff/Treg ratio to overcome immunosuppression (green).
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expresses low-level MHC class and is resistant to cytotoxic T

lymphocytes (CTL) lysis, was effectively lysed by purified NK

cells in combination with avelumab (38). Additional work in

chordoma, a rare bone cancer in the spine or skull, showed that

avelumab significantly improved NK cell lysis of chordoma cells

via ADCC in vitro (39). Hence, these findings demonstrate that,

in addition to inhibiting the PD-1/PD-L1 axis, ADCC-mediated

lysis may be another mechanism through which avelumab exerts

its anti-tumor effect.

A substantial portion of patients derive limited benefit from

ICI-based monotherapies. Therefore, ICIs are currently being

evaluated in combination with chemotherapeutic agents,

radiation, vaccines, or costimulatory molecules for those

patients presenting primary or acquire resistance to ICIs (16,

23). Thus, identifying other molecules and pathways that can be

targetable alone or in combination with current FDA-approved

ICIs seems a feasible alternative to treat some advanced cancers.
Landscape of immune checkpoint
blockade beyond targeting CTLA-4 and
the PD-1/PD-L1 axis

Additional potential targets identified for immunotherapy

are the costimulatory receptors 4-1BB (also known as TNFRSF9

or CD137), OX40 (TNFRSF4, ACT35, or CD134), and

glucocorticoid-induced TNFR-related protein (GITR)

(TNFRS18, AITR or CD357). These molecules belong to the

tumor necrosis factor receptor superfamily (TNFRSF) and have

been shown to boost antitumor immune response by regulating

survival, proliferation, differentiation, and effector functions of

immune cells (23, 40, 41). 4-1BB receptor is expressed in

activated T and B cells, monocytes, macrophages, dendritic

cells (DCs), Tregs, NK, neutrophils, eosinophils, and mast cells

(42). The interaction of 4-1BB with its known ligands, TNFR-

associated factor (TRAF) 1 and TRAF2, on APCs triggers signals

that can stimulate cell division by downregulating proapoptotic

molecules, such as Bim (43). Additionally, 4-1BB receptor/ligand

interaction induces the proliferation of cytotoxic T cells, the

expansion of effector and memory T cells (Tm), and triggers

proinflammatory T helper (Th)1 cytokine production such as

interleukin (IL)-6, IL-8, IL-12, tumor necrosis factor (TNF), and

INF-g, while suppressing Th2 cytokines (IL-4, IL-5, IL-13)

(44, 45).

Similarly, costimulatory receptor OX40 is expressed in

activated CD4+ and CD8+ T cells, Tregs, Th cells, NK, and

neutrophils (23). Immunomodulatory functions associated with

OX40 interaction with its ligand, OX40L, express on APCs; these

include enhancing cytokine secretion, accumulation of antigen-

reactive T cells and Tm cells during the peak of the primary

immune response, as well as promoting T cell proliferation by T

cell receptor (TCR) antigen stimuli (46, 47). Furthermore, OX40

signaling regulates the number of CD4+ T cells generated during
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(47, 48). Thus, OX40 is of utmost importance since quality and

number of T cells are crucial to determine immunotherapy

response (47). Lastly, OX40 interaction with OX40L in DCs

has been shown to exert a role in DC activation, maturation (47)

and promoting antitumor immunity (49).

The stimulatory checkpoint GITR is expressed in Tregs,

activated NK cells, activated macrophages and DCs (50). Upon

recognition of its ligand GITRL (TNFSF18), predominantly

expressed by activated APCs, or with agonist antibodies, GITR

signaling enhances T cell activation (50). Mechanisms associated

with T cell activation by GITR include upregulation of CD25 and

secretion of IL-12 and INF-g (50). Moreover, GITR can enhance

cancer vaccine activity by providing costimulatory signaling for

T cell activation (51–54). Specifically, data suggest that GITR

signaling shortens the threshold for CD28 signaling on CD8+ T

cells and induces 4-1BB expression on CD8+ Tm (50). GITR

high expression on Tregs represents a more complex

mechanism, because while GITR modulation triggers Tregs

expansion (50, 55), it also inhibits Tregs immune suppressive

mechanisms (50, 56, 57). Indeed, growing evidence suggests that

the use of anti-GITR as an agonist increases Teff/Treg ratio by

increasing CD8+ T cell population and depleting Tregs (50, 58–

60). As an example, a study using a melanoma mouse model

demonstrated that costimulation of GITR with an agonist mAb

achieved a loss on FoxP3 expression within the intratumoral

Treg compartment (50, 60).

The therapeutic benefit of agonistic 4-1BB, OX40, and GITR

costimulation has been demonstrated in several preclinical

murine models of breast, colon, lymphoma, and melanoma

cancers. In melanoma, 4-1BB signaling was shown to rescue

chronic activated/exhausted CD8+ T cells (61). Importantly,

when 4-1BB and OX40 agonists are used in combination with

ICIs, vaccines or cytokines, a synergistic immune boost protects

against poorly immunogenic cancer types. For example, a

combination of costimulatory agonists anti-OX40 and anti-4-

1BB mAbs with vaccine, in a breast Her-2/neu transgenic mouse

model, enhanced both CD4+ and CD8+ T cell activity and

proliferation associated with the retardation of tumor growth

(62, 63). Combination therapy of anti-OX40, anti-4-1BB, anti-

PD-L1, docetaxel, and adenovirus-based tumor antigen vaccine

was shown to induce CD4+/CD8+ T cell proliferation and

activity, overcome CD4+ and CD8+ T cell exhaustion, and

delay tumor growth in both T cell–inflamed and non-T cell–

inflamed murine tumor models (64). In terms of GITR

costimulation in preclinical models, there is seminal work

using agonist antibodies DTA-1 or GITRL-Fc demonstrating

CD8+ T cell expansion and cytokine production (50). For

example, a study showed tumor regression after costimulation

with DTA-1 in a CT26 murine model (65). Additionally, another

study showed tumor control associated with the increase in TILs

and granzyme B in a Colon26 murine model [for an in-depth

review, see (50)].
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The clinical efficacy of several agonists for 4-1BB and OX40

in combination with ICIs is currently under investigation.

Recently published results from a clinical trial (NCT02315066)

of OX40 agonist, alone or in combination with a 4-1BB agonist,

have shown disease control in 56% of patients associated with an

increase in CD4+ memory T cell proliferation and activation

without dose-limiting toxicities (66). In a phase I study

(NCT02554812), 26.1% of the patients who received

combination treatment with the 4-1BB agonist utomilumab

and pembrolizumab had complete or partial responses.

Furthermore, the responders had high levels of activated

memory/effector peripheral blood CD8+ T cells (67). In an

ongoing clinical trial (INTRUST), the 4-1BB agonist urelumab

is being studied in advanced solid tumors including NSCLC

alone or in combination with nivolumab (NCT03792724); at the

time of this review, however, no results have been posted.

Recently, results were published for the first-in-human

phase I clinical trial (NCT01239134) using the anti-GITR

antibody, TRX518, a fully humanized Fc-dysfunctional

aglycosylated IgG1K (68). During the trial, 43 patients with

refractory solid tumors were treated with TRX518 monotherapy

and a reduction in circulating and intratumoral Tregs was

observed (68). Despite the increase in Teff/Treg ratio, however,

no substantial clinical responses were observed (68). Because

TRX518 monotherapy was not sufficient to activate cytolytic

CD8+ T cells due to persistent exhaustion, the group is now

evaluating TRX518 in combination with PD-1 blockade in a new

clinical trial (NCT02628574) (68). A separate clinical trial

(NCT02132754) is evaluating the GITR agonist MK-4166,

alone or in combination with pembrolizumab in patients with

advanced solid tumors (69). The combination was well-tolerated

and the highest overall objective responses (ORR, 69%) were

observed in ICI-naïve melanoma patients (69).

In addition to checkpoint inhibitors, tumors also produce

immunosuppressive cytokines such as TGF-b and IL-8 (2). TGF-

b is a pleiotropic cytokine that under physiological conditions

maintains immune homeostasis and even suppresses tumor

initiation (70). However, TGF-b signaling can also drive tumor

progression by suppressing CD8+ T cells tumor infiltration (71),

supporting angiogenesis (72), upregulating PD-L1 expression

(73), and promoting epithelial-to-mesenchymal transition

(EMT) (74). Several therapeutic agents targeting this cytokine

are currently under development for the treatment of cancer.

Bintrafusp alfa, previously known as M7824, is a first-in-

class bifunctional fusion protein that consists of an anti-PD-L1

antibody covalently linked to the extracellular domain of two

TGF-bRII molecules that is designed to block the PD-1/PD-L1

axis while also sequestering TGF-b molecules (75, 76). Several

preclinical studies have confirmed the antitumor efficacy of

bintrafusp alfa and its ability to increase the immune response

in triple negative breast, bladder, and HPV+ cervical cancer

models (77, 78). In the EMT6 syngeneic breast cancer model,

bintrafusp alfa resulted in an antitumor response that was
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(77). Likewise, in HTB-1 bladder, HPV+ SiHa cervical, and

MDA-MB-231 triple negative breast cancer models in PBMC-

humanized NSGmice, bintrafusp alfa achieved significant tumor

growth control linked with increased tumor infiltration IFN-g
producing CD4+ and CD8+ T cells (78).

TGF-b is considered a master regulator of the EMT, and in

vitro and in vivo studies have shown that bintrafusp alfa can

suppress TGF-b–induced EMT in NSCLC (73). NSCLC cells

treated with bintrafusp alfa showed decreased expression of the

mesenchymal markers, vimentin and fibronectin, while

maintaining expression of the epithelial marker E-cadherin.

Likewise, a xenograft NSCLC model showed a significant

reduction in vimentin expression in bintrafusp alfa-treated

mice compared to untreated and anti-PD-L1-treated mice (73).

In addition to blocking PD-1/PD-L1 interaction, bintrafusp

alfa can also target PD-L1 through other mechanisms. Like

avelumab, the anti-PD-L1 moiety of bintrafusp alfa allows for

ADCC-mediated lysis of tumor cells (39, 73). Lung, urothelial,

cervical, breast and prostate cancer cells pre-treated with

bintrafusp alfa showed an enhanced susceptibility to ADCC-

mediated lysis by donor-derived NK cells as compared to

avelumab-treated cells (73, 79, 80). Furthermore, TGF-b
contributes to the upregulation of PD-L1 expression on tumor

cells and TGF-b sequestration by bintrafusp alfa could

subsequently result in reduced PD-L1 expression (73).

Bintrafusp alfa monotherapy, or in combination with other IO

agents, is the subject of investigation in ongoing clinical trials in

metastatic prostate cancer (NCT03493945), urothelial cancer

(NCT04501094), colorectal cancer (NCT03436563), and HPV-

associated malignancies (NCT03427411), among other cancers. A

previous phase I study (NCT02517398) in advanced solid tumors

showed a complete response (CR) in a patient with cervical cancer

and partial responses (PR) in some patients with pancreatic and

anal cancer (81). Treatment-related adverse events were observed

in 4 out of 19 patients and the maximum tolerated dose (MTD)

was not determined. Previous clinical trial findings using

bintrafusp alfa have been well-described in other publications

(75, 76).

In addition to being a physical barrier that impedes the

immune cell infiltration, the tumor extracellular matrix (ECM)

also regulates the activation of effectors cells (82). Collagen,

which is a component of the ECM released by cancer-associated

fibroblasts (CAFs), tumor cells and macrophages, has been

demonstrated to impair the immune response by acting as an

immune checkpoint when interacting with leukocyte-associated

immunoglobulin-like receptor-1 (LAIR-1, CD305) on immune

cells (83). LAIR-1 activation and signaling inhibit the function of

T cells, NK cells, monocytes, and DCs (83–85). Meta-analysis of

human datasets showed an association between high collagen

and LAIR-1 expression with low overall survival in glioblastoma

multiforme and mesothelioma and other advanced cancer

types (86).
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Recently, a novel fusion protein consisting of two LAIR-2

molecules—a soluble receptor that competes with LAIR-1 for

binding of collagen-like domains (87)—fused to the functional

IgG1 Fc tail was developed to block LAIR-1 signaling (83, 86).

This molecule, called NC410, reduced human HT-29 colorectal

tumor growth and promoted T cell anti-tumor activity in

humanized NSG mice (86). NC410 bound to collagen-rich

areas where LAIR-1+ immune cells were localized in the tumor

(86). In the murine EMT6 breast and MC38 colon cancer

models, NC410 in combination with bintrafusp alfa remodeled

the tumor collagen matrix, enhanced T cell tumor infiltration

and antitumor activity, and repolarized the suppressive M2

macrophages population (83). An ongoing clinical trial is

evaluating the safety of NC410 in patients with advanced and

metastatic solid tumors, such as ovarian, gastric, and colorectal

cancer (NCT04408599). At the time of this review, no results

have been posted.
Specific targeting of immune
suppressive population of the TME

Targeting MDSCs population

Immune suppressive cells, such as MDSCs and Tregs, play a

key role in promoting tumor growth by inhibiting the

proliferation and cytotoxic activity of NK and T cells (2, 88).

MDSCs are a heterogeneous group of immature and

dysfunctional myeloid cells classified in two major subsets

based on their phenotypic and morphological features:

monocytic-MDSCs (M-MDSCs) and granulocytic-MDSCs (G-

MDSCs) (89). MDSCs are recruited to the tumor site through

signaling molecules secreted by tumor cells and tumor stroma

(88, 89). Factors such as stem cell factor (SCF), GM-CSF,

granulocyte colony stimulating factor (G-CSF), vascular

endothelial growth factor (VEGF), and macrophage colony-

stimulating factor (M-CSF) are released by tumor cells to

promote the expansion of MDSC populations in the TME

(89). Furthermore, the tumor induces immune suppressive

functions of MDSCs by secreting inflammatory cytokines and

chemokines, such as IFN-g, IL-4, IL-6, IL-1b, and C-X-C motif

chemokine ligand 1 (CXCL1) (88, 89). The main mechanisms

associated with MDSC immune suppression include depriving T

cells of essential amino acids and adhesion molecules (90, 91),

inducing oxidative stress (90), and increasing Tregs and M2

macrophage population (90). Specifically, G-MDSCs can

suppress T cell response in an antigen-specific manner, while

M-MDSCs can do it using both antigen-specific and non-specific

mechanisms (89, 92).

In cancer patients, tumor progression and resistance to

immunotherapy are correlated with MDSC-mediated immune

suppression (88, 89, 93). Indeed, MDSCs in peripheral blood of
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and metastasis (89). For example, in CRC patients, both

circulating and tumor infiltrating percentages of MDSCs have

shown to increase proportionally to tumor stage (89). Therefore,

during the past years, preclinical and clinical studies have been

focused on suppressing the MDSC population. Therapeutic

agents designed to deplete the MDSC population (i.e.,

gemcitabine and peptibodies), block their recruitment to the

tumor site (i.e., anti-CCL2 and anti-CCR5), promote their

differentiation (i.e., ATRA and vitamin D3) or inhibit MDSC-

mediated immunosuppression (i.e., anti-CCL2 and anti-CCR5)

have been extensively reviewed in the literature (88, 89, 93).

Furthermore, conventional therapies have also been reported to

affect MDSC populations. For instance, clinical data have also

shown a decrease of G-MDSCs population in peripheral blood of

pancreatic cancer patients receiving therapy with the

chemotherapeutic agent gemcitabine (94), which is the

standard first-line treatment for patients with unresectable

locally advanced or metastatic pancreatic cancer (95).

Although several agents to deplete MDSCs are under

investigation, to date no agent has been FDA approved.

Recently, a study showed that the engineered PD-L1

targeting high-affinity NK (PD-L1 t-haNK) cells may be a

novel treatment that can target MDSCs (96). PD-L1 t-haNK

cells were designed to express high-affinity CD16/FcgRIIIa
(158V) allele, promote ADCC-mediated lysis, possess an ER-

retained IL-2; circumvent the need for exogenous IL-2 in culture,

and express a chimeric antigen receptor (CAR) against PD-L1 to

target PD-L1 expressing cells (80, 96, 97). PD-L1 t-haNK cells

were developed to target PD-L1-expressing tumor cells and were

also shown to directly lyse MDSCs (96). Among the immune

cells, MDSCs express high surface levels of PD-L1; however, they

are not significantly targeted by NK cells in the presence of

avelumab (98). In vitro, coincubation of PD-L1 t-haNK cells

with human PBMCs from healthy donors and patients with

prostate and HNSCC cancer showed a 60% reduction in

peripheral MDSCs while other immune populations remained

unaffected (96). In vivo, PD-L1 t-haNK cells trafficked in PD-L1+

tumors and delayed tumor growth in breast and lung cancer

models in PBMC-humanized NSG mice (96).
Targeting Tregs population

In addition to MDSCs, Tregs cells also represent a target

because tumor infiltrating FoxP3+ CD25+ CD4+ Tregs cells are

highly proliferative and suppressive (99). Tumor infiltrating

Tregs express higher levels of surface molecules associated

with T cell activation, such as 4-1BB, OX40, GITR, LAG-3,

TIGIT, CD25, and CTLA-4 (100). Some of these molecules

possess a dual role supporting Treg immune suppressive

machinery. For example, Tregs use CD25 high affinity receptor

to acquire endogenous IL-2 for survival while also limiting IL-2
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in the TME necessary for Teff cell activation and proliferation

(100, 101). CTLA-4 on Tregs interacts with CD80/86 ligands

downregulating its expression in APC, resulting in inhibition of

T cell activation (33, 100). Additionally, Treg cells secrete

suppressive cytokine IL-10, which inhibits NK and T cells

functions (102) and secrete the inhibitory molecule adenosine

that suppresses Teff cell activity while maintaining a positive

feedback loop for Tregs proliferation (103).

Based on the suppressive role of Tregs, many studies have

been focused on the depletion or functional modulation of Tregs

in the tumor milieu. Since Tregs and Teff cells share receptors,

one of the main challenges of immunotherapy is depleting Tregs

without depleting Teff cells. Treg-specific depleting antibody is

one of the approaches used to abrogate Treg-mediated

immunosuppression (100). For this purpose, surface molecules

expressed at much higher levels on Tregs than T cells are used as

targets, such as CD25, CTLA-4, GITR, 4-1BB, OX-40, LAG3,

TIGIT, CCR4, and CCR8; tumor burden control has also been

observed (58, 100, 104, 105). For instance, in a murine

pancreatic tumor model, when an anti-CD25 antibody to

deplete Tregs was combined with vaccine, mice showed

smaller tumors, longer survival, and a tumor-specific immune

response (106). In addition to the commonly used systemic

administration of Treg-specific antibodies, local delivery to the

tumor site can be performed. A recent study conjugated anti-

CD25 mAb with photoactivatable dye to selectively damage the

cell membrane of Tregs upon near-infrared (NIR) light

exposure, resulting in the tumor regression of the Lewis lung

carcinoma model (100, 107). The efficacy of CD25-depleting

antibodies to promote antitumor immunity is still unclear.

While anti-CD25 depleting antibodies can decrease Treg

populations, they can also target activated Teff cells that also

express CD25 (108).

Further studies have interrogated Treg depletion in cancer

immunotherapy using the agonistic anti-GITR or small

molecule drugs in low doses, such as the alkylating agent

cyclophosphamide (99). Tyrosine kinase inhibitors (TKIs) are

also used to achieve Treg depletion and augment antitumor

immunity (109). For example, a study using the TKI, imatinib, to

treat chronic myelogenous leukemia (CML) patients, observed a

depletion of Tregs and a significant increase in effector/memory

CD8+ T cells in CML patients in complete molecular remission

(CMR) compared to non-CMR patients (109).

CCR4, a chemokine receptor predominantly expressed on

Tregs (110), has been investigated as a target for Treg depletion

and several clinical trials using a humanized anti-CCR4 IgG1

mAb with a defucosylated Fc region, known as mogamulizumab

(KW-0761), are underway. In a phase Ia study, KW-0761 was

shown to efficiently deplete FoxP3+ Tregs cells with no toxicity

in lung and esophageal cancer patients (111). However, the

treatment also showed a limited reduction in Th1 CD4 T cells

and CD8 T cells and a significant reduction in Th2 and Th17

CD4 T cell populations (111). Currently, KW-0761 in
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combination with chemotherapy agents or with ICIs continue

under evaluation for several advanced solid tumors.
Overwhelming immune suppression

Shifting Teff/Treg ratio through
chemotherapy

As mentioned earlier, Tregs in the TME can decrease the

number of cytotoxic Teff cells, block Teff cell activation, and

maintain a positive feedback loop for Treg accumulation. In fact,

a high Teff to Treg (Teff/Treg) ratio in murine models is

associated with response to ICIs, while a low Teff/Treg ratio is

associated with ICI treatment resistance (16). In the clinic, a low

Teff/Treg ratio also correlated with poor prognosis in patients

with melanoma (112), breast (113), ovarian (114), and gastric

cancers (115). Conversely, a high CD8+ TILs/Treg ratio in

patients with epithelial ovarian cancer was associated with

better prognosis (114). Therefore, efforts in improving

immunotherapy outcomes have been focused on increasing the

Teff/Treg ratio in the TME.

Clinical and preclinical data using taxanes, antimetabolites,

and DNA-alkylating drugs as monotherapies or in combination

with IO agents have shown to increase Teff cells and decrease

Tregs in several cancer models (21, 116–118). For example, a

study using cisplatin, a platinum-based chemotherapy, in

combination with vinorelbine, a tubulin inhibitor-based

chemotherapy, showed a sustained depletion in the number of

Tregs with an increase in CD4+ Teff cells in a murine lung

adenocarcinoma model (117). Here, a 1.5 and 2-fold increase in

CD4+ Teff/Treg ratio, 4 and 7 days after a cisplatin/vinorelbine

chemotherapy regimen, respectively, was observed (117).

In another study, clinical data have shown that patients

sensitive to cisplatin-based neoadjuvant chemotherapy (119)

exhibit a 5-year survival rate of 80-90%, while patients resistant to

the therapy exhibit a 5-year survival rate of 30-40% (118). To

interrogate the difference between responders and non-responders

to NAC therapy, a study analyzed tumor biopsies from a cohort of

muscle invasive bladder cancer patients and found that,

individually, neither CD8+ T cell nor Treg density was associated

with NAC response but NAC response was strongly associated with

CD8+ T cell/Treg ratio (118). However, these findings are not

representative of all cancers, as indicated in another study that

showed no correlation between the CD8+ T cells/FoxP3+Treg ratio

and response to therapy in HNSCC patients treated with a

chemotherapy regimen (116). These contradicting observations

raise the question whether Teff/Treg ratio is a good indicator of

the immune response to chemotherapy.

A body of data has set the rationale for the development of

clinical trials testing ICIs in combination with chemotherapy agents

in cancers such as NSCLC (21, 120). For example, although

nivolumab outperformed platinum-based chemotherapy for the
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treatment of NSCLC patients, chemotherapy may synergize with

nivolumab through immunogenic modulation and abrogation of

immunosuppressive cell populations (120, 121). An ongoing phase

1/2 clinical trial is evaluating the safety and efficacy of nivolumab

and ipilimumab in combination with immunogenic chemotherapy

for patients with advanced NSCLC (NCT04043195). Additionally, a

phase 3 clinical trial (IMpower130) showed a significant

improvement in OS and progression-free survival in stage IV

NSCLC patients who received atezolizumab (anti-PD-L1 mAb),

in combination with chemotherapy (carboplatin plus Nab-

paclitaxel) compared to patients receiving standard-of-care

chemotherapy alone (21).
Shifting Teff/Treg ratio through vaccines
and immunocytokines

Cancer vaccines engage the antitumor immune response to

generate tumor-specific effector cells (122). A cancer vaccine has

four key components, the transgene of a tumor-specific antigen

(TSA) or a tumor-associated antigen (TAA), the formulation, an

immune adjuvant, and the delivery vehicle (123). After vaccine

administration, the professional APC (i.e., DCs) processes the

antigen, presents it on its surface via MHC molecules, and

induces a polyclonal CD4+ and CD8+ T cell response (124–

126). In preclinical studies, cancer vaccines have been shown to

inhibit tumor growth and promote TILs while decreasing

FoxP3+ Tregs, thereby improving the Teff/Treg ratio (119,

126–128). In the clinic, cancer vaccines have been proven safe;

however, they lack clinical efficacy as monotherapy (122). This

treatment modality, nevertheless, represents a feasible backbone

for combination therapy, wherein other immune-oncology

agents can capitalize on the tumor antigen-specific immune

cells elicited by the vaccine.

Studies to test the efficacy of vaccines in combination with

immunocytokines, which are antibody-cytokine fusion proteins

(129), to treat tumors and to circumvent immunosuppressive

mechanisms are underway. For instance, a preclinical study

us ing the adenovirus-based vacc ine target ing the

carcinoembryonic antigen Ad-CEA, which is an oncofetal

tumor antigen, in combination with N-803, an IL-15

superagonist complex consisting of an IL-15 mutant (IL-

15N72D) bound to an IL-15 receptor a/IgG1 Fc fusion

protein (130–132), showed improved immune response and

antitumor activity in a CEA-expressing MC38 murine colon

carcinoma model (51). Ad-CEA + N-803 combination therapy

resulted in increased CEA-specific CD8+ T cells in the periphery

compared to treatment with Ad-CEA or N-803 alone. This

suggests that the expansion of CEA-specific T cells may be due

to the inflammatory stimulus of N-803 (51, 131), in concordance

with an earlier study showing the positive effect of N803 on NK

and CD8+ T cell populations (133). Similarly, the Ad-CEA + N-

803 combination also resulted in decreased CD4+CD25+FoxP3+
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Treg population, effectively increasing the Teff/Treg ratio when

compared to Ad-CEA or N-803 monotherapies (51). Currently,

there are several clinical trials evaluating the safety and efficacy

of Ad-CEA + N803 in combination with standard of care and

other immune-oncology agents (NCT04247282, NCT03387085,

NCT03387111, and NCT03563157); results have yet to

be posted.

Another immunocytokine that is currently being studied in

combination with cancer vaccines is NHS-IL12, an engineered

immunocytokine composed of two molecules of IL-12 fused to a

tumor necrosis-targeting human IgG (NHS76) (134). The

combination of MUC1-targeting vaccine and NHS-IL12

delayed the growth of MUC1-expressing tumors and

promoted a robust peptide-specific CD4+ T cell proliferation

(135). NHS-IL12 has also been shown to cause a shift from an

immunosuppressive to inflammatory TME by promoting the

activation of CD4+ and CD8+ T cells, increasing the CD4+/CD8+

T cells to MDSC ratio, and reducing intratumoral TGF-b (136).

In another preclinical study, a human papillomavirus (HPV)

therapeutic vaccine in combination with NHS-IL12 controlled

the tumor growth of an HPV+ murine tumor, which was

associated with the expansion of activated CD8+ T cell

population in the TME (137). Treatment efficacy was further

enhanced when HPV vaccine + NHS-IL12 was combined with

bintrafusp alfa. A phase I/II trial evaluating the safety, overall

response rate, and survival with the HPV vaccine + NHS-IL12 +

bintrafusp alfa combination in patients with advanced HPV-

associated malignancies is currently underway (NCT04287868).

The outbreak of COVID-19 in 2020 not only boosted the

messenger RNA (mRNA) technologies for the development of

SARS-CoV-2 vaccine but also renewed interest in mRNA

vaccines as an alternative treatment strategy for cancer (124).

In fact, over twenty mRNA-based immunotherapies have

entered clinical trials for the treatment of solid tumors,

including NSCLC, advanced melanoma, CRC, pancreatic and

bladder cancers, and metastatic CEA-expressing solid tumors

(126). Currently, several RNA types are under investigation for

cancer vaccines, including virus-derived self-amplifying (49)

RNA, non-replicating unmodified mRNA and modified

mRNA (126). SAM-RNA vaccines, which encode for tumor

antigen(s) as well as genes for viral RNA replication machinery,

have been shown to induce higher antigen expression and elicit a

stronger immune response compared to other mRNA type

vaccines (138, 139). SAM-RNA vaccines can be delivered in

the form of plasmid DNA, in vitro transcribed (IVT) RNA, and

virus-like RNA particles (138).

An alphavirus SAM-RNA vaccine, known as virus-like

replicon particle (VRP)-CEA (6D) vaccine or AVX701, has

been investigated in two clinical trials for the treatment of

stage III CRC and advanced or metastatic CEA-expressing

tumors (NCT00529984, NCT01890213) (126, 140). The

components of this platform have been designed to improve

vaccine efficacy – the VRP promotes tropism towards DCs while
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CEA (6D), which has an Asn to Asp substitution in position 6,

enhances recognition by cognate CD8+ T cell receptor (140).

Crosby et al. reported that among the stage IV cancer patients

treated with VRP-CEA (6D) vaccine, the median follow-up was

10.9 years and the 5-year relapse-free survival (RFS) was 17%

(140). Among the stage III cancer patients, the survival at a

median follow-up of 5.8 years was 100% and the 5-year RFS was

75%. Patients in the stage III cancer cohort were shown to have

increased CEA-specific CD8+ Teff cells and decreased FoxP3+

Tregs (140). The shift in the Teff/Treg ratio after VRP-CEA (6D)

vaccination suggests an effective immune modulation and

provides a rationale for the combination of this virus-like

SAM-RNA vaccine with ICB (140). Other mRNA vaccines

using different formulations as delivery systems and for the

treatment of other malignancies are currently under study; they

are well described by others (125, 126, 141, 142) and beyond the

scope of this review.
Shifting Teff/Treg ratio through inhibition
of immunosuppressive pathways

Another approach to promote immune response is to inhibit

the immunosuppressive molecule indoleamine 2,3-dioxygenase

(143) (51, 64, 144). IDO secretion promotes apoptosis of Teff

and the activation of Tregs mainly by reducing the availability of

the amino acid tryptophan and increasing its metabolite,

kynurenine, in the TME (23, 145). The immunosuppressive

effect fostered by IDO is also magnified in the TME, since

IDO is induced by several pro-inflammatory signals (IFN-g,
TNF-a, TGF-b), resulting in its expression by tumor, immune,

and stromal cells (23, 145). A preclinical study investigating the

effect of the IDO inhibitor (IDOi) epacadostat in combination

with Ad-CEA, N-803, OX40 agonist, and GITR agonist

demonstrated antitumor efficacy in a MC38-CEA murine

tumor model that was associated with an expansion of splenic

and tumor infiltrating CD8+ T cells (51). Furthermore, not only

did the combination promote the expansion of Teff cells over

Tregs, but it also dampened the suppressive activity of Tregs

(51). Additionally, analysis of serum from mice treated with the

combination therapy showed significant reduction in

kynurenine levels compared to control.

IDO inhibitors are currently being evaluated in combination

with checkpoint inhibitors (22). Several clinical trials are

evaluating how blocking the enzymatic activity of IDO inhibits

the suppressive mechanisms fostered by IDO in the TME (146).

However, a recently concluded phase 3 clinical trial, ECHO-301,

evaluating epacadostat in combination with pembrolizumab,

failed to show any clinical benefit in unresectable or metastatic

melanoma patients (143). Despite these findings, rather than

discard the idea that blocking IDO pathway will improve the

immune response, researchers should rethink which IO agents

should be combined with IDOi as well as optimal dosages. As
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described by Fabian et al., the combination of a specific antigen

vaccine and costimulating agents with the IDOi epacadostat

showed a robust antitumor activity and an immune response

(51). Other clinical trials are also evaluating costimulation

through anti-GITR agonist alone in solid tumors (NCT

01239134), or in combination with an IDOi and checkpoint

inhibitors in patients with glioblastoma (NCT03707457).
Future perspectives

Immunosuppression is a hurdle to overcome for the success

of immunotherapeutic strategies in cancer treatment (147).

However, not only should immunosuppressive mechanisms be

addressed, but immunomodulatory mechanisms promoting T

cell priming and activation should also be met. This often

requires a treatment strategy that combines different agents to

target different facets of the tumor-immunity interactions.

Combination therapies, however, also come with their own

challenges. For such strategies, it is crucial to interrogate not

only their antitumor efficacy, but also the safest doses that

maintain effectiveness, as well as the schedules for the agent’s

administration. Moreover, a deeper understanding of the known

immunosuppressive pathways, as well as identifying new ones,

could enable the development of immunotherapies relevant to

many cancers.
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