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INTRODUCTION 
 

Parkinson’s disease (PD) is the second most common 

neurodegenerative disease affecting about 2% of the 

population aged over 60 years [1, 2]. A meta-analysis of 

available worldwide data showed a rising prevalence of 

PD with aging [3]. To face the social and economic 

burden along with the increasing number of PD 

patients, uncovering PD genetic biology and developing 

neuroprotective interventions are essential.  
 

Telomeres are the repeated sequences that protect the 

ends of chromosomes and avoid cellular senescence and 

apoptosis induced by genomic instability [4]. The 

shortening of telomere length is regarded as an indicator 

of cellular aging, which is accelerated by oxidative 

stress and inflammation [5]. Mitochondrial dysfunction 

produces reactive oxygen species that can lead to 

oxidative damage, contributing to telomere shortening 

[6]. Many lines of evidence suggest that mitochondrial 

dysfunction plays a central role in the pathogenesis of 

PD [7]. In this pathological condition, telomere erosion 

may be accelerated. However, data on telomere 

shortening in Parkinson’s disease are inconsistent 

among various studies.  

 

Leucine-rich repeat kinase 2 (LRRK2) is a 

multifunctional protein implicated in the regulation of 

various cellular functions [8]. Variants in LRRK2 have 

been identified as the most common candidate gene 
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ABSTRACT 
 

Oxidative stress and inflammation play vital roles in Parkinson’s disease (PD) development. Thus, telomere length 
is expected to be shortened in this disease, but current data are inconclusive. We performed a case-control study 
of 261 patients with PD and 270 sex and age-matched healthy controls treated at the Peking Union Medical 
College Hospital. We found leucocyte telomere length (LTL) was significantly shortened in PD as compared with 
controls [1.02 (0.84-1.39) vs. 1.48 (1.08-1.94), P<0.001] and shorter LTL was associated with a dramatically 
increased risk of PD (lowest vs. highest quartile odds ratio (OR) =9.54, 95% CI: 5.33-17.06, P<0.001). We also 
investigated the roles of six LRRK2 variants in the susceptibility to PD. R1441C/G/H, G2019S, and I2020T variations 
were not detected in our study. No significant differences were found in the presence of variants R1398H (15.4% 
vs. 17.0%, P=0.619) and R1628P (2.3% vs. 0.7%, P=0.159) in PD and controls, while the G2385R variant was found 
to be a risk factor associated with increased PD susceptibility (OR=2.14, 95% CI: 1.12-4.10, P=0.021). No significant 
association was found between different LRRK2 variants and telomere length. These findings suggest that shorter 
LTL might be associated with PD in a manner independent of LRRK2 variants. 
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linked to both familial and sporadic Parkinson’s disease 

(PD) [9]. Several LRRK2 variants have been reported 

that affect the risk of PD, but data in Chinese patients 

are not always consistent. G2019S is the most common 

LRRK2 mutation with a high incidence in North 

African Arabic (39%) and Ashkenazi Jewish patients 

with PD (18.3%) [10, 11]. R1441C/G/H, three 

variations of the same codon, have been detected in 

several populations [12]. I2020T is identified in 

Japanese PD families, and is associated with increased 

kinase activity [13, 14]. G2385R and R1628P are two 

variants that are prevalent in Asian populations, also 

correlated with an increased risk of PD [15, 16]. 

However, the LRRK2 R1398H polymorphism is 

associated with a decreased risk of PD in a Han Chinese 

population [17]. Furthermore, LRRK2 variants are 

known to be associated with mitochondrial dysfunction. 

A single mutation in LRRK2 results in increased 

susceptibility to oxidative stressors, even though the 

mechanism behind it is not well understood [18]. 

 

We conducted this case-control study to investigate 

differences in the telomere length in a Chinese 

population. We also investigated the prevalence of three 

well-known pathogenic variants (R1441C/G/H, 

G2019S, I2020T) and three Asian-prevalent (R1398H, 

G2385R, R1628P) variants and assessed their roles in 

the susceptibility to PD. Furthermore, we analyzed the 

possible relationship between telomere length and 

LRRK2 variants. 

 

RESULTS 
 

General characteristics of subjects 

 

Table 1 depicts the baseline characteristics of all 

participants. Significant shorter leukocyte telomere 

lengths (LTLs) were found in PD patients when 

compared with controls [1.02 (0.84-1.39) vs. 1.48 (1.08-

1.94), P<0.001]. Moreover, the PD group had 

significantly lower levels of total protein (TP), 

albumin(Alb), total cholesterol (TC), triglycerides (TG), 

high-density lipoprotein cholesterol (HDL-C), and low-

density lipoprotein cholesterol (LDL-C), higher level of 

homocysteine (Hcy). Telomere length was negatively 

correlated with age in controls, with a shorter LTL at 

higher age (r=-0.507, P<0.001), a relationship we did 

not find in the PD group (r=-0.073, P=0.239) (Figure 1). 

LTL did not differ significantly between males and 

females in any of the groups (data not shown). 

 

Short LTL increases the risk of PD 

 

Using age and sex-adjusted logistic regression analyses, 

we investigated the relationship between PD and 

biochemical parameters which were significantly 

different between the groups, as shown in Table 1. 

Univariate logistic regression showed that higher TP, 

Alb, TC, HDL-C, and LDL-C were associated with a 

decreased risk of PD (Table 2). For LTL, we divided the 

patients into four groups based on the quartiles. A 

shorter LTL was associated with an increased risk of 

PD (lowest vs. highest quartile odds ratio (OR) =9.54, 

95% CI: 5.33-17.06, P<0.001; P-value for the trend over 

quartiles: <0.001, Table 3). The results became more 

pronounced after multivariable-adjustment accounting 

for TP, Alb, TC, and HDL-C (lowest vs. highest quartile 

OR=75.23, 95% CI: 22.65-249.90, P<0.001; P-value for 

the trend over quartiles: <0.001, Table 3). Considering 

the high correlation between TC and LDL-C, LDL-C 

was not included in the multi-adjusted model.  

 

Detecting LRRK2 variants in PD 

 

Among six Asian-prevalent LRRK2 variants, the 

R1441C/G/H, G2019S, and I2020T variations were not 

detected in our study, indicating they may not be 

common pathogenic SNPs in the Chinese population. 

PD patients carried a higher frequency of variant 

G2385R than control subjects (11.2% vs. 5.5%; 

AA+AG vs. GG OR=2.14, 95% CI 1.12-4.10, P=0.021; 

A vs. G OR=2.05, 95% CI 1.11-3.82, P=0.023). 

However, no significant differences were found in the 

prevalence of variant R1398H (15.4% vs. 17.0%, 

P=0.619) and R1628P (2.3% vs. 0.7%, P=0.159) in 

patients with PD and healthy controls. The detailed 

information of this analysis is displayed in Table 4. 

 

LRRK2 variants and telomere length 

 

To investigate whether LRRK2 variants affect telomere 

length, we divided PD patients into four groups: 

R1398H-positive, G2385R-positive, R1628P-positive, 

and triple-negative (indicating none of the three SNPs 

were positive). We excluded a patient carrying both 

R1398H and R1628P variants from further analysis. No 

significant differences were found among the four 

groups in age, sex, and LTL (Figure 2). The detailed 

information of this analysis is shown in Table 5. 

 

DISCUSSION 
 

Our study found that patients with PD displayed 

shortened LTL, and shorter LTL increased the risk of 

PD dramatically. This was the first study investigating 

the relationship between telomere length and PD in 

Chinese patients. We also analyzed the six LRRK2 

variants in PD. We demonstrated that G2385R is a risk 

factor associated with increased PD susceptibility in 

Chinese patients. However, we did not find any 

evidence that R1398H is a protective factor for PD, as 

other studies have reported. Furthermore, no significant  
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Table 1. Clinical characteristics of patients with PD and control subjects.  

Clinical characteristics Control subjects (n=270) PD patients (n=261) P value 

Age (years)  65 (55-74) 63 (54-74) 0.461 

Male 148 (54.8%) 134 (51.3%) 0.423 

LTL (T/S ratio)  1.48 (1.08-1.94) 1.02 (0.84-1.39) <0.001 

TP 72 (70-75) 71 (67-74) <0.001 

Alb 45 (44-46) 43 (41-46) <0.001 

TC (mmol/L) 4.78 ± 0.90 4.40 ± 1.02 <0.001 

TG (mmol/L) 1.21 (0.87-1.56) 1.07 (0.75-1.45) 0.02 

HDL-C (mmol/L) 1.35 (1.11-1.59) 1.17 (1.02-1.44) <0.001 

LDL-C (mmol/L) 3.13 ± 0.85 2.47 ± 0.79 <0.001 

FBG (mmol/L) 5.3 (4.9-5.9) 5.4 (5.0-5.9) 0.182 

hs-CRP (ng/mL) 0.67 (0.35-1.15) 0.79 (0.42-1.77) 0.277 

Hcy (μmol/l) 13.5 (11.3-15.3) 15.3 (13.3-19.9) 0.002 

Abbreviations: PD, Parkinson’s disease; LTL (T/S ratio), leukocyte telomere length (ratio of telomere repeat copy number (T) 
to single-copy gene copy number (S)); TP, Total protein; TC, Total cholesterol; TG, Triglyceride; HDL-C, High density 
lipoprotein cholesterol; LDL-C, Low density lipoprotein cholesterol; FBG, fasting blood glucose; hs-CRP, high-sensitivity C-
reactive protein; Hcy, homocysteine. 
Data are presented as n (%), mean ± standard deviation (SD), median (interquartile range). Significant P-values (P<0.05) are 
indicated in bold print. 

 

relationship was found between LRRK2 variants and 

telomere length. 

 

Both environmental factors and genetic predisposition 

affect LTL. The average telomere lengths of peripheral 

leukocytes are reported to become shorter with aging 

[19–21], while Hudson et al. [22] showed no correlation 

between telomere length and age in both PD cases and 

controls. In our study, a strong correlation was found 

between age and telomere shortening in all participants 

and controls, but not in the PD group. This may reflect 

other mechanisms beyond age that may be involved in 

telomere regulation, or some confounders such as 

mutation status, disease duration, and other biological 

markers in patients with PD may affect this relationship. 

 

The shortening of telomeres is accelerated in various 

diseases characterized by oxidative stress and 

inflammation [23, 24]. Studies on telomere length in 

patients with PD were inconclusive. A meta-analysis, 

 

 
 

Figure 1. Linear regression analysis of the association between leukocyte telomere length (LTL) and age in controls and PD 
patients. Controls are shown as gray triangles (n=270) and PD patients as black dots (n=261). 
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Table 2. Logistic regression analyses of the association between clinical characteristics and PD adjusted for age and 
sex in all participants.  

Clinical characteristics 
Age and sex adjusted  

OR (95% CI) P 

TG (mmol/L) 0.701 (0.484,1.016) 0.061 

TP 0.924 (0.882,0.968) 0.001 

Alb 0.842 (0.778,0.910) <0.001 

TC (mmol/L) 0.614 (0.480,0.787) <0.001 

HDL-C (mmol/L) 0.134 (0.062,0.293) <0.001 

LDL-C (mmol/L) 0.363 (0.268,0.492) <0.001 

Hcy (μmol/l) 1.021 (0.988,1.055) 0.21 

Abbreviations: PD, Parkinson’s disease; TG, Triglyceride; TP, Total protein; Alb, Albumin; TC, Total cholesterol; HDL-C, High 
density lipoprotein cholesterol; LDL-C, Low density lipoprotein cholesterol; Hcy, homocysteine. 
P-values and their ORs for the clinical parameters and PD were calculated by univariate logistic regression analysis. Significant 
P-values (P<0.05) are indicated in bold print. 

 

Table 3. Logistic regression analyses of the association between LTL and PD in all participants.  

Clinical 

characteristics 

Age and sex-adjusted model  Multivariable-adjusted modela 

OR (95% CI) P Ptrend OR (95% CI) P Ptrend 

LTL (T/S ratio)       

Q1 9.54 (5.33,17.06) <0.001  75.23 (22.65,249.90) <0.001  

Q2 5.53 (3.18,9.62) <0.001  5.61 (2.44,12.91) <0.001  

Q3 3.26 (1.89,5.64) <0.001  3.40 (1.57,7.35) 0.002  

Q4 Reference - <0.001 Reference - <0.001 

Abbreviations: PD, Parkinson’s disease; LTL (T/S ratio), ratio of telomere repeat copy number (T) to single-copy gene copy 
number (S). 
a Adjusted for age, sex, total protein, albumin, total cholesterol, high density lipoprotein cholesterol. Significant P-values 
(P<0.05) are indicated in bold print. 

 

Table 4. Genotype and allele distribution of Asian-prevalent variants and the association with Parkinson’s 
disease. 

Genetic 

variants 
Genotypes 

Dominant model 

Alleles 

Allele model 

Patients 

n=260 

Controls 

n=271 
OR (95% CI) P value 

Patients 

n=520 

Controls 

n=542 
OR (95% CI) P value 

R1398H AA 1 2 

0.89 (0.56-1.41) 0.619 

A 41 48 
0.88 (0.57-1.36) 0.568 

AG 39 44 G 479 494 

GG 220 225 - - - - - 

G2385R AA 1 1 

2.14 (1.12-4.10) 0.021 

A 30 16 
2.05 (1.11-3.82) 0.023 

AG 28 14 G 490 526 

GG 231 256 - - - - - 

R1628P CC 0 0 

3.17 (0.64-15.89) 0.159 

C 6 2 
3.15 (0.63-15.69) 0.161 

CG 6 2 G 514 540 

GG 254 269 - - - - - 
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including eight primary studies, did not find consistent 

evidence of shorter telomeres comparing 959 patients 

and 1,284 controls. However, in our study, a significant 

shorter telomere length was found in patients with PD, 

and shorter LTL significantly increased the risk of PD. 

The discrepancy between different studies may be 

explained by variations in the study design, ethnicity, 

sample size, and age of the participants. Experimental 

data have shown that mice with short telomeres are 

characterized by a declined motor performance and an 

increased formation of α-synuclein aggregates that 

accelerate the progress of PD [25]. Additionally, 

CRISPR-Cas9-mediated telomere removal leads to 

mitochondrial dysfunction and PD-associated protein 

aggregation [26]. Thus, telomere shortening resulting 

from the inability to fully replicate the ends of linear 

chromosomes might also contribute to PD pathology. 

Another explanation is the decreased canonical Wnt 

signaling during PD development [27, 28]. Telomere 

protection is enhanced by the upregulation of Wnt/β-

Catenin signaling [29, 30]. β-Catenin regulates Tert 

expression, thereby maintaining telomere length. 

Telomeres are also protected by the Wnt/β-catenin 

signaling pathway, which maintains TRF2 levels [29]. 

 

Multiple studies investigated the role of LRRK2 in the 

etiology of PD. LRRK2 has been implicated in 

mitochondrial dysfunction, Wnt signaling transduction, 

and protein translation control [31]. Over a hundred 

variants of the LRRK2 gene have been reported to date. 

Of these, G2019S, R1628P, G2385R, and R1398H have 

received much attention [32]. In our study, three 

pathogenic variants, R1441C/G/H, G2019S, and 

I2020T, which are common in western populations, 

were not identified. R1628P is a variant usually found 

in Asians, and although we detected it in some 

participants, no significant association was found with 

PD risk. A meta-analysis showed that east Asian 

individuals who harbored the R1398H variant had a 

20% reduced risk of PD [33]. Our data found a similar 

but not significant trend, which may be due to the 

limited sample size. G2385R roughly doubled the risk 

of PD, which is consistent with other studies [33–35]. 

 

Considering the distinctive effects of these variants, we 

further compared the telomere length among the PD 

patients with different variants. Berwick et al. reported 

G2385R weakened Wnt signaling, while R1398H 

produced the opposite result [36]. This was also 

supported by a study by Jonathon et al. [37], who found 

that G2385R and R1398H play opposite roles regarding 

the effect of Wnt signaling. Thus, the idea that different 

variants may result in changes in telomere length is an 

attractive hypothesis. However, our data did not support 

this assumption. The limited sample size in our study 

may account for the negative result if the effect is weak. 

More extensive cohort studies and experimental data are 

needed to clarify the relationship between different 

LRRK2 variants and telomere length. 

 

In conclusion, this is the first study investigating the 

relationship between telomere shortening and LRRK2 

variants in patients with PD. Our findings indicate that a 

shorter LTL is associated with a dramatically increased 

risk of PD. G2385R is a risk factor associated with 

increased PD susceptibility in a Chinese population. No 

association was found between different LRRK2 

variants and telomere length. These findings suggest 

that shorter LTL might be associated with PD in a 

manner independent of LRRK2 variants. 

 

 
 

Figure 2. Distribution of telomere length in PD patients with different LRRK2 variants. “ns” means “not significant”. 
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Table 5. Clinical characteristics of PD patients with different LRRK2 variants. 

Clinical 

characteristics 

G2385R- positive  R1398H- positive R1628P- positive Triple-negative 
P value 

(n=25) (n=39) (n=6) (n=190) 

Age (years) 68 (63-77) 63 (52-74) 57 (46-69) 64 (54-73) 0.196 

Male 18 (46.2%) 15 (60.0%) 4 (66.7%) 91 (47.9%) 0.574 

LTL (T/S ratio) 1.05 (0.86-1.40) 0.99 (0.85-1.31) 0.91 (0.75-1.77) 1.03 (0.83-1.42) 0.943 

Abbreviations: PD, Parkinson’s disease; LTL (T/S ratio), ratio of telomere repeat copy number (T) to single-copy gene copy 
number (S). 
Data are presented as n (%), median (interquartile range). 

 

MATERIALS AND METHODS 
 

Study design 

 

We randomly recruited 261 PD patients (127 women, 

134 men) from the Peking Union Medical College 

Hospital, China. All patients were diagnosed according 

to the UK PD Society Brain Bank criteria for clinical 

PD [38]. We recruited 270 sex and age-matched 

healthy controls (122 women, 148 men) who were 

visiting the hospital for a general health examination 

and did not have any neurological disorders. 

Participants with cancer, cardiovascular diseases, 

diabetes, hypertension, stroke, and current infections 

(defined as having a serum high-sensitivity C-reactive 

protein (hs-CRP) value of >10 mg/L) were excluded. 

All the participants were from the Chinese Han 

population. The study was approved by the Peking 

Union Medical College Hospital Ethics Committee and 

conformed to the Declaration of Helsinki principles. 

The requirement for written informed consent was 

waived by the institutional review board. 

 

Measurement of telomere length 

 

Circulating leukocytes were collected, and DNA was 

extracted using the TIANamp Genomic DNA kit 

(Beijing). Telomere length was measured by a 

quantitative PCR method described by Cawthon et al. 

[39], which is based on the ratio of the telomere repeat 

copy number (T) to the single-copy gene copy number 

(S) expressed as the telomere length ratio (T/S ratio). 

The primers for telomere sequences used were: forward 

5′-GGTTTTTGAGGGTGAGGG TGAGGGTGAGGG 

TGAGGGT-3′ and reverse 5′-TCCCGACTATCCCT 

ATCCCTATCCCTATCCCTATCCCTA-3′. We used 

36B4 as a single-copy reference gene, and the primers 

for that were: forward 5′-CAGCAAGT GGGAAGGTG 

TAATCC-3′ and reverse 5′-CCCATTCTATCATCAA 

CGGGTACAA-3′. T/S ratios were expressed as LTL 

and were determined using the formula T/S = 2-ΔCt, 

where ΔCt = average CtTelomere - average Ct36B4. 293T 

cells were used for reference DNA samples, and we 

measured telomere length ratios by using a dilution 

series from 1.56 to 100.00 ng (2-fold dilution; 7 points) 

[40]. All samples were analyzed on the LightCycler 480 

(Roche, Switzerland) and measured in triplicate. 

 

Clinical laboratory tests 

 

Biochemical variables, including serum levels of TC, 

TG, HDL-C, and LDL-C were measured on a Beckman 

AU Series Automatic Biochemical Analyzer (Japan), 

using Sekisui Medical (Japan) reagents. Fasting blood 

glucose (FBG), high-sensitivity C-reactive protein (hs-

CRP), TP, and Alb were measured with the same 

instrument, using Beckman AU reagents, and Hcy was 

examined using Beijing Leadman reagents. 

 

Genotyping 

 

DNA samples were extracted from peripheral blood and 

amplified for sequence analysis. Three well-known 

pathogenic variants (R1441C/G/H, G2019S, I2020T) 

and three Asian-prevalent (R1398H, G2385R, R1628P) 

variants were genotyped to assess their roles in the 

susceptibility to PD. We applied sequence analysis to 

identify the six LRRK2 variants. The primers used for 

this method are shown in Supplementary Table 1. 

 

Statistics analysis 

 

Continuous variables with a normal distribution were 

described as the mean ± standard deviation (SD) and 

analyzed by the unpaired t-test. In contrast, variables 

with a non-normal distribution are provided as the 

median (interquartile range) and were compared by the 

Mann-Whitney U or Kruskal Wallis Test. Sex was 

analyzed as percentages in the PD and control groups 

compared with the chi-square test. Linear regression 

was used to analyze the relationship between age and 

LTL. We used logistic regression to determine the risk 

of PD associated with each factor. The chi-square test 

was performed to compare the frequency distribution of 

genotypes and alleles, and the Hardy-Weinberg 

equilibrium was verified. Statistical significance was 
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assumed at P < 0.05, and all analyses were conducted 

using SPSS 16.0 (SPSS Inc., Chicago, IL, USA). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. Primers for LRRK2 variants sequencing. 

Names Primer sequences 5'-3' 

LRRK2-1628F CTTCTAGGCCACATGGTTG 

LRRK2-1628R TCCTATTGGCAAAGCAATCT 

LRRK2-2385F AGCCCTGTTGTGGAAGTGT 

LRRK2-2385R AGAGGCAGAAAGGAAGAA 

LRRK2-1398F TAGGTACTTTGATCGGTTGCTGAC 

LRRK2-1398R GACTTCATTACTCGGAAAGTTTCCC 

LRRK2-1441F TCAACAGGAATGTGAGCAGG 

LRRK2-1441R CCCACAATTTTAAGTGAGTTGC 

LRRK2-2019F GATTTCCTGTGCATTTTCTGG 

LRRK2-2019R ACCTACCTGGTGTGCCCTCT 

LRRK2-2020F CAGATACCTCCACTCAGCC 

LRRK2-2020R TTTGACTCTTCTGAACTCACATC 

 


