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A B S T R A C T

Trauma-related disorders of affect and cognition (TRACs) are associated with a high degree of diagnostic co-
morbidity, which may suggest that these disorders share a set of underlying neural mechanisms. TRACs are
characterized by aberrations in functional and structural circuits subserving verbal memory and affective an-
ticipation. Yet, it remains unknown how the neural circuitry underlying these multiple mechanisms contribute to
TRACs. Here, in a sample of 47 combat Veterans, we measured affective anticipation using functional magnetic
resonance imaging (fMRI), verbal memory with fluorodeoxyglucose positron emission tomography (FDG-PET),
and grey matter volume with structural magnetic resonance imaging (sMRI). Using a voxel-based multimodal
canonical correlation analysis (mCCA), the set of neural measures were statistically integrated, or fused, with a
set of TRAC symptom measures including mild traumatic brain injury (mTBI), posttraumatic stress, and de-
pression severity. The first canonical correlation pair revealed neural convergence in clusters encompassing the
middle frontal gyrus and supplemental motor area, regions implicated in top-down cognitive control and affect
regulation. These results highlight the potential of leveraging multivariate neuroimaging analysis for linking
neurobiological mechanisms associated with TRACs, paving the way for transdiagnostic biomarkers and targets
for treatment.

1. Introduction

The neuropsychiatric consequences of traumatic events (e.g., mili-
tary combat, assault, natural disasters) can manifest as a trauma-related
disorder of affect and cognition (TRAC), including posttraumatic stress
disorder (PTSD), major depressive disorder (MDD), and mild traumatic
brain injury (mTBI). These disorders are highly debilitating and re-
present a significant burden for mental health clinicians and public
policy makers (Hoge et al., 2008; Mac Donald et al., 2011). Moreover,
these disorders have a high degree of comorbidity (Goldstein-Piekarski
et al., 2016; Stein and McAllister, 2009) — obfuscating clinical deci-
sion-making and leading to poor treatment outcomes (Yehuda and
Hoge, 2016). Diagnostic comorbidity may indicate that these disorders
share underlying neural mechanisms, underscoring the need to provide
an objective measure of the converging neural circuitry associated with
the enduring effects of trauma (Milham et al., 2017; Woo et al., 2017).

TRACs are commonly linked to aberrations in neural circuits

mediating memory processes (Zuj et al., 2016). Indeed, TRACs have
been conceptualized as ‘disorders of memory’ (van Marle, 2015), with
impairment observed for the encoding and learning phases of verbal
memory in list learning tasks (Samuelson, 2011). Meta-analytic and
experimental evidence indicates that compared to healthy controls,
TRACs have a specific deficit in verbal memory encoding and im-
mediate retrieval relative to visual-spatial memory (Dean and Sterr,
2013; Johnsen and Asbjørnsen, 2008; Mohn and Rund, 2016). Fur-
thermore, pre-deployment verbal memory impairment predicts post-
deployment development of TRACs (Marx et al., 2009) and high pre-
treatment verbal memory ability on list learning tasks predicts en-
hanced treatment response (Nijdam et al., 2015; Scott et al., 2017).
Verbal memory impairment in TRACs is associated with functional and
structural abnormalities across multiple neuroimaging modalities
(Bremner et al., 2009). For example, memory impairment has been
associated with smaller hippocampal volume using structural magnetic
resonance imaging (sMRI) (Monti et al., 2013) and poor verbal memory
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encoding is associated with low hippocampal neural activity measured
by functional magnetic resonance imaging (fMRI) and positron emis-
sion tomography (PET) (Bremner et al., 2003). Prefrontal cortex ac-
tivity, using fMRI and PET, is also associated with verbal memory en-
coding and immediate recall impairment in individuals with TRACs,
including PTSD, mTBI, and MDD (Buchsbaum et al., 2015; McDonald
et al., 2012; J. Zhang et al., 2010). Collectively, these results suggest
that deficits in verbal memory processes may be a transdiagnostic
feature cutting across multiple TRACs and can be observed through
several neuroimaging modalities (Bremner et al., 2009; Samuelson,
2011).

There is considerable evidence across fMRI, sMRI, and PET studies
that TRACs are associated with aberrations in core affective processing,
with neural differences in regions including the dorsolateral prefrontal
cortex (dlPFC), anterior insula (aINS), ventromedial prefrontal cortex
(vmPFC), hippocampus, and the amygdala compared to healthy con-
trols (Admon et al., 2013; Milad et al., 2009). One such affective pro-
cess important to trauma-related disorders is affective anticipation
(Grupe and Nitschke, 2013; Grupe et al., 2016). Neurobiologically,
anticipation of affective information is engaged by the aINS and the
extended amygdala (Simmons et al., 2004; Simmons et al., 2006). PTSD
is associated with increased aINS and amygdala activity in threat an-
ticipation tasks (Grupe et al., 2016; Simmons et al., 2013). Un-
medicated MDD is also associated with increased aINS and decreased
prefrontal activity while anticipating aversive pain stimuli, suggesting a
deficit in “top-down” regulation of affective responses (Strigo et al.,
2013). These findings are consistent with evidence that TRACs are as-
sociated with structural connectivity decrements in networks im-
plicated in emotion regulation. However, transdiagnostic aberrations in
this circuitry have not always been observed (Glenn et al., 2017;
Jovanovic et al., 2010; Reger et al., 2012). These inconsistent findings
highlight the need to measure multiple disorders in a single analysis to
better understand the circuit dysfunction that cuts across several types
of TRACs.

Despite the advances in our understanding of the neural circuitry
associated with verbal memory deficits and aversive anticipation ab-
normalities in TRACs, there is a paucity of research investigating how
the relationship between these two mechanisms contribute to TRACs
(Zuj et al., 2016). Instead, much of the extant research on TRACs have
used a single neuroimaging modality to test a specific circuit hypothesis
for a single mechanism. However, focusing on a single neural me-
chanism (e.g., verbal memory deficits) ignores how the relationship
between different mechanisms (e.g., verbal memory processes + affec-
tive anticipation) and neural measures (structure and function) mu-
tually contributes to TRACs. One potentially useful approach to address
these limitations is to integrate multiple neural measures using multi-
modal neuroimaging fusion analysis (Calhoun and Sui, 2016; Sui et al.,
2012). Multimodal fusion is a class of multivariate analyses that iden-
tifies neural patterns from multiple neuroimaging measures by max-
imizing fit on the shared correlation across features, and can be used to
derive transdiagnostic neural profiles of neuropsychiatric disorders (Sui
et al., 2013). A multimodal fusion approach has the advantage of po-
tentially identifying complex and high-dimensional relationships be-
tween mechanisms that a univariate analytic approach would miss (Sui
et al., 2015). Yet, no study to date has attempted this approach to
trauma-related disorders.

To this end, we applied a novel voxel-wise multimodal canonical
correlation analysis (mCCA) in a sample of Veterans that had completed
a verbal memory task of encoding and immediate recall and a threat
anticipation task while undergoing FDG-PET and fMRI, respectively.
We also collected a high-resolution T1 scan to measure grey matter
volume (sMRI). Canonical correlation analysis is a multivariate analysis
of correlation, allowing for the measurement of latent canonical var-
iants that represent the maximized linear relationship between multiple
sets of variables (Hotelling, 1936). Similar to principal components
analysis (PCA) and independent components analysis (ICA), CCA is a

form of multivariate data reduction. Whereas, PCA is used to extract the
most important features from a single set of variables and ICA derives
independent features from a set of variables, CCA is used to extract
features from multiple sets of variables such that these multiple features
are maximally correlated with each other (Tabachnick and Fidell,
2006). Therefore, CCA has the advantage of explaining variance and
novel patterns between multiple sets of features (Härdle & Simar,
2015). CCA has been extended to the analysis of multimodal neuroi-
maging data (mCCA) to link together multiple neural measures to
identify multivariate patterns between brain features and psychiatric
disorders (Calhoun and Sui, 2016).

The aim of the current investigation was to test whether multi-
variate neural patterns linking grey matter volume with neural activity
associated with verbal memory functioning (FDG-PET) and threat an-
ticipation (fMRI) mutually contribute to TRACs. Individuals with
TRACs have been characterized as having problems with top-down
control of affective responses and cognition (Etkin and Wager, 2007;
Rive et al., 2013; van der Horn et al., 2016). Therefore, we hypothe-
sized that a multivariate neural circuit would be shared across all
trauma-related disorders, particularly in regions of the prefrontal cortex
that facilitate top-down control (Goldin et al., 2008; Simmons and
Matthews, 2012). We also hypothesized that the amygdala and aINS
would be prominent regions expressed across imaging modalities
(Liberzon and Abelson, 2016). Using multivariate fusion analyses with
multimodal neuroimaging may provide an unprecedented level of un-
derstanding of how TRACs are manifested in the brain — paving the
way for neuroscientifically informed diagnosis and treatment.

2. Methods

2.1. Participants

To collect a wide array of TRACs, we recruited a sample of 47 male
military Veterans from the San Diego Veterans Administration
Healthcare System. Two-thirds of the subjects (n= 32) experienced a
self-reported combat-related traumatic event, where half of these sub-
jects experienced a self-reported head injury (n=16). The final third of
the subjects (n=15) did not experience a criterion A trauma during
deployment and therefore did not meet criteria for PTSD or mTBI (i.e.,
Veterans without exposure to blast-related traumatic brain injury and
did not meet criteria for deployment-related posttraumatic stress dis-
order, see Table 1). Subject inclusion and exclusion criteria are pro-
vided in the Supplement. The institutional review boards of the VA San
Diego Research Service approved all study procedures, and informed
consent was obtained from all subjects (Buchsbaum et al., 2015).

2.2. Measuring trauma-related disorders

To assess for trauma-related disorders, we focused on three primary
diagnostic or symptom types: mTBI, PTSD symptoms, and depressive
symptoms. To measure the presence or absence of mTBI, subjects were
first screened using the self-report Brief traumatic brain injury screen
(BTBIS). Criteria for a diagnosis of mTBI were next determined using
the American Congress of Rehabilitation Medicine guidelines
(Harrington et al., 1993). PTSD symptoms were assessed with the
Clinician-Administered PTSD Scale for DSM-IV (CAPS-IV) (Blake et al.,
1995) the gold-standard clinical interview assessing for diagnostic cri-
teria and severity of PTSD. CAPS-IV total score was used to assess PTSD
symptom severity. The Beck Depression Inventory version 2 (BDI-II)
(Beck et al., 1996) total score was used to assess for symptoms of de-
pression. See Supplemental Methods for more details regarding the psy-
chiatric measures and inclusion/exclusion criteria.
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2.3. Tasks

2.3.1. fMRI: cued affective anticipation paradigm
This task (See Supplementary Fig. 1), which has been validated and

used in prior studies (Simmons et al., 2004, 2006), combines a simple
continuous performance task and a cued stimulus presentation to ex-
amine the effects of anticipation. The task has three conditions: (1) a
baseline condition, during which the individual is performing the con-
tinuous performance task; (2) an anticipation condition, when the sti-
mulus characteristics of the shape changes and signals the impending
presentation of a visual stimulus; and (3) the stimulus condition, when
the subject is presented with a “pleasant” or “unpleasant” picture.
During the baseline condition (4–11 s), a blue square is shown and a
medium-range tone (500 Hz) is associated with each trial. For the an-
ticipation condition, subjects are informed that red shapes and a “high-
pitched tone” (1000 Hz) predict the consequent presentation of an
aversive or “unpleasant” picture, whereas green shapes and a “low-
pitch tone” (250 Hz) predict the presentation of a “pleasant” picture.
The anticipation condition consists of an 8-s period. The stimulus
condition consists of a 2-s presentation of an image, which is shown
only once during the task. The images were a combination from the
International Affective Picture System (Lang et al., 1999) for the non-
aversive (noncombat) images and aversive combat-images that were
taken from a photographer accompanying a Marine unit deployed to
Iraq (Simmons et al., 2013).

2.3.2. FDG-PET: Serial verbal learning task (SVLT)
During the FDG uptake and prior to FDG-PET acquisition, partici-

pants completed the SVLT (see Supplementary Fig. 2). The SVLT is a
verbal memory task used to assess the ability to encode and im-
mediately recall verbal information. The SVLT results of these data are
reported elsewhere (Buchsbaum et al., 2015). In this task, subjects learn
five sets of 16 word lists, where each word was presented sequentially
for 1.5 s each. After the 16th word, subjects verbally recalled the word
list. Each word list was repeated five times.

2.4. Neuroimaging acquisition and preprocessing

2.4.1. fMRI and sMRI
Imaging experiments were performed on a 3T GE scanner at the

UCSD Keck Imaging Center. Each session consisted of an anatomical

scan (SPGR; T1-weighted; FOV = 25 cm; matrix = 256 × 256; 176
1 mm sagittal slices; TR = 8 ms; TE = 4 ms; flip = 12°), and a series of
BOLD scans (echo planar image [EPI]; T2*-weighted; ma-
trix = 64 × 64; 30 axial slices; 3.43 × 3.43 × 2.6 mm voxels with
1.4 mm gap; TR = 2s; TE = 32 ms; flip = 90°). Subjects performed the
cued affective anticipation paradigm that was acquired in 290 repeti-
tions lasting 9 min and 40 s.

2.4.2. fMRI image preprocessing
Standard fMRI image pre-processing and analysis was conducted

using AFNI (Cox, 1996). The first two volumes of the EPI images were
removed. The remaining images were slice-time and motion corrected.
Images were spatially smoothed (6mm full-width half-maximum) and
converted to percent signal change. Second-level analyses were con-
ducted using a general linear model. Two task regressors of interest
were entered into the model, one for the unpleasant anticipation
period, and one for the pleasant anticipation period. Two regressors of
non-interest were entered in for the positive and negative image pre-
sentation. These regressors were modeled with the canonical hemody-
namic response. Six additional parameters (x, y, z, roll, pitch, yaw) were
used as nuisance regressors to adjust EPI intensity changes due to
motion artifacts. Constant and linear regressors to account for scanner
drift were also included as nuisance regressors. Whole-brain beta-esti-
mates from the unpleasant > pleasant anticipation contrast was then
entered into primary analysis (see below).

2.4.3. sMRI image preprocessing
sMRI image processing was conducted using Voxel-Based

Morphometry (VBM) within the FSL suite (Douaud et al., 2007) to
evaluate grey matter morphometry on a voxel-wise basis. All subjects’
anatomical images were normalized and segmented using the unified
segmentation model and tissue probability maps, followed by hidden
Markov random field clean-up (Zhang et al., 2001). Jacobian modula-
tion was applied to compensate for the effect of spatial normalization
and to restore the original absolute grey matter density in the seg-
mented grey matter images (Good et al., 2001). These modulated
images were then smoothed with an 8-mm FWHM smoothing kernel.

2.4.4. FDG-PET acquisition and preprocessing
Each subject had an intravenous line inserted for tracer adminis-

tration and then rested in a sound-attenuated room until the uptake
period began. We administered 5mCi FDG and the patients performed
the serial verbal learning test (Hazlett et al., 2010) which has been used
in earlier TBI studies (Buchsbaum et al., 2015). After approximately
32 min in which the SVLT was performed, each patient was positioned
in a Siemens/CTI ECAT HR + scanner with the head oriented such that
the lowest imaging plane was approximately 1 cm above and parallel to
the canthomeatal line. We acquired 63 axial sections spaced 3.5 mm
apart with a 15.5-cm field of view (FOV) in 3D mode, with standard 4-
mm in-plane spatial resolution (full-width half-maximum, FWHM).
Images were acquired at an angle parallel to the canthomeatal plane
and reconstructed using a Hann filter (cut-off frequency = 0.5 cycles/
pixel) into 128 × 128 pixel images. Four 5-min frames were collected
and summed for the full analysis, and split-half images were formed
from odd- and even-numbered frames (1 and 3, 2 and 4) for reliability
testing. Data were spatially smoothed with Gaussian profile filter of
FWHM 3 mm; high-pass temporal filtering with Gaussian-weighted
running line detrending was applied to reduce temporal noise
(cutoff = 70s).

2.4.5. Multimodal alignment
After preprocessing, each subjects’ imaging modality (fMRI, FDG-

PET, sMRI) was aligned to the MNI template using Advanced
Normalization Tools (ANTs) (Avants et al., 2011) to better account for
linear and morphometric alignment differences between subject and
imaging modality. The FDG-PET images were used to create a grey

Table 1
Demographics and measures.

Variable Mean (SD) & Count

Age 29.6 (5.9)
Education 14.2 (1.2)
Ethnicity
Caucasian 25
Hispanic/Latino 13
Other 9

mTBI 32
Type

Blast 28
Fall 6
Vehicle 6
Other 4

LOC
Dazed 28
LOC <1min 9
LOC>1–20min 5
Don't Recall 5

CAPS-IV 40.04 (35.59)
BDI-II 11.07 (10.98)

Note. mTBI= self-reported mild traumatic brain injury.
LOC= self-reported loss of consciousness. CAPS-IV=Clinical
Assessment of PTSD Scale. BDI-II=Beck Depression Inventory-II.
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matter mask for subsequent multivariate analyses. All datasets were
resampled to 2×2x2mm voxels.

2.4.6. Multimodal canonical correlation analysis (mCCA)
A voxel-based mCCA was performed in R (package: CCA). CCA is a

multivariate analysis of correlation, allowing for the measurement of
latent canonical variant pairs that represent the maximized linear re-
lationship between multiple sets of variables (Hotelling, 1936). Here we
applied this approach using multiple measures of trauma-related dis-
orders and multiple neuroimaging modalities (Calhoun and Sui, 2016).

A voxel-wise mCCA approach was used to identify neural regions
that reflect the maximized linear relationship between a pair of cano-
nical variants (CV), where one CV is a TRAC feature, and the other
feature is a neuroimaging CV. As shown in Fig. 1, for each subject, we
defined the TRAC CV by entering three TRAC metrics as separate
variables (x1, x2, x3) using presence or absence of a head-injury
(mTBI), severity of PTSD symptoms (CAPS-IV total score), and de-
pression severity (BDI-II total score). For the neuroimaging CV, we
entered each imaging modality (y1, y2, y3) as separate variables. For
the fMRI measure of affective anticipation (y1), we entered the whole-
brain beta estimates from the preprocessed unpleasant > pleasant
image contrast maps. For the FDG-PET measure of verbal memory
functioning, FDG metabolism binding potential-maps were entered
(y2). For the sMRI measure of grey-matter volume, voxel-based mor-
phometry (VBM) maps were used (y3). Next, voxel-wise canonical
correlation brain maps were derived (orthogonal 1st, 2nd, & 3rd fac-
tors), which represent neural circuitry associated with the maximum
linear relationship between the two canonical pairs (i.e., correlation of
the two CVs), allowing for a voxel-by-voxel integration (or ‘fusion’)
across neuroimaging measures and TRACs. For example, through mCCA
one can derive where BOLD response, glucose metabolism, and struc-
tural volume maximally relate to TRACs. Canonical correlation brain
maps were thresholded (p < .001) and conservatively whole-brain
corrected (p < .001) for multiple comparisons using AFNI's Clustsim
with the spatial autocorrelation function (-acf) to account for the non-
Gaussian shape of fMRI data (Cox et al., 2017). We used the -acf
parameters from the fMRI blur in Clustsim because it required a larger
cluster size to achieve significance (204 voxels) compared to PET (196
voxels) and sMRI (135 voxels).

2.4.7. Fear-network ROIs
We further examined several regions of interest (ROIs) relevant to

trauma-related disorders, including the amygdala, anterior insula, and
ventromedial PFC, to validate that the mCCA fusion analysis produces
strong associations between neuroimaging and trauma-related dis-
orders. Regions of interest (ROI) were anatomically defined using the
Harvard-Oxford cortical and subcortical atlases. For more details, see
analyses in trauma-related disorder-relevant ROIs are reported in the
Supplementary Materials.

For descriptive purposes, we examined the unique and shared
contribution between neural measures of cognition and affective an-
ticipation, grey matter volume, and trauma-related disorders. We ex-
tracted the pre-processed neuroimaging data from each unimodal
neuroimaging modality from ROIs identified from the first canonical
correlation brain map. Specifically, we extracted percent signal change
from the fMRI measures of the affective anticipation task, FDG meta-
bolism binding potential beta-estimates from the verbal memory task,
and grey matter volume from the VBM analysis. Due to the concern of
multicollinearity and to avoid making strong interpretations of statis-
tical significance of the individual variables, we don't report inferential
statistics but do present data for visual depiction, strength, and direc-
tion of the relationships. (e.g. t-values, r-values, p-values).

3. Results

3.1. Fusing multimodal imaging with trauma-related disorders

We performed a voxel-wise mCCA to determine how and where the
fusion of neural measures of verbal memory, affective anticipation, and
grey matter volume, as measured by PET/fMRI/sMRI respectively, re-
lated to key TRACs. The aim was to determine the strongest associations
between neuroimaging mechanism-measures (fMRI/PET/sMRI) and
TRACs (mTBI/PTSD/Depression). The first canonical correlation
(Fig. 2) revealed a broad network representing the convergence of
verbal memory and anticipatory anxiety neural activation and grey
matter volume with TRACs. There was a strong association
(R > 0.508, p < .001 cluster-corrected) in the supplemental motor
area (SMA) and lateral prefrontal cortices, insula/inferior frontal gyrus
(IFG), thalamus, as well as the hippocampus and temporal cortex (See
Table 2 for a complete list of clusters identified). These observations

Fig. 1. Analysis schematic depicting the multimodal canonical correlation analysis (mCCA). For mCCA, each TRAC measure (x1, x2, x3) and imaging modality (y1, y2,
y3) were entered into the model. For the fMRI measure of affective anticipation (y1), we entered the whole-brain beta estimates from the preprocessed un-
pleasant > pleasant image contrast maps. For the FDG-PET measure of verbal memory functioning, FDG metabolism-maps were entered (y2). For the sMRI measure
of grey-matter volume, voxel-based morphometry (VBM) maps were used (y3). On a voxel-by-voxel basis, the mCCA analysis derives latent variables (i.e., canonical
variates[CVs]) representing the maximized linear association between the variables on one side and the opposing CV. The output (Rxy) is a voxel-wise brain map of
the canonical correlation coefficient between the TRAC CV and the neuroimaging CV.
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indicate a broad set of neural regions that represent the maximized
linear integration of verbal memory encoding and recall, affective an-
ticipation processing, and grey matter volume that correlate with the
three types of trauma-related disorders. No clusters survived

thresholding in the other two canonical correlations (ps > .001; but
see Supplemental Materials for sub-threshold brain maps). See
Supplementary Figs. 3–5 for effect size (Canonical Correlation R2) brain
maps for all three canonical correlations.

We also extracted the first canonical correlation from several fear-
network ROIs (see Method). We observed a relatively strong integration
of functional activity (fMRI and PET) and grey matter volume with
TRACs in the amygdala, left amygdala: canonical R=0.43, p=.002;
right amygdala: canonical R=0.40, p= .005 (See Supplementary
Table 1 for all ROIs). The dACC and aINS ROIs showed moderate ef-
fects, canonical Rs > 0.36 but did not survive correction for number of
ROI correlations (α <0.05/6=0.008). As expected, we observed that
the fused neuroimaging modalities performed better at accounting for
more variance with trauma-related disorders than any single neuroi-
maging modality across the ROIs: Fusion R2s > 0.13; unimodal
R2s < 0.02 (see Supplementary Table 1 for all ROIs).

3.2. Interpreting the relationship between TRACs and neuroimaging using
ROIs identified from the 1st canonical correlation

To facilitate interpretation of the first canonical correlation results
and for descriptive purposes and not for determination of significance,
we extracted the beta-estimates from the fMRI measure of aversive
anticipation (aversive > pleasant contrast), glucose metabolism/
binding potential from the FDG-PET measure of verbal memory en-
coding/recall, and grey matter volume from the sMRI measure using
ROIs generated from the brain-map of the first canonical correlation.
Next, we examined the relationship between neural circuitry and in-
dividual trauma-related disorder types. Across all TRACs, two regions
revealed a shared latent trauma-related disorder signature depending
upon imaging modality: the left middle frontal gyrus (MFG) and the

Fig. 2. Results of the voxel-based mCCA for the first canonical correlation associating presence of mTBI, current level of PTSD, and current level of depression with
functional MRI, FDG-PET, and structural MRI scans. Clusters represent the 1st canonical correlation that reflects the maximized linear relationship between the
trauma-related disorder canonical variant (CV) and the neuroimaging CV (cluster corrected p < .001). Brain maps reflect canonical R values.

Table 2
Cluster information for the first canonical correlation.

Region x y z BA Volume
(voxels)

1st Canonical
Correlation

L Precentral gyrus −29 −1 47 6 729 .523
L Middle frontal gyrus

1
−38 20 21 9 430 .508

L Middle frontal gyrus
2

−39 57 4 46 239 .517

R Insula 37 32 14 13 263 .513
R Supplementary motor

area
8 −21 67 6 204 .508

L Rostral superior
frontal gyrus

−35 43 −17 11 202 .515

R Hippocampus 36 −37 −5 36 2027 .519
L Thalamus −19 −22 2 – 11488 .516
R Rostral superior

temporal gyrus
51 9 −10 38 418 .512

R Primary visual cortex 26 −81 5 17 388 .507
L Extrastriate visual

cortex
−39 −71 −39 19 221 .524

L Cerebellum −36 −71 −39 – 217 .504
L Precuneus −5 −56 25 23 187 .472

Note. Voxels are 2mm3 1st Canonical Correlation reflects the maximum linear
relationship between the fused neuroimaging modalities and trauma-related
disorders of affect and cognition (i.e., shared variance between the two cano-
nical variants). Coordinates are in MNI coordinate space. BA=Broadmann
Area.
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SMA. The left MFG cluster was most evident with the fMRI affective
anticipation loading. Whereas, the SMA was found with both neural
features associated with affective anticipation and grey matter (fMRI
and sMRI). As shown in Fig. 3a, evaluating trauma-related disorders
within these clusters, we observed that differences within left MFG
fMRI affective anticipation loadings predicted the presence of mTBI
(Fig. 3b, bar plot), and was positively associated with PTSD severity
(Fig. 3c, second panel) and depressive symptoms (Fig. 3d, third panel).
Likewise, we found that the right SMA grey matter measured through
sMRI (Fig. 3e), revealed differences between mTBI and no mTBI groups
(Fig. 3f, bar plot), and negatively predicted PTSD (Fig. 3g, second
panel) and depression severity (Fig. 3h, third panel).

We also explored other important clusters identified from the first
canonical correlation brain map. The verbal memory FDG-PET glucose
binding potential was positively associated with depression severity in
the right insula (Fig. 4a,d) but not for mTBI or PTSD (Fig. 4b,c). In-
terestingly, this same cluster using affective anticipation fMRI activity
revealed a different pattern (Fig. 4b). Specifically, affective anticipation
from the right insula (Fig. 4e) was positively associated with the pre-
sence of mTBI (Fig. 4f) and to a lesser extent to PTSD symptoms
(Fig. 4g), but not depression severity (Fig. 4h). We also identified a
large affective anticipation cluster encompassing the thalamus that was
particularly important to the presence of mTBI (Supplementary Fig. 6).
In addition, affective anticipation in the right hippocampus
(Supplementary Fig. 7a-d) was increased in individuals with mTBI and
positively associated with PTSD severity, but unrelated to depression.
The amygdala ROI was particularly important for mTBI and depression
(Supplementary Fig. 8).

4. Discussion

The aim of the current investigation was to integrate neural mea-
sures of verbal memory (PET), affective anticipation (fMRI), and grey
matter volume (sMRI) via multimodal canonical correlation analysis
(mCCA) to better understand the neural circuitry underlying the

complex clinical profile associated with TRACs. We identified several
brain regions that represented the shared relationship between TRACs
and neural measures of cognitive-affective function. From our review of
the literature, this is the first study to integrate multiple mechanisms
and neural measures using fMRI, FDG-PET, and sMRI with TRACs using
a multivariate mCCA analytic approach. These data suggest that
leveraging multimodal neuroimaging to identify integrated neural cir-
cuitry can provide valuable information associated with the complex
neuropsychiatric sequela of TRACs.

TRACs shared cognitive, affective, and grey matter signatures in
prefrontal regions, including the MFG, SFG, and SMA. To facilitate in-
terpretation, we show that affective anticipation in the left MFG as
measured with fMRI was positively associated with all three TRACs
(i.e., presence of mTBI, PTSD symptoms, depression symptoms). The
MFG is involved in a vast array of functions, key among these in rela-
tion to TRACs is the top-down affective regulation associated with
successful cognitive reappraisal of negative information (Goldin et al.,
2008; Wager et al., 2008). Increased MFG across all TRACs may suggest
an exaggerated recruitment of a top-down control signal to down-reg-
ulate periods of affective anticipation that is transdiagnostic to trauma-
related disorders (Brinkmann et al., 2017). In addition to the MFG, we
demonstrate that SMA is important to TRACS. We observed that SMA
structural architecture is another important transdiagnostic region re-
lated to TRACs. The SMA is integral to executing explicit-motor plans
(Nachev et al., 2007) and resolving emotional conflict (Deng et al.,
2014). Indeed, selective serotonin reuptake inhibitors increase SMA
activity during emotion regulation and predict treatment success in
individuals diagnosed with PTSD (MacNamara et al., 2016). Collec-
tively, these findings are consistent with our hypothesis that prefrontal
top-down cognitive-affective neural circuitry is a transdiagnostic neural
substrate of trauma-related disorders (Walther et al., 2012).

In addition to prefrontal regions, we found that the insula was a key
region underlying neural function and structure in TRACs. The insula is
an integral hub in the salience network (Menon and Uddin, 2010), plays
a prominent role in integrating cognitive and emotionally salient

Fig. 3. Visualization of the first canonical correlation effects in the fMRI and SMA. (A) Aversive anticipation fMRI activity in the left MFG differentiated mTBI from no
mTBI patients (B), and was increased with elevated PTSD (C) and depression severity (D). (E) Grey matter volume (sMRI) from a cluster in the right supplementary
motor area (SMA) differentiated mTBI from no mTBI patients (F), was negatively associated with PTSD (G) and depression symptoms (H). All ROIs were identified
from the first canonical correlation brain map (see Fig. 2). Results are reported for to facilitate interpretation and are for visualization purposes only.
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information (Craig, 2009; Gu et al., 2013), and is important for inter-
oceptive awareness (Critchley et al., 2004). Consistent with this func-
tion, increased activity in the insula has been associated with heigh-
tened emotional reactivity to internal physiological cues, anticipation
of threat (Paulus and Stein, 2010), and cognitive load (Wesley and
Bickel, 2014). The pattern observed in the current study could reflect
increased cognitive resources devoted to encode and retrieve verbal
information or negative affect when cognitively challenged, particu-
larly for elevated depressive symptoms. Alternatively, it may reflect
heightened affective responding to anticipating negative stimuli
(Simmons et al., 2006).

We also found that the neural signatures in the thalamus and hip-
pocampus were important to TRACs. The thalamus is highly connected
to cortical and subcortical brain networks (O'Muircheartaigh et al.,
2015), making it well positioned to influence cognitive (Schmitt et al.,
2017) and affective processing (Arend et al., 2015). Our observation of
thalamic differences in TRACs is consistent with a growing literature
showing abnormal functional and structural connectivity in mTBI,
PTSD, and MDD patients (Grossman and Inglese, 2016; Wise et al.,
2016; Zhang et al., 2016), which is associated with impaired cognitive
functioning in these patients (Grossman et al., 2012). We also observed
that the right hippocampus was positively associated with TRACs. The
hippocampus plays an integral role in episodic and contextual memory
(Zeidman and Maguire, 2016), mediates the contextual retrieval of fear
extinction (Sotres-Bayon et al., 2006), and is a central component of the
fear regulation network via its rich structural and functional con-
nectivity with the amygdala, anterior cingulate cortex, and the ven-
tromedial PFC (Hartley and Phelps, 2010). This has led investigators to
suggest that the hippocampus is critical for the pathogenesis of TRACs
(Acheson et al., 2012; Liberzon and Abelson, 2016; Maren et al., 2013).

A meta-analysis of neuroimaging studies reported little overlap in
the neural signatures of comorbid trauma-related disorders (Simmons
and Matthews, 2012). Here, using a multivariate analytic approach, we
identified a neuro-mechanistic TRAC profile. Based upon our findings,
TRACs are associated with generalized aberrations in a prefrontal

network instantiating the top-down control of cognition and affect,
potentially contributing to poor executive functioning and emotion
regulation (Kohn et al., 2014). This observation extends other work
establishing top-down control deficits in mTBI, PTSD, and major de-
pression separately (Etkin and Wager, 2007; Rive et al., 2013; van der
Horn et al., 2016) by showing that this deficit is a transdiagnostic
marker representing TRACs more broadly. These findings indicate that
the dynamic interplay between verbal memory encoding/retrieval, af-
fective anticipation processes, and grey matter may be a key component
of TRACs. Through multivariate approaches, we can begin to under-
stand how the integration of multiple mechanisms are manifested in the
brain and determine the extent to which linked mechanisms contribute
to the manifestation of TRACs.

We had hypothesized that the amygdala would be represented
across imaging modalities. Although we did not observe an amygdala
cluster through the whole-brain mCCA, we did observe that amygdala
was moderately associated with TRACs through the ROI approach. The
amygdala is a well-characterized region (Shackman and Fox, 2016) and
is implicated in the pathophysiology of comorbid mTBI/PTSD (Bomyea
et al., 2017), PTSD alone, (Stevens et al., 2017), and depression
(Belzung et al., 2015). One possible reason we did not observe a robust
amygdala cluster using the whole-brain mCCA is that our multimodal
neuroimaging inputs were not specifically designed to capture amyg-
dala-based processing (Simmons et al., 2011). This raises an important
issue in that results from multimodal fusion analyses are inherently
dependent upon the tasks and neural metric entered into the analysis.
Using task-based neural measures may be helpful for understanding the
joint-relationship between relevant mechanistic indices of neu-
ropsychiatric disorders, but the results may not generalize to other
mechanisms, tasks, or disorders.

Of course, limitations in our study indicate that important chal-
lenges remain. Recruiting larger samples with a wider selection of
trauma-related disorders (e.g., substance use, other anxiety disorders)
will be necessary, and extending this approach beyond combat Veterans
and males will be critical for understanding how the integration of

Fig. 4. Visualization of the first canonical correlation effects in the insula. (A) FDG-PET glucose binding potential in the right insula was not associated with mTBI (B)
or to PTSD symptoms (C) but was positively associated with depression severity (D). (E) An fMRI-based cluster in the right insula differentiated mTBI from no mTBI
patients (F), and was weakly associated PTSD symptoms (G), but not depressive symptoms as measured by the Beck Depression Inventory II (BDI-II) (H). All ROIs
were identified from the first canonical correlation brain map (see Fig. 2). Results are reported for to facilitate interpretation and are for visualization purposes only.
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mechanistic neural function and structure represent neuropsychiatric
disorders. Another limitation of our CCA approach is the difficulty in-
terpreting individual TRAC disorders or neuroimaging modality-spe-
cific variables due to multicollinearity, particularly between mTBI,
PTSD, and MDD measures. High relatedness between TRACs under-
scores the problems inherent to our current neuropsychiatric classifi-
cation systems (Clark et al., 2017). A challenge for future research will
be to apply multimodal neuroimaging fusion with machine learning
approaches to develop brain-robust or brain-derived diagnosis and to
predict treatment outcomes (Woo et al., 2017). A potential fruitful
approach would be to expand the neuroimaging fusion analysis using
non-task based neuroimaging modalities (e.g., diffusion MRI, resting
state MRI, EEG frontal asymmetry). Using non-task based neural fea-
tures may increase reliability and generalizability in other samples — a
critical necessity for clinical applications (Linden, 2012). For example,
network analysis for understanding linked neural structure and function
combined with hierarchical clustering or support vector machine
learning analysis may provide either better matching to current psy-
chiatric models or potentially lead to new classification and persona-
lized medicine (Calhoun and Sui, 2016).

In conclusion, the results of our study are the first to demonstrate
that multimodal fusion of cognition and affective anticipation-based
neural circuitry are associated with TRACs, suggestive of generalized
dysfunction in top-down control of emotional arousal. Collectively,
these data raise the possibility that patterns among distinct mechanisms
and neuroimaging modalities may provide novel characterization of the
dynamic and multifaceted neural architecture underlying TRACs. This
sets the stage for novel prophylactic and precision treatments that
target the underlying neural structure and function associated with
TRACs.
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