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Rice is one of the most economically important commodities globally. However, rice plants are salt sus-
ceptible species in which high salinity can significantly constrain its productivity. Several physiological
parameters in adaptation to salt stress have been observed, though changes in metabolic aspects remain
to be elucidated. In this study, rice metabolic activities of salt-stressed flag leaf were systematically char-
acterized. Transcriptomics and metabolomics data were combined to identify disturbed pathways,
altered metabolites and metabolic hotspots within the rice metabolic network under salt stress condition.
Besides, the feasible flux solutions in different context-specific metabolic networks were estimated and
compared. Our findings highlighted metabolic reprogramming in primary metabolic pathways, cellular
respiration, antioxidant biosynthetic pathways, and phytohormone biosynthetic pathways.
Photosynthesis and hexose utilization were among the major disturbed pathways in the stressed flag leaf.
Notably, the increased flux distribution of the photorespiratory pathway could contribute to cellular
redox control. Predicted flux statuses in several pathways were consistent with the results from tran-
scriptomics, end-point metabolomics, and physiological studies. Our study illustrated that the contextu-
alized genome-scale model together with multi-omics analysis is a powerful approach to unravel the
metabolic responses of rice to salinity stress.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rice (Oryza sativa L.) is a staple food for global population and is
one of the most economically important crops with the world gross
production of 780 million tons in 2018 [1]. However, it is the most
salt susceptible cultivar among the cereal crops for which moder-
ately saline soil can reduce the yield by 50% [2,3]. As such, increas-
ing rice productivity is even more challenging when the degree of
soil salinization increases. As a consequence of elevated global
temperature, drought, and poor agricultural practices [4], it was
expected that saline soils could cover 50% of all arable land globally
by the next 30 years [5]. Different rice genotypes possess different
salt-tolerant degrees, ranging from highly susceptible to salt-
tolerant cultivars [6]. The plasticity of rice productivity can be
impacted by both severity of salt stress and different stages of crop
growth [7]. The NaCl concentration above 40 mM is generally con-
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sidered harmful to rice [2], but salinity imposed at the reproduc-
tive stage can lead to more considerable yield loss [7,8].

Generally, salinity stress affects plants in two distinct stages. It
first impedes plant cells from absorbing water due to the ‘osmotic
effect’ of salt ions and later disrupts normal cellular activities due
to the ‘ion toxicity effect’ of salt [3,9,10], ultimately altering plant
metabolism. Several features of the plant salt stress responses
are moderated by different but overlapping signal transduction
pathways, resulting in metabolic reprograming, and physiological
and morphological adaptations [11,12]. Reduction in photosyn-
thetic capacity is evident in plants exposed to saline conditions
[13]. Immediate mobilization of leaf starch is observed in salt-
sensitive varieties of Arabidopsis and tomato under high salt condi-
tions [12,14], however, over-accumulation of root starch has
shown to possibly contribute to better salt tolerance in rice [15].
Several plants adapt to osmotic stress by over-accumulating small
metabolites such as sugars, sugar alcohols, proline, and betaines to
lower cellular osmotic potential and maintain water-absorbing
capacity, while preserving macromolecules from damage [9,16].
Interestingly, some sugars can also act as signal molecules regulat-
ing and modulating plant metabolic activities on many levels [17].

Exposing leaf and shoot to high salt causes oxidative stress,
leading to an increase in H2O2, glutathione disulfide (GSSG), lipid
peroxidation, and eventually electrolyte leakage, accompanied by
surged activity of superoxide dismutase (SOD), glutathione reduc-
tase, and peroxidase [18,19]. The accumulation of several sec-
ondary metabolites such as flavonoids, polyphenols, anthocyanin,
or polyamines in plants are also observed [20]. In addition, several
plant hormones including abscisic acid, auxin, cytokinins, brassi-
nosteroids, jasmonate, gibberellin, and ethylene play an important
role in mediating alleviation of salt stress in plants [21]. Most stud-
ies have emphasized on the effects of salinity stress on physiology,
gene expression, enzyme activity and the end-point metabolic
products of pathways, meanwhile changes in metabolic reaction
rates (i.e., fluxes) are not as widely investigated [17]. The analysis
of flux states displays the result of multilayered regulation of
metabolite synthesis, degradation, and conversion through the
intertwined metabolic pathways [17], reflecting the metabolic sta-
tus of the cells.

Genome-scale metabolic models (GEMs) are valuable systems
biology platforms to investigate metabolic scenarios underlying a
particular cellular condition. A GEM of an organism comprises all
metabolic reactions, which are represented in a mathematical
framework for flux simulations and phenotype predictions [22].
GEMs have been fruitfully utilized for both biological discoveries
[23] and metabolic engineering [24]. Furthermore, extracting
context-specific models (e.g. cell line-, tissue- or disease-specific
metabolic models) is an advanced use of GEMs by integrating with
omics and experimental data. It has been stated that the extracted
models can predict metabolic states more accurately than generic
GEMs [25]. To date, GEMs are available for more than 6000 differ-
ent organisms [26]. There are three GEMs reconstructed for rice,
each of which is equipped with different features e.g. number of
genes, reactions, compartments and metabolites coverage [27].
The rice GEMs have been employed in deciphering chlorophyll
biosynthesis [28], the study to increase rice yield [29] and the stud-
ies of rice responses to environmental changes [27,30–32], but not
in salinity stress. The successful implementation of the rice GEMs
in previous studies lends support to the application of the
approach to investigate how fluxes in the rice plants are repro-
grammed under salinity stress. The outcomes will be a step
towards unraveling and fine-tuning rice adaptability to saline soil.

In the present study, a systems biology approach was utilized to
characterize metabolic states of rice flag leaf in response to high
salinity. The analysis steps of this study are summarized in Fig. 1.
Transcriptomics data were integrated to the rice GEM for outlining
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context-specific models: salt stress model and non-stress model.
The extracted models were investigated for metabolic patterns
under these conditions. Integrative analysis of transcriptomics,
metabolomics, and physiological response data in combination
with the flux states shed light on how rice responses to salt stress
in the context of metabolism.
2. Materials and methods

2.1. Plant materials

Seeds of rice (Oryza sativa L. var. ‘Nipponbare’) were germinated
for seven days. Then rice seedlings were transferred to grow in pots
containing five kilograms of soil by using randomized complete
block design (RCBD) with three replications per condition. The rice
plants were grown in the greenhouse of Botany Department, Fac-
ulty of Science, Chulalongkorn University, and Biology Department,
Faculty of Science, Khon Kaen University until reaching reproduc-
tive stage. At booting stage, for the salt stress condition, water
was removed and 150 mM NaCl solution was added into the pots,
whereas no NaCl solution was added for the control condition.
After cultivated for nine more days, flag leaves of both control
and salt stress conditions were collected for RNA and metabolite
extraction.

2.2. Transcriptomics analysis

In total, there were 12 samples of RNA-seq data; six salinity
stress samples and six control samples. Complete sample prepara-
tion and data analysis are explained in Boonchai et al. (2018) [33].
Briefly, total RNA was extracted from rice flag leaf samples of both
control and salt stress conditions by using Invitrogen’s ConcertTM

Plant RNA Reagent. Then DNaseI (NEB) was added in order to elim-
inate contaminated genomic DNA. cDNA libraries were prepared
by The KAPA Stranded RNA-Seq Library Preparation Kit for Illu-
mina� (Kapa biosystem, USA). Fragments with size of ~300 bp were
selected and connected to adaptors. After that, all fragments were
enriched by PCR for 12 cycles and all cDNA libraries were
sequenced by Illumina Next-Generation sequencing (Illumina,
USA). All short-sequence reads without adaptor were grouped by
following the method from Missirian et al. [34]. The sequence
reads were mapped to rice reference genome prior to differential
gene expression analysis using the R package DESeq [35].

2.3. Metabolomics analysis

For metabolite profiling, 30 mg of rice flag leaf were extracted
according to previously described protocol [36]. The standards
including 20 lL of 0.2 mg/mL Ribitol (Sigma Aldrich, Singapore)
and 20 lL of 0.2 mg/mL Norleucine (Sigma Aldrich, Singapore)
were added to the extracts. Similar to transcriptomics data, there
were six salinity stress samples and six control samples. The sam-
ples were shipped to the NIH West Coast Metabolomics Center,
University of California, Davis for derivatization and quantification
of primary metabolites by gas chromatography time-of-flight mass
spectrometry (GC-TOF-MS) using previously described protocol
[37]. Mass spectra were acquired and further processed by the Bin-
Base database [38,39]. Raw data, given as peak heights for the
quantification ion, was normalized by the sum of all peak heights
for all annotated metabolites. Prior to statistical analysis, the nor-
malized data were natural logarithm transformed using the Meta-
box toolbox [40].

Multivariate analysis using a partial least squares discriminant
analysis (PLS-DA) approach was performed with the R package
ropls [41]. Significantly altered metabolites of rice under salinity



Fig. 1. Analysis workflow. Rice at booting stage was cultivated in two conditions: no salt treatment (control) and 150 mM NaCl treatment (salt stress). Flag leaves of both
conditions were collected for transcript and metabolite profiling. The model contextualization was performed based on transcriptomics data to construct context-specific
models before metabolic flux analysis. Omics data and in silico metabolic modeling were combined to characterized metabolic activities of rice under salt stress. PLS-DA,
partial least squares-discriminant analysis.
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stress were identified by considering variable importance in pro-
jection (VIP) values [42]. Only metabolites with VIP >1.0 were con-
sidered as important discriminants between two conditions. The
log2-fold change (log2FC) of each metabolite was estimated to rep-
resent increase or decrease levels of the metabolite under salt
stress relative to control condition.

Structurally unknown metabolites were further predicted by
using the Golm Metabolome Database (GMD) [43]. The GMD data-
base contains mass spectral and retention index (RI) information of
metabolites quantified by GC–MS platforms. The database esti-
mates quality of mass spectral matching by using mass intensity
information and provides as distance scores (1-dotprod distance
by default). The scores range from 0 to 1; 0 represents perfect
match and 1 denotes complete mismatch.
2.4. Pathway and metabolite enrichment analysis

For transcriptomics data, the p-values and the log2-fold changes
from the differential gene expression analysis were used as the
inputs for pathway enrichment analysis and metabolite enrichment
analysis. The pathway enrichment analysis was performed to identify
perturbed pathways in salinity stress compared to control condition.
The metabolite enrichment analysis, (i.e., the reporter metabolite
analysis) was conducted to pinpoint metabolites within the rice
GEM that surrounded by significant transcriptional changes [44].
The analyses were performed using the Reporter Features algorithm
[45] implemented on the R package piano [46]. This method classifies
the directionality of gene expression changes into up- or down- reg-
ulation or both to aid interpretation of the results.

For metabolomics data, pathway over-representation analysis
was calculated with Fisher’s exact test as implemented on the R
package piano. Chemical category over-representation analysis was
performed using the Metabox toolbox. Only important metabolites
with VIP >1.0 from PLS-DA were used in these analyses.

Biochemical pathway information from the KEGG database [47]
was used for the pathway analysis. Pathways and metabolites with
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p-value <0.01 were considered as significantly altered in salt stress
condition.
2.5. Extraction of context-specific models

The salt stress-specific model and non-stress model of rice
leaves were extracted from the rice GEM iOS2164 [30] coupled
with the transcriptomics data. The iOS2164model is fully compart-
mentalized, composed of 2165 genes, 2444 reactions and 1999
metabolites, and delineates light-driven photophosphorylation
reactions for five light spectra (red, blue, green white and dark).
In this study, only white light reactions, which are the mixture of
red, blue and green reactions, and the straw biomass reaction were
included in the calculation. We used the Integrative Metabolic
Analysis Tool (iMAT) algorithm [48,49] to extract the context-
specific models. The method integrates gene or protein expression
data to the GEMs. It aims to maximize the number of flux-carrying
reactions associated with highly expressed genes (i.e. minimizing
the number of non-zero flux reactions associated with lowly
expressed genes), so that a steady-state metabolic flux distribution
satisfies stoichiometric and thermodynamic constraints of the
model. The transcriptomics data were regularized logarithm (rlog)
transformed using the R package DESeq2 [50]. Average expression
values were used by the iMAT algorithm. Highly expressed genes
were determined by their expression level above m + 0.5r and
lowly expressed genes were ones with the expression level below
m � 0.5r [49], where m denotes average expression level across all
genes of each condition and r is the associated standard deviation
(SD). The analysis with iMAT algorithm was conducted as imple-
mented in the COBRA toolbox [51] in MATLAB.
2.6. Random sampling and differential flux analysis

To simulate photorespiration of rice leaves, the constraints of
flux solution space were implemented by limiting the photon
uptake at 100 mmol g�1 DCW h�1 [30] and excluding red light, blue
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light, green light and coleoptile biomass reactions. For each
context-specific GEM, reaction fluxes were uniformly sampled by
using the Artificial Centering Hit-and-Run (ACHR) Monte Carlo
sampling [52,53] algorithm implemented in the COBRA toolbox.
5000 flux samples were obtained for each reaction. Then, for each
condition, all flux samples of reactions were normalized by using
the following equation (Eq. (1)). Briefly, each flux value of a sample
point was divided by the sum of all fluxes of that sample point [54].

normalizedfluxij ¼
fluxijPn

i¼1abs fluxij
� � ð1Þ

n denotes number of reactions, i designates ith reaction and j is jth

sample point.
After that, the differences in flux samples between salinity

stress and control condition were computed by randomly choosing
two normalized flux vectors, one from flux samples of each condi-
tion, and calculating both the differences and relative flux ratios.
This process was repeated to create 10,000 flux difference samples
for each reaction. The reaction Z scores indicate flux differences
between two conditions and was calculated as illustrated in Eq.
(2) [55].

Zi ¼ absðliÞ
ri=

p
n

ð2Þ

m denotes sample mean, r is standard deviation and i designates ith

reaction.
P-values were derived from the absolute Z scores based on

cumulative distribution function of normal distribution. The
obtained p-values were adjusted for multiple testing with Ben-
jamini and Hochberg at a false discovery rate (FDR) of 0.05.
2.7. Flux-sum analysis

The flux-sum for a metabolite represents its turnover rate,
which is calculated from the summation of fluxes of reactions
around the metabolite (Eq. (3)) [56].

f i ¼ 0:5
X

i

abs Sxiv ið Þ ð3Þ

Sxi denotes stoichiometric coefficient of metabolite x of reaction i,
and vi designates flux of reaction i.

The log2-ratios of flux-sum values between salt stress and con-
trol condition were qualitatively compared to the directional
changes of metabolite abundance.
2.8. Physiological response of rice flag leaf and plant productivity
under salinity stress

Rice seeds were germinated and planted in soil as indicated
above. At booting stage, 150 mM NaCl was added to reach soil EC
of 7–9 dS.m�1, while water was added to the control plants
(non-stress). Then, photosynthesis parameters, net photosynthesis
rate and stomatal conductance of the flag leaves were determined
after 1, 3, 6 and 9 days after salt-stresses treatment by using LI-
6400 XT portable photosynthesis system (LI-COR, Lincoln, NE).
For plant productivity, rice grains were harvested for the assess-
ment of the percentage of unfilled grain and total grain yield. The
experiment was performed with six replicates per treatment. The
differences were deemed significant at p-value <0.05 by student’s
t-test.
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3. Results and discussion

3.1. Pathways and metabolites from transcriptomics alterations

Pathway enrichment analysis was carried out to identify dis-
turbed pathways in salt stress condition compared to control con-
dition based on transcriptomics data. We considered pathways
that were enriched by either up-regulated or down-regulated
genes in response to 150 mM NaCl treatment. Several biosynthesis
pathways in rice flag leaf were altered. These include phenylala-
nine, tyrosine, glutathione (GSH), and isoquinone metabolisms,
and oxidative phosphorylation that were enriched by up-
regulated genes, whereas antenna protein biosynthesis and
Mitogen-activated protein kinase (MAPK) signaling pathway were
affected by transcriptional downregulation (Fig. 2 and Supplemen-
tary Table S1). Likewise, genes associated with phenylalanine, tyr-
osine and tryptophan metabolism, oxidative phosphorylation,
indole-3-acetic acid (IAA) biosynthesis, starch metabolism, GSH
metabolism, brassinosteroids biosynthesis, terpenoid biosynthesis
via MEP pathway, mitochondrial fatty acid biosynthesis, and mito-
chondrial transport were up-regulated, while photosynthetic
water-water cycle, thiamine metabolism, and cellulose metabo-
lism were enriched by down-regulated genes (Supplementary
Table S2). Besides pathway-level information, we identified the
metabolic hotspots (i.e., reporter metabolites that indicate per-
turbed regions at metabolite level) within the rice metabolic net-
work. Metabolites associated by up-regulated genes were
methionine, ubiquinone, ubiquinol, tryptamine, 2-oxoglutarate,
amino acids (such as leucine, tyrosine and alanine), serotonin, raf-
finose and myo-inositol, while metabolites that were affected by
down-regulated genes included galactose 1-phosphate, galactose,
adenylosuccinic acid, 1-aminocyclopropane-1-carboxylic acid
(ACC), and acetate (Fig. 3 and Supplementary Table S3).

Previous transcriptomics studies of salt-tolerant rice (cv.Pok-
kali) response to salinity stress show the enrichment of Gene
Ontology (GO) terms including oxidation reduction, terpenoid
biosynthesis, glutathione-metabolic processes, activation of kinase
activity, and response to auxin stimulus [57]. The other study
reports late response genes (1–3 days post 200 mM NaCl treat-
ment), which include up-regulated genes in primary plant metabo-
lism and stress protective genes, and down-regulated set of genes
involved in photosynthesis and protein synthesis [58]. Consis-
tently, our gene expression analysis revealed up-regulation of
genes in oxidative phosphorylation, and aromatic amino acid,
GSH and isoquinone metabolism, while the genes in photosyn-
thetic antenna protein and MAPK signaling pathways were majorly
down-regulated (Fig. 2 and Supplementary Table S1).
3.2. Metabolome analysis of rice leaf responses to salinity stress

Metabolomics analysis reported 444 metabolites in total, of
which 143 were structurally annotated. We observed clear separa-
tion between salt-induced and control samples indicating there
were metabolic changes in rice under the stress (Supplementary
Fig. S1). In addition, biological variations between each salt-
treated flag leaf were greater than the control samples (Supple-
mentary Fig. S1). Of the 444 reported metabolites, 157 were dis-
criminative metabolites (VIP > 1.0) between the salt stress and
control conditions (Supplementary Table S4). Among these, 61
metabolites had known annotation, and we predicted 91 struc-
turally unknown metabolites using the GMD database.

The top metabolites capturing metabolic variations across con-
ditions included sugars (e.g., allose, glucose, raffinose, maltotriose,
2,7-anhydro-sedoheptulose, melibiose), sugar alcohols (e.g., xyli-
tol, galactinol), organic acids (e.g., malic acid, a-ketoglutaric acid,



Fig. 2. Disturbed pathway determined from transcriptomics analysis. Left figure illustrates the pathways significantly enriched by distinctly up (red)- regulated genes,
whereas right figure is the pathways enriched by down (blue)-regulated genes. Significantly enriched pathways are the pathways with p-value <0.01. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Perturbed metabolites determined from transcriptomics analysis. Left figure illustrates the metabolites significantly surrounded by distinctly up (red)- regulated
genes, whereas right figure is the metabolites surrounded by down (blue)-regulated genes. Significantly enriched metabolites are the metabolites with p-value <0.01. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2-phosphoglyceric acid, malonic acid, oxalic acid, 6-
phosphogluconic acid, 4-aminobutanoic acid), antioxidative com-
pounds (e.g., ascorbic acid, 3,4-dihydroxybenzoic acid), nucleobase
(e.g., adenine), alcohols (e.g., 1,2,4-butanetriol), amino acids and
their derivatives (e.g., serine, tyramine, phenylalanine, threonine,
leucine, cycloleucine, isoleucine, pyroglutamic acid, glycine, sar-
cosine, a-aminoadipic acid), amine (e.g., ethanolamine) and amino
sugar (e.g., galactosamine) (Supplementary Table S4). Chemical
categories based on Medical Subject Headings (MeSH – chemicals
and drugs) [59] that were over-represented by the discriminative
metabolites were listed in Supplementary Table S5.
Table 1
Pathways overrepresented by discriminative metabolites.1

Pathway name No. of metabolites in

Aminoacyl-tRNA biosynthesis 52
ABC transporters 138
Alanine, aspartate and glutamate metabolism 28
Phenylalanine, tyrosine and tryptophan biosynthesis 35
Cyanoamino acid metabolism 45
Glyoxylate and dicarboxylate metabolism 62
Biosynthesis of various secondary metabolites – part 2 73
Arginine biosynthesis 23
Valine, leucine and isoleucine biosynthesis 23
Glucosinolate biosynthesis 77
Glutathione metabolism 38
Citrate cycle (TCA cycle) 20
Taurine and hypotaurine metabolism 22
Glycine, serine and threonine metabolism 50

1 The table is sorted by pval and shows the pathways that are significantly overrep
adjusted with Benjamini and Hochberg at FDR = 0.05.
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Pathways overrepresented by the discriminant metabolites
were identified (Table 1). Interestingly, the altered pathways based
on transcriptional changes (Fig. 2 and Supplementary Table S1)
were also picked out from metabolomics profiles (Table 1). These
pathways were aromatic amino acid, secondary metabolite, and
GSH metabolism. Changes in such cellular metabolism could be a
result of gene expression alterations. The oxidative phosphoryla-
tion pathway was enriched by up-regulated genes based on the
transcriptomics analysis alone (Fig. 2 and Supplementary
Table S1). However, its upstream pathway, TCA cycle, was identi-
fied based on the additional metabolomics information (Table 1).
pathway Metabolite count pval qval

14 2.96E�15 3.14E�13
14 3.70E�09 1.96E�07
7 7.84E�08 2.77E�06
7 4.12E�07 1.09E�05
7 2.49E�06 5.28E�05
7 2.24E�05 0.000395765
7 6.57E�05 0.000995643
4 0.000273671 0.003223232
4 0.000273671 0.003223232
6 0.000711221 0.007538941
4 0.00194549 0.018747453
3 0.002678215 0.023657569
3 0.003545398 0.028908632
4 0.005346365 0.040479623

resented by discriminative metabolites (pval < 0.01). qval, q-value or the-p-value
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Other pathways including aminoacyl-tRNA biosynthesis, ABC
transporters, several amino acid metabolism, cyanoamino acid
metabolism, glyoxylate and dicarboxylate metabolism, and glu-
cosinolate biosynthesis were associated with discriminant
metabolites (Table 1).

3.3. Generation of salt stress-specific models

We used the rice GEM iOS2164 as a template for the extraction
of salt stress- and non-stress-specific models based on the tran-
scriptomics evidence. The total of 1939 metabolic genes in the
iOS2164 model were mapped to the gene expression profiles for
the context-specific model extraction using the iMAT algorithm.
In particular, there are three main families of algorithms for
context-specific model extraction: Gene Inactivity Moderated by
Metabolism and Expression (GIMME)-like, iMAT-like and Model
Building Algorithm (MBA)-like families, as explained by [60]. The
iMAT algorithm from the iMAT-like family was used in this study,
as it does not require a metabolic objective in contrast to the
GIMME-like family. This method is appropriate in our context
where no clear objective function is pre-defined for rice experienc-
ing environmental changes. The MBA-like family was not consid-
ered in this study because it requires a priori defined set of high
confidence reactions, being active in a certain context.

The iMAT algorithm requires a user-specified gene expression
threshold to determine which genes are expressed. In this study,
we explored three different thresholds: m ± 0.5r, m ± r and
m ± 2r (Supplementary Fig. S2). Less number of genes were used
by the algorithm to extract context-specific models when the
threshold was increased (Supplementary Fig. 2A). Approximately,
30%, 11% and 2% of 1939 metabolic genes were highly expressed
based on the observed thresholds, respectively. We further exam-
ined the biomass objective values of the extracted models from
each threshold. The biomass reaction fluxes of control- and salt-
specific models (from m ± 0.5r threshold) were 90.7% and 92.1%
of optimal growth rate of iOS2164 leaf cell model, as predicted
by flux balance analysis [53] Supplementary Figure S2 (Supple-
mentary Fig. 2B). While the biomass objective values of other
extracted models were less than 90%. Therefore, we chose the gene
expression threshold of half a SD above and below the mean for
highly expressed and lowly expressed genes, respectively.

Approximately 1200 reactions (half of the reactions in the
iOS2164 model) were in the active state. Of these, 1157 reactions
were active in both conditions, while 44 and 45 reactions were
only active in control and salt stress models, respectively (Supple-
mentary Fig. S3). Flux distributions for each model were computed
by the uniform random sampling for subsequent analyses. This
approach computes a large set of possible flux solutions and does
not require an objective function [61].

3.4. Flux statuses in rice metabolic subsystems

Metabolic fluxes for each context-specific model were com-
puted, and flux differences between two conditions were esti-
mated. The reactions with adjusted p-values <0.01 were
considered as statistically different between salt stress and control
conditions. A set of significant reactions were subsequently dis-
cussed according to their subsystems (Figs. 4–6).

3.4.1. Metabolic fluxes of primary metabolic pathways
Modifications in fluxes among different primary metabolic

pathways in response to salinity stress were investigated (Fig. 4).
Despite the up-regulation of 52 out of 77 genes involved in photo-
synthesis carbon fixation (Supplementary Table S1), small flux
changes through the reactions catalyzed by Calvin-Benson cycle
enzymes and photophosphorylation were observed (Fig. 4A). How-
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ever, the flux state of chloroplastic glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) reaction was very much reduced
(log2FC = �4.19) in salt stress condition (Fig. 4A). GAPDH in higher
plants exists as the supramolecular complex with CP12 small pro-
tein, which contributes to the overall regulation of photosynthetic
metabolism [62]. The significant reduction in the flux of GAPDH
reaction may suggest reduced photosynthetic activities in the
salt-stressed flag leaf, as previously demonstrated by the transcrip-
tome study of rice seedling exposed to high salinity (150 and
200 mM NaCl) [58,63]. Although the reduced activities in Calvin-
Benson cycle was not directly observed via transcriptomics and
metabolmics analysis, the downregulated antenna protein biosyn-
thetic genes also supported the overall reduction of photosynthesis
under salinity stress (Fig. 2 and Supplementary Table S1). Reduc-
tion of photosynthetic rate was previously observed in mature rice
leaf under salinity stress [13,64–66]. This could be a result of (i)
direct inhibition of enzyme by accumulated ions (ii) reduced stom-
atal conductance or (iii) the feedback inhibition of accumulated
sugars, which act as osmoticum in the tissue [64–67].

Similar to photosynthesis, overall fluxes in photorespiration
pathways were not critically changed (Fig. 4B). However, the flux
through 3-phosphoglycerate kinase (GLYK; log2FC = 3.22) reaction
was greatly magnified in the salt-treated condition. GLYK catalyzes
the last step in the photorespiration pathway [68] and the increase
in flux suggests higher photorespiration activity of plant tissues, as
evident in higher plants [69]. Photosynthesis and photorespiration
are obligatory interwinding metabolic processes [68]. Inefficient
photosynthesis due to the decrease in stomatal conductance under
stress condition could be accompanied by high photorespiratory
rate as the enzyme Ribulose biphosphate carboxylase/oxygenase
(RuBisCo) is available for O2 substitution in the first step of photo-
synthetic CO2 fixation [68,70]. Flux prediction also pointed out the
salt-stressed rice flag leaf favor in reversing 2-phosphoglycerate
kinase reaction to yield glycerate, which could be a substrate for
either hydroxypyruvate or 3-phosphoglycerate (3-PGA) synthesis
in glycolate-glyoxylate metabolism [68,71]. These findings were
supported by the metabolomics evidence, which showed that gly-
oxylate metabolim was overrepresented by the discriminant
metabolites (Table 1).

Overall fluxes through starch biosynthesis were not affected
except for a distinct decline in fluxes through the reactions of
amylo 1–6-glucosidase, which is a debranching enzyme [72], and
a-amylase in the salinity-stressed leaf (Fig. 4C). Similarly, the flux
in sucrose biosynthesis was slightly affected by salinity except for
the reduction of fluxes through cytosolic invertase (CINV; log2FC =
�0.83) and fructokinase (FRK; log2FC = �0.14) reactions (Fig. 4C).
These reductions suggest reduced cellular hexose availability and
utilization for cell growth and development [72–74]. This could,
however, be a result of reduced sink activity such as a delayed par-
nicle emergence or an abortion of developing rice seed [2,75].

For primary cell wall metabolism, fluxes through fructose,
inositol-phosphate and amino sugars metabolism were slightly
changed under salinity, while the significant modification in flux
was observed in galactose metabolism (Fig. 4D). The fluxes through
the reactions catalyzed by galactinol-raffinose galactosyltransfer-
ease (log2FC = 1.11) and stachyose galactohydrolase were greatly
enhanced in salt stress condition (Fig. 4D). These enzymes play
an important role in stachyose biosynthesis, which is observed
even in senescent and partially yellowed leaves [76]. In addition,
the flux via raffinose synthase was substantially reduced in the
salt-treated leaf (Fig. 4D), supporting the favor in galactosyltrans-
fer activity towards synthesizing stachyose rather than raffinose.
This result suggests the shift from starch metabolism to other stor-
age carbohydrate metabolism in the salt-stressed flag leaf.

Metabolic changes were distinctly observed in amino acid
metabolism (Fig. 4E). Fluxes markedly increase in cysteine and



Fig. 4. Flux states of primary metabolic pathways across conditions. (A) Photosynthesis, (B) Photorespiration, (C) Starch and sucrose metabolism, (D) Primary cell wall
metabolism, and (E) Amino acid metabolism. Reactions are in row and conditions are in column. For each heatmap, the color intensity corresponds to the average magnitude
of each reaction flux sample. Red and blue colors represent forward and reverse direction of each reaction. The left hand color key indicates the subsystem of individual
reaction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Flux states of cellular respiration and antioxidant biosynthetic pathways. (A) Cellular respiration (B) Antioxidant metabolism. Reactions are in row and conditions are
in column. For each heatmap, the color intensity corresponds to the average magnitude of each reaction flux sample. Red and blue colors represent forward and reverse
direction of each reaction. The left hand color key indicates the subsystem of individual reaction. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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methionine metabolism, but the flux towards taurine synthesis
was strongly affected under salinity stress condition. O-
succinyl-L-homoserine succinate-lyase reaction favored O-
succinyl-L-homoserine and L-cysteine synthesis, meanwhile the
flux through reactions that were catalyzed by its orthologs, cys-
tathionine c-synthase (CGS) and O-succinylhomoserine (thiol)-
lyase, preferred L-cystathionine and succinate synthesis
(Fig. 4E) [77]. Whether these three enzymes work in a compli-
mentary or antagonistic manner in this stress condition
required further investigation. The fluxes of tyrosine amino-
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transferease (TAT; log2FC = 2.48), arogenate dehydrogenase
(ADH), and L-arogenate:oxaloacetate aminotransferase (aka
prephenate aminotransferease) reactions were enhanced under
salt stress compared to control condition (Fig. 4E), suggesting
an increase in aromatic amino acid metabolism of salinity-
induced rice [78–80]. Flux predictions of taurine biosynthesis
and aromatic amino acid metabolism from the context-specific
models matched with the findings from metabolomics profiles,
as both were also overrepresented by discriminative metabolites
(Table 1).



Fig. 6. Flux states of phytohormone biosynthesis. Reactions are in row and conditions are in column. The color intensity corresponds to the average magnitude of each
reaction flux sample. Red and blue colors represent forward and reverse direction of each reaction. The left hand color key indicates the subsystem of individual reaction. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.4.2. Metabolic fluxes of cellular respiration and antioxidant
biosynthetic pathways

Metabolic functions of cellular respiration and antioxidant
biosynthetic pathways were investigated to observe potential
oxidative stress responses and its alleviation under salinity stress
condition (Fig. 5). There was no obvious flux change among reac-
tions in pentose phosphate pathway and fermentation (Fig. 5A).
However, for glycolytic pathway, we noticed a huge flux increase
in the reactions of phosphoglycerate mutase (log2FC = 3.23) and
triosephosphate isomerase (log2FC = 1.0), and a flux decrease in
the key enzyme phosphofructokinase (PFK; log2FC = �2.23) and
phosphoglycerate kinase (PGK; log2FC = �0.03) under salt stress
condition (Fig. 5A). Taken together, the decreased flux through
rate-limiting step catalyzed by PFK suggests the suppression in
glycolytic activity under salinity, which is in agreement with pre-
vious transcriptomics and proteomics studies [63,81]. In addition,
reduction of glycolysis resulted in less production of substrate for
TCA cycle activity, which was in line with the flux reduction of
malate dehydrogenase (MDH; log2FC = �2.38) reaction
(Fig. 5A), as well as over-representation of discriminative metabo-
lites in TCA cycle (Table 1). The reduced glycolysis and TCA activ-
ities were in line with the observed high flux magnitude through
cysteine and methionine metabolism, and aromatic amino acid
metabolism (Fig. 4E and Fig. 5A). The use of glycolytic and TCA
intermediates for amino acid synthesis was previously described
as one of the adaptive mechanisms in the salt-treated barley
[63]. In addition, aromatic amino acid, such as phenylalanine is
a precursor for both biosynthesis of salicylic acid (a regulator of
salt-tolerant signaling pathway [81]), and phenylpropanoid (an
important player in antioxidative system under salt stress [82])
metabolism.

For oxidative phosphorylation, we observed significant increase
in flux via mitochondrial ATP synthase (log2FC = 0.57), which was
3562
coroborating with the transcriptional upregulation of genes in this
pathway (Fig. 2). Furthermore, the flux of de novo purine biosyn-
thesis was much larger in salt stress condition than control condi-
tion (Fig. 5A), suggesting a substantial amount of precursor
synthesized for energy compounds and electron carriers or nucleo-
tide cofactors such as ATP and NAD, respectively [82]. Nonetheless,
the flux prediction of antioxidant metabolism indicated minimal
oxidative stress or ROS scavenging activity. Flux predictions
showed strong reduction in fluxes of carotenoid biosynthesis under
salt stress condition (Fig. 5B), and the down-regulation of antenna
protein biosynthesis genes was highlighted in transcriptomics
analysis (Fig. 2 and Supplementary Table S1). Our analysis impli-
cates that less excessive light energy would have been captured
by the stressed rice. In parallel, we also observed remarkable flux
reduction in ascorbate (ASA) metabolism and water-water cycle
(Fig. 5B). This was evident in the reduction in fluxes through the
Mehler and SOD reactions, as well as the reduced flux through
cytosolic and plastidic ascorbate peroxidase (APX; log2FC = �1.4
9), glutathione dehydrogenase (aka dehydroascorbate reductase;
DHAR; log2FC = �0.65) and plastidic monodehydroascorbate
reductase (MDHAR; log2FC = �1.49), implicating less production
of ASA (Fig. 5B) [83]. Altogether, this reduced flux distribution in
water-water cycle and ASA-GSH cycle suggested minimal photore-
duction of O2 and thus the overall oxidative stress activities in salt-
treated rice leaf. This chloroplastic redox homeostasis could be
attributed to the markedly increased activity of GLYK of the glyco-
late pathway (Fig. 4B). Chloroplast GLYK is activated by oxidative
modification [84] and its product, 3-PGA, could be exchanged for
the cytosolic inorganic phosphate as an important mechanism for
reductant export from the chloroplast [85,86]. Therefore, our
results suggest the role of flux reprogramming in photorespiration
contributing to cellular redox homeostasis under this salt stress
condition.
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3.4.3. Metabolic fluxes of phytohormone biosynthetic pathways
Phytohormones play critical role in regulating cellular

responses to modulate plant growth and development under salin-
ity stress [21]. Therefore, the flux statuses of different plant hor-
mone biosynthetic pathways were examined (Fig. 6). Auxin is
one of the key hormones regulating plant growth and development
[21,87]. Under control condition, the reversed flux in tryptophan-
dependent IAA synthesis through tryptophan amino transferase
(TAA1) and indolepyruvate (IPA) decarboxylase reactions [87,88].
However, the IPA decarboxylase was only isolated in microorgan-
isms and whether it is functional in higher plants remains incon-
clusive [87]. Under the salt stress condition, the reversed fluxes
were less preferential implying slightly increased flux towards
tryptophan-dependent IAA synthesis. However, notable decrease
in fluxes through enzymatic reactions that maintain auxin home-
ostasis by conjugating IAA to amino acid (e.g. IAA–amido syn-
thetase) [89] was observed in salinity stress. Likewise, previous
Fig. 7. (A) Flux activities in primary metabolic pathways of rice flag leaf under salinity str
in fluxes through the reactions, respectively. (B) Comparison of the ratios of flux-sum valu
sums and metabolite levels of rice under salt stress compared to control condition. Discrim
APX – Ascorbate peroxidase; ASA – Ascorbate; CGS – Cystathionine c-synthase; Chla
Dehydroascorbate reductase; ETC – Electron transport chain; Fdred – Reduced ferredo
Formyltetrahydrofolate; GAPDH – Glyceraldehyde 3-phosphate dehydrogenase; GAR –
ferase; GLYK – 3-Phosphoglycerate kinase; GSH – Glutathione; GSSG – Glutathione disu
Monodehydroascorbate; MDHAR – Monodehydroascorbate reductase; PEP – Phosphoe
Phosphoglycerate; PGK – Phosphoglycerate kinase; PPY – Phenylpyruvate; PSI – Photosy
aminotransferase; THF – Tetrahydrofolate; TMP – Thymidine monophosphate. (For interp
web version of this article.)
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studies demonstrate that salt stress can reduce auxin synthesis
and redistibute auxin maxima formation, resulting in reduced
growth and development [21,90]. Interestingly, tryptophan
biosynthesis, a precursor for IAA synthesis, was overrepresented
by discriminative metabolites under salinity condition (Table 1).
Besides, we found methionine adenosyltransferase reaction
(log2FC = �0.44) in methionine-dependent ethylene synthesis
had slight flux reduction [91]. Ethylene triggers downstream sig-
naling pathways and gene expression, leading to salt stress toler-
ance mechanism [21]; however, the reduced flux activity in
ethylene synthesis in this study suggests the inability of the flag
leaf to cope with high salt, at least, via this regulator.

3.4.4. Integrative analysis of metabolic fluxes and metabolomics data
Flux analysis of the extracted models revealed metabolic repro-

graming in several important pathways under salt stress (Fig. 7A).
We observed the directional changes of flux-sum values and com-
ess. The enzyme names and arrows in red and blue indicate increases and decreases
es and metabolite abundance. Red and blue indicate increases and decreases in flux-
inative metabolites are marked with asterisk (*). ADH – Arogenate dehydrogenase;
– Chlorophyll a; CINV – Cytosolic invertase; DHA – Dehydroascorbate; DHAR –
xin; fGAR – 50-Phosphoribosylformylglycinamide; FRK – Fructokinase; fTHF – 10-
5-Phosphoribosylglycinamide; GARFT – Phosphoribosylglycinamide formyltrans-
lfide; 4-HPP – 4-Hydroxyphenylpyruvate; MDH – Malate dehydrogenase; MDHA –
nolpyruvate; PFK – Phosphofructokinase; 2-PG – 2-Phosphoglycolate; 3-PGA – 3-
stem I; RuBP – Ribulose 1,5-bisphosphate; SOD – Superoxide dismutase; TAT – Tyr
retation of the references to color in this figure legend, the reader is referred to the



Fig. 8. Physiological responses (A-D) of rice flag leaf and plant productivity (E-F) under salinity stress. (A) Net photosynthesis rate (B) Stomatal conductance (C) Intercellular
CO2 concentration (D) Transpiration rate (E) Percentage of unfilled grain (F) Grain yield. The asterisk (*) indicates statistical difference (p-value <0.05) between control and
salt stress conditions by student’s t-test (n = 6).
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pared them to the ratios of metabolite abundance among these
pathways (Fig. 7B). Reduction in both flux-sum values and metabo-
lite abundance was observed in ascorbate metabolism, glycolysis/
gluconeogenesis, starch and sucrose metabolism and a-
ketoglutarate of TCA cycle. The reaction fluxes in those pathways
were also decreased. Meanwhile, increase in both flux-sum values
and metabolite levels was noticed in aromatic amino acid metabo-
lism (Fig. 7B) and the activities of corresponding enzymes: TAT and
ADH, were increased under salt stress condition (Fig. 7A). Together,
these results suggest that enhanced biosynthesis of aromatic
amino acid, such as phenylalanine and tyrosine could be at the
expense of glycolytic and TCA intermediates [63]. Low abundance
of sugars (fructose, fructose-6-P, glucose and sucrose) in starch and
sucrose metabolism (Fig. 7B) was possibly due to the reduced
activity of the upstream pathway, photosynthesis in particular
(Fig. 7A). Strong increase in flux-sum values (log2FC = 3.22) and
decrease in metabolite level (log2FC = �1.66) of glycerate in pho-
torespiration (Fig. 7B) was presumably as a result of the high activ-
ity of GLYK reaction (Fig. 7A). Integrative exploration of
metabolome and flux predictions enables further identification of
metabolic relations between reaction fluxes and altered metabo-
lites of rice under salinity stress. These GME-predicted alterations
in metabolic pathway lay a groundwork for further functional elu-
cidation through enzymatic activity analysis, flux-feeding analysis,
or through functional characterization of the genetic expression
and its regulators under salinity stress condition.

3.5. Physiological response of rice flag leaf and yield response under
salinity stress

Photosynthetic activities of rice flag leaf were observed at 0, 3, 6
and 9 days after salinity application (Fig. 8A–D). Net photosynthe-
sis rate (Pn) of both control and salinity stressed leaves increased at
day 3, but decreased after 6 and 9 days of salinity stress (Fig. 8A).
The Pn of salt-treated flag leaf was significantly lower than that of
the control after 9 days of salt exposure (Fig. 8A). The trend of pho-
tosynthetic process observed from this experiment confirmed the
flux predictions of this pathway by in silico modeling. That
included the reduction in the flux of GAPDH reaction (Fig. 4A)
and the lower amount of total fluxes in photosynthetic pathway
of salt stress condition (the flux ratio = 0.14; Supplementary
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Table S6). Reduction in Pn was accompanied by reduced stomatal
conductance (gs) (Fig. 8B). Salt-treated leaf exhibited less gs than
the control throughout the salt treatment period, which was also
reflected in its lower intercellular CO2 concentration (Ci) and tran-
spiration rate (E) at all time points (Fig. 8B-8D). The percentage of
unfilled grain were enhanced by salinity stress (Fig. 8E), indicating
the reduced sink activity of endosperm starch synthesis. Therefore,
the predicted flux reduction in starch and sucrose breakdown in
the ‘source’ flag leaf (Fig. 4C) was well-supported by the declined
‘sink’ activity. Accordingly, total grain yield appeared to be
impeded by salinity although the differences were masked by vari-
ation among individuals in the control group (Fig. 8F). Collectively,
the flux distribution predicted by the in silico metabolic modeling
was corroborated by the photosynthetic and yield responses of rice
to salinity stress.
4. Conclusion

In the current study, the control- and salt-specific model extrac-
tion based on transcriptomics data was performed, prior to com-
parative analysis of metabolic fluxes between both conditions.
Under salinity stress, the model predicted reduction in photosyn-
thesis and hexose utilization, whereas increase in photorespiration
was anticipated. We cross validated the predicted fluxes with
trends of metabolite levels from metabolomics and physiological
data to assess the robustness of model prediction. Our study
addressed the key benefits of GEM, which is a powerful tool for
deciphering metabolic reprograming of rice and other plants in
responses to environmental changes. We highlighted that impos-
ing gene expression constraints can better elucidate metabolisms
of rice under a particular condition. Moreover, the in silico meta-
bolic modeling allows researchers to readily target specific meta-
bolic pathways or enzymes for further functional analysis,
avoiding laborious stable isotope flux-feeding experiment.
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