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Abstract: Infections are one of the main concerns of our era due to antibiotic-resistant infections and
the increasing costs in the health-care sector. Within this context, antimicrobial polymers present
a great alternative to combat these problems since their mechanisms of action differ from those
of antibiotics. Therefore, the microorganisms’ resistance to these polymeric materials is avoided.
Antimicrobial polymers are not only applied in the health-care sector, they are also used in many
other areas. This review presents different strategies that combine nanoscience and nanotechnology
in the polymer world to combat contaminations from bacteria, fungi or algae. It focuses on the most
relevant areas of application of these materials, viz. health, food, agriculture, and textiles.
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1. Introduction

The terms nanoscience and nanotechnology are widely used to label a variety of products. These
terms are quite prevalent and appear in the news and advertisements in reference to new discoveries
and exciting new products. Nowadays, the nano-world is everywhere. In the nanotechnology
field, polymers are a major area of research; they have managed to greatly improve our society.
Polymers possess highly desirable characteristics such as high strength or modulus to weight ratios
(light weight but comparatively stiff and strong), toughness, resilience, resistance to corrosion and
lack of conductivity (heat and electrical) among others, whilst being comparatively cheap. Many of
these characteristics make them perfect candidates for their utilization in multiple applications; such
as in biomedical devices, health care, food, agriculture, catalysis, electronics, environment, renewable
energy or textiles [1].

In addition to the characteristics mentioned above, polymers can also show antimicrobial
properties. Antimicrobial polymeric materials can be applied in the areas just stated and can avoid
the resistance problems associated with antibiotics use. An antimicrobial agent can be defined as an
agent that kills microorganisms or inhibits their growth. In general, the potency of such antimicrobial
agents is directly proportional to their toxicity towards humans. For this reason, the development of
potent but non-toxic antimicrobial polymers is much needed and pursued. In this sense, researchers
look for the structural parameters that determine their activity, new structures or new mechanisms of
action [2–9] to tune their potency and toxicity. Although there are numerous examples of antimicrobial
polymeric materials, most of them are comprised of cationic polymeric systems with quaternary
nitrogen groups; polymers mimicking natural peptides; halogen polymers; chitosan derivatives; and
silver- and titania-nanocomposites.
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2. Areas of Application

In this article, we review research carried out over the past decade on antimicrobial polymers and
in particular, focusing on nanopolymeric materials [10,11]. The application of these materials can be
categorized based on their main areas of application as follows: (i) health care and biomedical devices;
(ii) food-related activities; (iii) environmental science and (iv) textile industry.

2.1. Health Care and Biomedical Devices

The main objectives of polymer researchers when developing novel materials for health
care-related purposes, are to lower the risk of diseases transmission and spread of infections and
to avoid biofilm formation. The search for new more efficient antibiotics is continuously increasing.
However, and as mentioned above, antibiotic-resistant bacteria are becoming a great threat to human
health mainly due to the abuse and the improper use of antibiotics. In this section, we present the
health-care related topics where antimicrobial effect is of essence.

2.1.1. Drug Delivery

Antibiotics administration via traditional routes such as intravenous, oral, ocular, pulmonary
delivery, is challenging due to its systemic nature and lack of control over release rates. Hence, large
and multiple doses are necessary to maintain therapeutic concentrations at the infection site. This, may
lead to undesirable side-effects and toxicity. Besides, many antibiotics present low aqueous solubility
and stability, limited bioavailability and low compliance. Thus, it is necessary to overcome these
problems to reduce the undesirable effects of using excessive antimicrobial drugs.

Polymers, in particular polymeric nanoparticles (NPs; particles with dimensions in the nanosize
range), are a promising alternative for controlled delivery and release of antibiotics, raising the
drug’s effectiveness [12]. NPs can be colloidal in nature, biodegradable, biocompatible and similar
in behaviour to intracellular pathogens. These colloidal carriers can be rapidly taken up by the
microorganisms, with subsequent intracellular release of the drug. Both synthetic and naturally
occurring materials have been assessed for their potential for drug delivery. Biodegradable spheres
prepared from poly(lactide) (PLA) and its copolymers with glycolide, poly(lactic-co-glycolic acid)
(PLGA), can encapsulate drugs and release them in a controlled way, depending on the method of
microencapsulation and the physico-chemical properties of the polymer and the drug. Natural
polyelectrolytes such as gellan gum (Gg), pectin hyaluronic acid (Hy), dextran and chitosan
(Ch) are also attractive for medical applications due to their biocompatible and biodegradable
nature. For example, rifampicin antibiotic (RIF)-loaded PLGA NPs have been prepared by the
oil-in-water emulsification-solvent diffusion method. The effect of the nanoencapsulation on the
antibacterial activity of RIF was evaluated against Gram-positive bacteria including Staphylococcus
aureus (ATCC 6538P), methicillin-resistant S. aureus (MRSA) (clinical isolate) and Bacillus subtilis
(ATCC 6633), and two Gram-negative bacteria Pseudomonas aeruginosa (ATCC 9027) and Escherichia coli
(ATCC 8739). RIF-PLGA NPs were found to considerably improve the antibacterial efficacy of the
drug against the three Gram-positive bacteria as showed by the well diffusion method [13].

In tuberculosis, the second most deadly infectious disease, Mycobacterium tuberculosis evades
clearance mechanisms within macrophages through suppression of intracellular reactive oxygen
and nitrogen species and pro-inflammatory cytokines. Dube et al. [14] proposed developing NPs
functionalized with ligands able to modulate the cellular immune response and concurrently deliver
the drug. They designed NPs consisting of a 1,3-β-glucan- functionalized chitosan shell and a
PLGA core to stimulate the production of intracellular reactive oxygen and nitrogen species, and
the secretion of pro-inflammatory cytokines such as interleukin-12 (IL-12), tumour necrosis factor-α
(TNF-α) and interferon-gamma (IFN-γ). In addition, these NPs were loaded with rifampicin to
promote its delivery inside human alveolar-like macrophages (ALM). These loaded NPs obtained by
the solvent evaporation-emulsion technique, significantly enhanced ALM secretion of IL-12 (2.9-fold),
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TNF-α (16-fold) and INF-γ (23-fold) compared to controls over 24 h; and doubled reactive oxygen and
nitrogen species generation over 6 h. NPs could deliver 4-fold more rifampicin into ALM than free
rifampicin solution.

Fluoroquinolone antibiotics, such as moxifloxacin (MX) and gatifloxacin, are also active against
M. tuberculosis showing lower minimum inhibitory concentration (MIC) values than RIF, ciprofloxacin
(CP) or levofloxacin (LV). MX-loaded poly(butyl cyanoacrylate) (PBCA) NPs [15] were obtained by
anionic polymerization of n-butyl-2-cyanoacrylate in the presence of MX. The antimicrobial efficiency
of the resulting NPs was tested against M. tuberculosis (H37Rv). Encapsulation of MX within NPs
demonstrated improved antibiotic uptake and retention by macrophages resulting in an enhanced
activity of the drug.

These two antibiotics were also used in other treatments. MX was loaded into positively
charged gelatin NPs obtained by a modified two steps de-solvation technique [16]. In this case,
NPs were ocularly delivered and the drug was released in a controlled manner in the corneal eye
layer. In general, this administration route is widely applied in nanotechnology to obtain higher
bioavailability and prolonged ocular residence time of therapeutics [17]. The behaviour of the
gelatin-based nanosuspension on the corneal eye surface of rabbits was assessed against S. aureus
(NCIM 2079) and B. subtilis (NCIM 2063) infections. The authors conclude that this suspension
was more effective than the commercially marketed product MoxiGram®. MX antibiotic was also
encapsulated into Ch–dextran sulfate (DS) NPs [18] and the efficiency of the formulation was tested
in vitro and ex vivo against S. aureus and P. aeruginosa. The results revealed that the use of NPs
exhibits a prolonged drug release profile with significantly high transcorneal permeation and high
corneal retention. Another example is the gatifloxacin-loaded NPs of 50:50 Eudragit® RL and RS
mixture which were prepared via nanoprecipitation or double emulsion techniques. The antimicrobial
activities of these NPs were tested against E. coli, P. aeruginosa, and S. aureus, showing prolonged
antimicrobial effect and prolonged residence time in the eye [19]. PLGA NPs loaded with sparfloxacin
(fluoroquinolone antibiotic) were also utilized for ophthalmic delivery [20]. These NPs were prepared
by the nanoprecipitation technique and their activity was tested against P. aeruginosa using the cup-plate
method. They present improved precorneal residence time and ocular penetration as well as higher
antibacterial effectiveness than a commercial formulation (brand name unknown).

Regarding LV, Hadinoto’ group prepared LV-loaded polymeric NPs made of PCL or PLGA
polymers by either the nanoprecipitation or the emulsification-solvent evaporation method and tested
their antibacterial efficacy against E. coli K-12 (W3110, CGSC) biofilm cells [21]. They reported that for
a successful therapy against biofilm infections, a biphasic release profile is required; a fast antibiotic
release at the beginning that ensures a high initial antibiotic concentration followed by a slower
extended release which sustains a sufficiently high antibiotic concentration to inhibit biofilm growth
and minimize exacerbation. In this study, the loading capacity of the NPs was 0.30%–1.10% w/w, while
the release was found to be 40% the first day and approximately 75% after six days. Such a biphasic
release profile was efficiently able to suppress the biofilm growth for up to four days. This approach
gives advantage of using reduced doses of antibiotic with decreased associated toxicity. The same group
also developed a method to increase the encapsulation efficiency of highly water soluble drugs during
the emulsification-solvent evaporation method. Specifically, lecithin was included as a drying adjuvant
in the aqueous phase. This resulted in a two-fold improvement in the encapsulation efficiency and
loading of LV drug (i.e., 23% and 2.3% w/w, respectively) compared to the previous method lacking the
drying adjuvant [22]. In this work, the antimicrobial efficiency was tested against P. aeruginosa biofilm
cells. The NPs were lyophilized, reconstituted and spray-dried. Under these conditions, 99.999% of the
biofilm cells were killed (initial concentration 108 CFU/peg) after 6 h of exposure to the NPs, with very
few cells surviving in the biofilm during the burst release (3 log (CFU/peg)). However, the surviving
cells were able to re-establish the biofilm during the slower release stage, reaching 5 log (CFU/peg)
cells within 24 h. As result, 99.9% of the biofilm cells were eradicated after one day. They have also
analysed the effect of phosphatidylcholine lipid on the encapsulation of LV in PLGA NPs obtained by
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the emulsion-diffusion-evaporation method [23]. Compared to polymeric NPs, lipid-coated NPs are, in
general, more stable. The presence of the lipid gave slower antibiotic release rates but did not improve
their biofilm affinity. These NPs exhibited higher antibacterial efficacy against P. aeruginosa biofilm cells,
but not against planktonic cells detached from the biofilm matrix. This group has also prepared an
antibiotic-NP complex or nanoplex by self-assembly amphiphile-polyelectrolyte complexation process
between a cationic drug, ofloxacin (OFX) (fluoroquinolone antibiotic) or LV, and the anionic dextran
sulfate [24]. They achieved high drug loading ranging from 60% to 80%. Moreover, MIC values of
the OFX and LV-nanoplexes tested against P. aeruginosa (PAO1 ATCC) planktonic cells were 2.0 and
0.5 µg/mL, respectively, which are comparable to those of non-encapsulated antibiotics.

Polycaprolactone (PCL) is another biodegradable and biocompatible polymer which can be
used for antibiotic encapsulation. This polymer was also used by Hadinoto et al. to encapsulate
LV. The antibacterial efficiency of the resulting NPs was then evaluated against E. coli biofilm [25].
They were able to eradicate 99.9% of the E. coli biofilm cells.

Other authors have also encapsulated LV in PLGA NPs by a modified emulsion-diffusion-
evaporation method using sucrose and mannitol as lyoprotectants [26]. Mannitol achieved the best
performance in terms of less aggregation, higher stability and superior redispersability of the NPs.
After a single oral administration of LV-NPs in mice, drug release into the blood plasma was sustained
up to 4 days. In contrast, the release of the free drug was completed within 24 h. No signs of toxicity
were found in mice after two weeks of treatment with the encapsulated drug. In another study,
LV-encapsulated PLGA NPs using 1% w/v mannitol were evaluated for their in vitro drug release
profile and ex vivo transcorneal permeation [27]. Microbiological efficacy of this system was tested
against S. aureus using the cup-plate method, revealing that the NPs were retained for longer times
and drained out from the eye very slowly compared to the marketed formulation. Besides, these NPs
did not show any irritant effects on the application site and have a shelf life of up to 2 years.

PLGA alone or in combinations with Eudragit® RLPO or RS30D, with or without 1,2-dioleoyl-3-
trimethylammonium-propane chloride salt (DOTAP) (a positively charged transfection-inducing
agent), were used to prepare NPs with increased entrapment efficiency of LV [28]. In addition, either
formulations containing Eudragit® RLPO or RS30DD with DOTAP, presented higher antibacterial
activity against Gram-negative bacteria E. coli and P. aeruginosa in comparison to free LV solution.

LV were also loaded into cholesterol-bearing hyaluronic acid nanohydrogels prepared by
nanoprecipitation [29]. The antimicrobial activity of these nanohydrogels was tested against
Gram-negative P. aeruginosa (PAO1), and Gram-positive methicillin susceptible S. aureus (MSSA)
(ATCC 6538P) and MRSA (USA300-0114). They exhibited higher efficiency compared to free antibiotic.
These materials also showed that they can be freeze-dried, stored up to 6 months and reconstituted
without any loss of their antimicrobial activity.

It is well-known that the use of stimuli-responsive polymeric materials is fundamental for
controlled drug delivery systems. This is because they can significantly change their drug release
rates in response to a stimulus such as the local pH or temperature in the body. Probably, the most
widely investigated stimuli-responsive polymer is poly(N-isopropyl acrylamide) (PNIPAM). Jones et al.
introduced chlorhexidine diacetate into a hydrogel of NIPAM by immersion in a drug solution at 20 ◦C
(below its LCST: lower critical solution temperature) [30]. In vitro this system was able to eliminate
108 CFU of Staphylococcus epidermidis (NCTC 10519) in only 15 min. Recently, thermo-responsive
biodegradable hydrogels based on NIPAM and two biodegradable crosslinkers, PCL-dimethacrylate
and bisacryloylcystamine, have also been loaded with LV [31]. It was shown that LV release in PBS
buffer was less than 30% of the total amount of loaded drug within one month. However, the drug
release can be stimulated upon exposure to low concentrations of the reductant glutathione with
complete release of LV by 120 h (see Figure 1). In addition, the degradation of these hydrogels, after
incubation in glutathione-PBS solution, took place over two months.

Guanidine-containing polypeptide composed of poly(γ-glutamic acid) and arginine (Arg) can
self-assemble into colloidal NPs at pH lower than 3.0, and their morphological changes can be reversibly
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switched by elevating the pH of the colloidal suspension. By this way, the release of amoxicillin from
these NPs was reduced at pH 2.5 (gastric fluid, fasted state) and 4.5 (the gastric mucosal surface), but
the antibiotic was rapidly released from the NPs at pH 7.0 (the sites for Helicobacter pylori infection) [32].

Nanomaterials 2017, 7, 48 5 of 42 

 

 

Figure 1. Schematic structure of thermo-responsive and biodegradable hydrogel and the process of 

drug loading and release from thermo- and reduction-responsive hydrogel after morphological 

transformation by glutathione. 

Cyclodextrin (CD)-based polymers have also been used for drug delivery. These cyclic 

oligosaccharides possess a hydrophilic outer surface (C–OH groups) and a characteristic hydrophilic 

apolar cavity (C–O–C and C–H bonds) able to form reversible complexes with hydrophobic drugs. 

For example, LV as well as aspirin and acetaminophen were included into three CDs, namely α-, β- 

and γ-CD, as part of crosslinked CD-polyurethanes based on toluene-2,4-diisocyanate (TDI) [33]. The 

results concluded that the β-CD-based polymers have the highest sorption capacities. Hernandez-

Montelongo et al. [34] prepared nanoporous silicon particles which were functionalized by in situ 

polymerization of cyclodextrin with citric acid. Ciprofloxacin (CP), another fluoroquinolone 

antibiotic, was used as a model drug to analyse its release profile from cyclodextrins. These CD-

nanocomposites presented higher drug loads and better controlled release than chemically oxidized 

nanoporous silicon. Consequently, CD provides enhanced controlled release. In another study, 

encapsulation of CP in pullulan-PCL core-shell nanospheres was achieved at 35%–40% by weight 

[35]. Under in vitro test conditions, approximately 20% of CP was released within the first 4 hours, 

with additional slow release over 10 days. In addition, the NPs presented antibacterial activity against 

E. coli and were not toxic against human cell lines.  

In other studies, PLGA NPs prepared by nanoprecipitation method were loaded with 

azithromycin (AZ) [36] or clarithromycin (CL) [37] macrolide antibiotics using different antibiotic 

concentrations. The loaded NPs were more effective than the free drugs against Gram-positive S. 

aureus (PTCC 1112) and Gram-negative Salmonela typhi (PTCC 1609). In fact, the loaded NPs showed 

identical antibacterial effect than 1/8 the concentration of the pure antibiotics. AZ antibiotic has also 

been loaded into Eudragit®  RS100 nanobeads and nanofibers prepared by the electrospinning 

technique [38]. Authors employed different drug/polymer ratios and various solution concentrations, 

and compared the drug release profile in between systems. However, the anti-microbicity of the 

resulting materials was not assessed in this work. Toti et al. [39] demonstrated that encapsulation of 

RIF and AZ in PLGA NPs enhances the effectiveness of the antibiotics by reducing microbial burden 

against Chlamydia trachomatis serovar K (UW-31) in HEp2 infected cells (Human lung Epithelial cells). 

Combination of both antibiotics resulted more effective than the use of the individual drugs. 

Molecular imprinting technique and precipitation polymerization have been used to prepare 

AZ-imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) NPs [40]. These NPs 

presented higher AZ loading capacity in comparison with non-imprinted NPs and lower cytotoxicity 

against L929 fibroblast cells. Previously, molecular imprinted polymers were prepared by 

Crosslinked hydrogel

Drug

T > LCST Glutathione

Drug loaded hydrogel

Drug release Drug release

Figure 1. Schematic structure of thermo-responsive and biodegradable hydrogel and the process
of drug loading and release from thermo- and reduction-responsive hydrogel after morphological
transformation by glutathione.

Cyclodextrin (CD)-based polymers have also been used for drug delivery. These cyclic
oligosaccharides possess a hydrophilic outer surface (C–OH groups) and a characteristic hydrophilic
apolar cavity (C–O–C and C–H bonds) able to form reversible complexes with hydrophobic drugs.
For example, LV as well as aspirin and acetaminophen were included into three CDs, namely
α-, β- and γ-CD, as part of crosslinked CD-polyurethanes based on toluene-2,4-diisocyanate
(TDI) [33]. The results concluded that the β-CD-based polymers have the highest sorption
capacities. Hernandez-Montelongo et al. [34] prepared nanoporous silicon particles which were
functionalized by in situ polymerization of cyclodextrin with citric acid. Ciprofloxacin (CP), another
fluoroquinolone antibiotic, was used as a model drug to analyse its release profile from cyclodextrins.
These CD-nanocomposites presented higher drug loads and better controlled release than chemically
oxidized nanoporous silicon. Consequently, CD provides enhanced controlled release. In another
study, encapsulation of CP in pullulan-PCL core-shell nanospheres was achieved at 35%–40% by
weight [35]. Under in vitro test conditions, approximately 20% of CP was released within the first 4 h,
with additional slow release over 10 days. In addition, the NPs presented antibacterial activity against
E. coli and were not toxic against human cell lines.

In other studies, PLGA NPs prepared by nanoprecipitation method were loaded with
azithromycin (AZ) [36] or clarithromycin (CL) [37] macrolide antibiotics using different antibiotic
concentrations. The loaded NPs were more effective than the free drugs against Gram-positive S. aureus
(PTCC 1112) and Gram-negative Salmonela typhi (PTCC 1609). In fact, the loaded NPs showed identical
antibacterial effect than 1/8 the concentration of the pure antibiotics. AZ antibiotic has also been
loaded into Eudragit® RS100 nanobeads and nanofibers prepared by the electrospinning technique [38].
Authors employed different drug/polymer ratios and various solution concentrations, and compared
the drug release profile in between systems. However, the anti-microbicity of the resulting materials
was not assessed in this work. Toti et al. [39] demonstrated that encapsulation of RIF and AZ in PLGA
NPs enhances the effectiveness of the antibiotics by reducing microbial burden against Chlamydia
trachomatis serovar K (UW-31) in HEp2 infected cells (Human lung Epithelial cells). Combination of
both antibiotics resulted more effective than the use of the individual drugs.
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Molecular imprinting technique and precipitation polymerization have been used to prepare
AZ-imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) NPs [40]. These NPs presented
higher AZ loading capacity in comparison with non-imprinted NPs and lower cytotoxicity against
L929 fibroblast cells. Previously, molecular imprinted polymers were prepared by polymerization of
methacrylic acid and the crosslinker 2-ethyl-2-(hydroxymethyl)propane-l,3-diol in the presence of LV,
CP, OFX and sulfamethoxazole (sulfonamide antibiotic) (SF) [41]. The highest bounding capacity was
found for LV and analogous, CP and OFX, whereas SF showed the lowest loading.

Chitosan/poly(lactic acid)/tripolyphosphate (Ch/PLA/TPP) NPs have been successfully
prepared for encapsulation of AZ. The highest entrapment efficiency obtained was above 85% and
these NPs presented sustained and controlled drug release in vitro. Moreover, the Ch/PLA/TPP NPs
showed low cytotoxicity when co-cultured with HeLa and HEK293T (Human Embryonic Kidney)
cells [42].

β-Lactam antibiotics such as penicillin derivatives, cephalosporins, monobactams, and
carbapenems, have been extensively employed in the clinical treatment of many types of bacterial
infections. However, their effectiveness is significantly compromised in bacteria that produce
β-lactamase enzymes, which hydrolyze the β-lactam ring to an inactive ring-opened product.
Turos et al. [43] prepared a variety of penicillin-derivative acrylate monomers to obtain NPs by
emulsion polymerization. MIC values of NPs were determined against S. aureus (ATCC 25923) and
MRSA (ATCC 43300) by broth dilution assays. The results indicated that the penicillin G-conjugated
NPs were significantly more active than the 6-aminopenicillanic acid-containing NPs; and that the
type of linkage used to covalently attach the drug moiety to the polymer backbone significantly alters
the activity of the antibiotic. Moreover, the NPs carrying the antibiotic covalently attached were more
effective than those non-bounded, whilst not being cytotoxic to human dermal fibroblast cells. They
also synthesized polyacrylate NPs by emulsion polymerization in which a N-methylthio β-lactam
antibiotic was covalently conjugated onto the polymer [44]. The resulting emulsions displayed
potent antibacterial behaviour in vitro against S. aureus (ATCC 25923) and MRSA (ATCC 43300)
without showing toxicity towards human dermal fibroblasts. They also prepared glycosylated
polyacrylate NPs with covalently bound N-sec-butylthio β-lactam and penicillin as well as CP [45].
Microbiological tests showed that the NPs bearing N-sec-butylthio β-lactam and ciprofloxacin have
powerful activities in vitro against S. aureus (ATCC 25923), MRSA (ATCC 43300) and Bacillus anthracis,
while on the other hand the penicillin-bound NPs do not display any antimicrobial activity. Very
recently, they have extended this approach to obtain polyacrylate NPs with antimalarial activities
against chloroquine-resistant Plasmodium falciparum (K1 strain), which causes malaria [45]. As shown,
unique properties can be acquired through conjugating antibiotics to polymers such as protecting
the antibiotics from degradation or stabilizing sensitive molecules. These polymeric antibiotics allow
controlled and sustained drug release whilst enhancing the antimicrobial activity of the drug [46].

Glycosylated NPs based on a poly(n-butyl acrylate) (pBA) core and a poly(N-2-(β-D-glucosyloxy)
ethyl acrylamide) (p-(NβGlcEAM)) or poly(N-2-(β-D-galactosyloxy)ethyl acrylamide) (p(NβGalEAM))
shell were prepared by nanoprecipitation [47]. Encapsulation and release experiments of ampicillin
(penicillin derivative) (AM) revealed that NPs were able to load the antibiotic up to 47%. The release
was slow and followed a constant zero-order kinetic, reaching approximately 56% after 21 days.
These AM-glycoNPs were effective against S. aureus (3R7089 strain Oxford/ATCC9144), S. epidermidis
(laboratory strain from clinical isolate) and E. coli K-12 (W3110/ATCC 27325) bacteria.

In another example, encapsulation of cefamandole nafate (a second generation cephalosporin)
into bovine serum albumin (BSA) and polyallylamine (PALA) NPs was performed by the water-in-oil
single emulsion technique and posterior crosslinking reaction with glutaraldehyde. These NPs were
incorporated into carboxylated-polyurethane (PU) polymer to obtain active films [48]. These NP-drug
loaded PUs were found to be active against S. epidermidis (ATCC 35984) without being detrimental
towards Hp-2 cells growth.
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Other kind of potent antibiotics that have also been applied in drug delivery are the
aminoglycosides, such as gentamicin (GT) or tobramycin (TOB). PLGA NPs carrying TOB were
obtained by a modified emulsion-solvent diffusion technique and subsequently embedded in an
inert microcarrier made of lactose. It was shown that the presence of hydrophilic polymers such
as poly(vinyl alcohol) (PVA), alginate (Alg) and Ch, helps to optimize the surface and bulk drug
release properties of the loaded NPs. In particular, the use of alginate (Alg) allows efficient TOB
entrapment into the NPs and its release up to one month along with significant in vitro antimicrobial
activity against P. aeruginosa bacteria. Besides, in vivo biodistribution studies showed that while the
PVA-modified Alg/PLGA NPs were able to reach intro deeper lung tissue, the Ch-modified NPs were
found in great amounts in the trachea, bronchus, bronchioles and alveolar ducts, covering the lung
epithelial surfaces [49].

Block copolymers based on poly(sodium acrylate) (PAANa) and Pluronic® F68 (PEO-b-PPO-
b-PEO), PAANa-b-(PEO-b-PPO-b-PEO)-b-PAANa (being PEO and PPO poly(ethylene oxide) and
poly(propylene oxide), respectively), were used to form nanostructures of PEO-b-PPO-b-PEO shells
and PAA cores able to entrap the antibiotic gentamicin (GT) [50]. The NPs were tested in vitro and
in vivo against Salmonella enterica typhimurium (wild type) and the findings show a significant reduction
of the bacterial population in mice. In addition, the results demonstrate an improvement in the amount
and rate of uptake by macrophages there by reducing the toxicity of encapsulated GT in comparison to
free GT (see Figure 2).
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intraperitoneal administration: (a) untreated control group; (b) mice group treated with 15 mg/g body
weight with free gentamicin: Minimal to mild lymphocytic inflammation (green arrow) associated with
mineralized deposits (orange arrows); (c) mice group treated with 15 mg/g body weight with core-shell
nanostructure: typically unremarkable to rare small peri-glomerular aggregates of mononuclear cells
(arrow). The tissues were hematoxylin and eosin stained. Scale bar of 50 µm. Reproduced from [50].
Copyright Dove Medical Press Ltd., 2009.

This antibiotic was also incorporated as part of self-nanoemulsifying formulations in order
to obtain drug-loaded polymer NPs. Specifically, the formulations included poly(ethylene glycol)
(PEG) 4000 as PEGylated self-assembly system, mixtures of soybean oils and also a combination
of Kolliphor® EL and Kolliphor® P188 as surfactants, and Transcutol® HP as co-surfactant [51].
Indeed, these formulations are isotropic mixtures of natural or synthetic oils, surfactants and
co-surfactants, which spontaneously emulsify when exposed to gastrointestinal fluid forming
oil-in-water nanoemulsions [52]. The effectiveness of these formulations was proven against
Gram-positive S. aureus and B. subtilis, and Gram-negative E. coli and Klebsiella pneumoniae bacteria
by using the agar diffusion method. The inclusion of GT on these formulations decreased the GT
nephrotoxicity and ototoxicity, although in vivo tests were not performed in this study.

The non-biodegradable positively charged polymer Eudragit® RL 100 was used to prepare
amphotericin B (polyene antimycotics)-loaded NPs by the solvent displacement or nanoprecipitation
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method [53]. Their antifungal activity was demonstrated against the bacterium Fusarium solani by the
disk diffusion method and any eye irritation was observed in in vivo tests. Clavanin, an antimicrobial
peptide, was also nanostructured using Eudragit® L 100-55 and RS 30D solution [54] achieving
an encapsulation efficiency of 98%. These NPs when tested against S. aureus (ATCC25923), E. coli
(ATCC8739), K. pneumoniae (ATCC13885) and P. aeruginosa (ATCC 27853) bacteria demonstrated
significant antibacterial efficiency both in vitro and in vivo.

Liu’s group [55] have extensive analysed enzyme-responsive polymeric vesicles for bacterial
strain-selective delivery of antimicrobial agents. Penicillin G amidase (PGa) and β-lactamase
(Bla) were selected as target enzymes considering that both enzymes are associated with bacterial
resistance. These polymeric vesicles were self-assembled from amphiphilic block copolymers
composed of a hydrophilic PEG block and a hydrophobic block bearing enzyme-cleavable
self-immolative side linkages. During vesicle formation, antimicrobial agents (i.e., deprotonated
quinupristin/dalfopristin (Synercid) hydrophobic bacteriostatic antibiotics; GT; vancomycin (VC); CP;
Parasin I, a macromolecular hydrophilic antimicrobial peptide; SAMP1: P(DMAEMA0.93-co-BMA0.07)22,
a synthetic antimicrobial copolymer where DMAEMA and BMA are 2-(dimethylamino)ethyl
methacrylate and butyl methacrylate, respectively) were loaded into either hydrophobic bilayers
or aqueous interiors. All the systems were shown to be effective against P. aeruginosa (MH340) and
MRSA (MRSA252). Besides, these formulations increased the structural stability of the antibiotics in
addition to reduce their side effects (diminished hemolysis and toxicity towards HeLa cells, a human
cancer cell line). Moreover, Bla-degradable polymeric vesicles were able to enhance the wound healing
process in an in vivo murine model.

It has been found that in many of the publications related to antibiotic delivery, the
activity of the systems was not tested because the action of these antibiotics is assumed and
manifest. Here, we have shown different works where the activity of antibiotics can be modified.
In the last five years it has been revealed that the synergy between diverse antibiotics or
systems with different mechanisms of action enhances the final activity [11]. This is the case of
ampicillin-silver nanocomposites prepared by photoreduction of silver acetate in the presence
of poly-(6-[3-(2-(3-aminopropylamino) ethylamino)propylamino])-(6-deoxy)-b-CD polymer [56].
The combination of AM and Ag-polymer nanocomposites reduced the MIC values against E. coli
and the Gram-positive Kocuria rhizophila bacteria.

2.1.2. Wound Healing or Dressing

In the design of a successful wound bandage it is necessary to consider the characteristics of the
wound type, wound healing time, as well as the physical, mechanical, and chemical properties of the
bandage. With a deeper understanding it will be possible to achieve higher healing rates and better
aesthetic repair of the wound [57].

Electrospinning is a simple and low-cost method for manufacturing nanoscale polymer fibres [58]
and is a very commonly technique in the biomedical field for preparing wound dressings. Chitosan
is a non-toxic, biocompatible, biodegradable and hemostatic material with the ability to stimulate
wound healing and show inherent antimicrobial properties. For all these reasons, Ch is extensively
used to prevent or treat wound and burn infections and not only because of its intrinsic antimicrobial
properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents [59,60]. For example,
chitosan–pectin–TiO2 dressing was prepared by blending Ch with titanium dioxide or titania (TiO2)
NPs in solution and being electrospun into fibres. While the titania NPs endow antibacterial
effectiveness against Gram-positive and Gram-negative bacteria, cell growth and high corrosion
resistance; pectin, a natural prophylactic substance, provides protection against poisoning by toxic
cations along with styptic and curing effects [61]. In another work, Ch was successfully electrospun
with nanocellulose, a biocompatible, biodegradable and sustainable biomaterial which has found
extensive application in biotechnological areas such as tissue engineering, drug delivery and wound
dressing [62]. These membranes were successfully able to kill 99.9% of the bacterial population
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when tested against S. aureus and E. coli. The results also revealed that wounds healed more rapidly
when treated with Ch-nanocellulose dressings than when treated with only fibrous nanocellulose
or the commercial Tegaderm™ hydrocolloid or transparent film wound dressings. As a matter of
fact, nanocellulose was also used to attach CD that incorporates carvacrol (2-methyl-5-(1-methylethyl)
phenol), a plant essential oil with good antimicrobial properties [63] demonstrating its versatility as
wound dressing material. The activity of the surface was tested against B. subtilis using a standard
dynamic shake flask method. Due to the carvacrol inclusion into the CD, the active compound
presented a slow release and its activity was maintained for up to 48 h. Nanocellulose wound dressings
were developed where they were impregnated with silver NPs due to the latter’s potent antimicrobial
activity. The efficacy of this construct was demonstrated against S. aureus and E. coli bacteria by the
diffusion test and the colony counting method [64].

Dutta’s group has developed various wound dressing materials also based on chitosan.
They prepared blends of Ch, TiO2 and poly(N-vinylpyrrolidone) (PVP) [65], a synthetic polymer
with good biocompatibility. The resulting membranes showed great antimicrobial activity against
S. aureus, B. subtilis, E. coli, and P. aeruginosa bacteria without compromising the cell viability of L929
mouse fibroblast cells and NIH3T3 mouse embryonic cells, as confirmed by the Alamar blue assay.
Moreover, the wound closure rate was effective in the nanocomposite-treated wounds in full-thickness
wound model of adult male albino rats compared to control experiments. This group also prepared
blends of Ch, PVP and silver oxide, which presented similar characteristics to the previous system
but with the added advantage of film transparency making possible to monitor the wound [66]. The
silver NPs were synthesized using carboxymethyl chitosan as both reducing agent for silver ions
and as protecting agent for the synthetized NPs. Posterior electrospinning of the mixture with PEO
resulted in nanofiber mats which demonstrated excellent antimicrobial activities against S. aureus
(ATCC 25923), P. aeruginosa (ATCC 27853) and E. coli (ATCC 25922) bacteria and Candida albicans
(ATCC 10231) fungi. Moreover, the silver-containing nanofiber mats were more active in comparison to
nanofibers without silver NPs and silver NPs alone [67]. Furthermore, quaternized Ch was electrospun
with PVP and then photocrosslinked to become water-stable. These mats achieved a 5 log reduction in
CFUs in 60 and 120 min against S. aureus 749 and E. coli 3588 bacteria, respectively [68]. Combination
of two antimicrobial systems is another approach used for obtaining antimicrobial fibres. Inorganic
NPs such as TiO2, silver (Ag) or zinc oxide (ZnO) NPs were incorporated into gellan gum and the
nanocomposites were cast into films. A mixture of chitosan with LV was placed as a double layer on
top of these films [69]. By this methodology, the materials exhibited antibacterial activity against E. coli
(JM 109), while allowing the growth of L929 cells. Chitosan was also electrospun with PVA [70,71],
PLGA [70,72] and silk fibroin [73] to improve its processability.

Other polysaccharides and proteins have also been used to fabricate wound dressings [74,75].
Fibres of gelatin with silver NPs were prepared by electrospinning [76]. The release of these NPs
in acetate buffer (pH 5.5) occurred rapidly in the first hour and then steadily increased; while in
simulated body fluid (pH 7.4) there was a gradual increase with time. The antimicrobial effectiveness
was demonstrated against E. coli (ATCC 25922), P. aeruginosa (ATCC 27853), S. aureus (ATCC 25023),
and MRSA (ATCC 20627) bacteria. In another study, PVA was blended with cellulose nanowhiskers
to obtain hydrogels for wound dressing by the freezing-thawing technique [77]. In this case, no
antimicrobial system was incorporated so these systems did not actively kill microbes. However, due
to their improved mechanical properties and water vapour transmission rate, these hydrogels can be
considered as a good barrier against different microorganisms. On the other hand, the preparation of
PVA nanofibers containing Ag NPs by electrospinning, greatly improved the antimicrobial effect of
the fibres. A CFU reduction of >99.9% was achieved after incubation with S. aureus or K. pneumoniae
bacteria for 18 h [78].

Jalvandi et al. [79] loaded LV into mesoporous silica NPs (MSN), which were subsequently
incorporated in the core region of PCL nanofibers via core–shell electrospinning. The antibiotic
release from these fibres was more gradual than when released from PCL-LV and PCL-LV core-shell
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nanofibrous mats. Moreover, the antimicrobial activity against E. coli (ATCC 4352) bacteria was more
effective over time, with a reduction in bacterial population occurring over a span of 14 days instead
of only 7 days as was the case in the controls. The results showed that the physical adsorption
of a drug on a nanostructure and distribution of this nanostructure along the nanofibers provides
more effective sustained drug release. PCL was also electrospun with PVP containing extract of
Tecomella undulata, a medicinal plant widely known for its traditional medical applications including
wound healing capability. Extract-loaded PCL/PVP mats were able to efficiently inhibit the growth of
S. aureus (ATCC 933), P. aeruginosa (MTCC 2297), and E. coli (IP-406006) bacteria [80]. Other synthetic
polymers such as polyurethane, polyacrylonitrile, poly(acrylamide)/poly(vinyl sulfonic acid sodium
salt) or poly(sulfobetaine methacrylate) have also been used for developing wound dressings [81–84].
For example, fluoroquinolones, CP and norfloxacin (NR), were attached to polyphosphazenes by
chemical modification using amino acid esters (alanine, glycine, phenylalanine) as chain extenders [85].
These components were then electrospun into nanofibers. Polymers that contained alanine ethyl ester
or glycine ethyl ester co-substituents showed faster degradation rates and antibiotic release profiles
than the polymers that contained phenylalanine ethyl ester co-substituents. Also, CP and NP released
in the hydrolysis media showed a MIC of ≤0.45 and 0.58 µg/mL, respectively, as determined by
consecutive double dilutions.

All these examples mentioned above highlight the benefits of using various polymeric materials
for wound dressing applications. In particular, those able to regulate the antibiotic release are strong
promising candidates for these applications.

2.1.3. Sutures and Prosthesis

Microbial cells may attach and proliferate on any artificial surface when they enter in contact with
them, overall if these are located within a moist environment. Under these conditions, the bacteria
population rapidly increases on the surface and eventually builds up a biofilm, which consists in a
complex organization of polysaccharide matrix and embedded bacteria among many other components.
This biofilm allows microbial cells to survive under harsh conditions and to be up to 1000 times less
susceptible to most antibiotics and other biocides. One of the main approaches to prevent the biofilm
growth and consequently, to inhibit the spread of microbial infections, is the use of antimicrobial
surfaces [3,5,86,87]. Such surfaces either repel microbes, so that they cannot attach to the surface, or
kill the microbes in the surrounding area.

Surgical sutures are probably the most consumed medical devices for wound closure. During the
surgery, sutures as well as implants can be exposed to microorganisms present in the environment
leading to contamination, bacterial biofilm formation and, therefore, infections [88]. Infections cause
a great part of the postoperative morbidity and mortality in hospitals. As mentioned, antimicrobial
polymers are a potential alternative since they can be shaped into wound sutures, artificial tendons,
bone cements or medical packaging among others.

Polyamides are by far the mostly applied material in sutures. However, antimicrobial commercial
products are only a few, i.e., PLGA, polydioxanone (PDO) and poly(glycolide-co-ε-caprolactone)
(PGCL) with triclosan, PDO, PGCL and poly(glycolic acid) (PGA) with chlorhexidine diacetate [88].
It was demonstrated that antimicrobial sutures lead to a significant decrease of the incidence of
surgical site infections [89]. Having this in mind, researchers have been focused on two strategies; the
modification of the surface via chemical or physical methods. In addition, these surface modifications
occur only at the nano/microscale so that the bulk properties of the suture are maintained.

Physical modification typically entails polymer impregnation or blending with different
antibiotics [90–92] and/or antiseptic substances, i.e., triclosan, chlorhexidine (CHX), silver and so
on [93–95]. Although drug-loaded coatings prepared in this way can provide good localized drug
concentration, the variable loading efficiency and release kinetics limit their use. Drug incorporation
within suture matrices is an alternative strategy. However, suture strength can be compromised and
it is required of severe fabrication conditions for suture-strength enhancement. More mechanically
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robust sutures were very recently described by Padmakumar et al. [96] who prepared electrospun
core–shell yarns with a central PLA core and a drug-eluting PLGA shell. Coatings or blends can
also be made with polymers with intrinsic antimicrobial properties. This is the case of PLGA coated
with an amphiphilic polymer, poly[(aminoethyl methacrylate)-co-(butyl methacrylate)], which was
bactericidal against MRSA (ATCC 33591) bacteria. The sutures containing the antimicrobial polymer
killed S. aureus (ATCC 25923) bacteria more efficiently (3 log-reduction at 2.4 wt %) than PLGA sutures
(Vicryl® Plus) which contains triclosan as antimicrobial agent (0.5 log-reduction) [97]. More recently, a
N-halamine-modified PGA multifilament obtained via layer-by-layer technique has been described [98].
Since N-halamines have a high efficacy in killing bacteria, the resulting sutures were able to inactivate
S. aureus (ATCC 6538) and E. coli O157:H7 (ATCC 43895) bacteria within 30 min of contact time.

PGA sutures with long-term antimicrobial activity were obtained by dip-coating into two different
polymeric silver nanocomposites. These two solutions were obtained by dissolving silver nitrate in
modified hyperbranched polylysine solutions in toluene, followed by reduction with L-ascorbic acid
and generation of highly stabilized silver NPs. These coated sutures showed high activity against
S. aureus cells for more than 30 days and non-cytotoxicity against L929 mouse fibroblast cells [99].

As mentioned above, the chemical modifications performed on the material surface may also
greatly modulate its antimicrobial properties. For example, Ivanova’s group demonstrated that black
silicon that contains high aspect ratio nanoprotrusions on its surface, also possesses remarkable surface
properties such as high hydrophobicity and strong biological activity at cellular level [100]. And also
the nanostructuration induced by oxygen plasma treatment onto non-absorbable monofilaments of
polypropylene (PP) (Premilene®) and poly(ethylene terephthalate) (PET) (Miralene®) and absorbable
monofilament sutures of PDO (Monoplus®) and modified PGA (Monosyn®), demonstrated to be
effective against E. coli K12 wild type (DSM A498, ATCC 23716) bacteria [101].

These approaches applied in sutures can also be applied in orthopedic and trauma surgery.
For example the use of antimicrobial systems for prophylaxis in patients undertaking joint replacement
surgery or fracture fixation [102]. Polymeric bone cements, mainly those composed of poly(methyl
methacrylate) (PMMA) loaded with gentamicin, have been widely used. However, extensive
antibacterial resistance appeared. For this reason, PMMA cement was loaded with other active
molecules, such as TB and VC antibiotics (see Figure 3) [103–105], with inorganic or metallic
NPs as silver, [106–108] or with antimicrobial polymeric NPs such as quaternary ammonium
polymers [109–111].
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Figure 3. Charts showing antibacterial activity of samples eluted from bone cement with different
preparations (antibiotic preparations added to bone cement: powder vancomycin, the inert filler
xylitol/powder vancomycin, liquid vancomycin), as determined by the agar-disk diffusion bioassay.
Bone cement without antibiotics served as control. The data are presented in terms of growing inhibition
of methicillin-resistant S. aureus bacteria. The growth was visually compared with standard samples
containing different concentrations of vancomycin. Reproduced from reference [105]. Copyright the
British Editorial Society of Bone & Joint Surgery, 2014.



Nanomaterials 2017, 7, 48 12 of 44

Nevertheless, other approaches have been utilized in bone implant and bone regenerative
medicine. Specifically, the combination of NPs of hydroxyapatite (HA), a calcium phosphate (CaP)
compound similar in morphology and composition to the human hard tissues, with polymers
possessing osteoconductive properties enhanced the bone formation [112]. In addition, scaffolds
of Ch alone or Ch with metallic NPs have been widely applied [93,113,114]. Bioactive nanocomposite
scaffolds were also successfully developed using PCL, crosslinked gelatin and HA NPs through layer
solvent casting combined with freeze-drying and lamination techniques [115]. In another study, PLGA
NPs loaded with nafcillin (β-lactam antibiotic) or LV were obtained by emulsion-solvent evaporation
technique, followed by calcium phosphate (CaP) coating via surface adsorption-nucleation method.
These NPs were developed to treat osteomyelitis, which is a bone infection mainly caused by various
strains of bacteria, being S. aureus responsible for 80% of all human cases. If the infection persists,
open surgical debridement in addition to antibiotic therapy is normally required. In vitro drug release
profile of these synthesized NPs shows a typical biphasic release, which is governed by diffusion
and degradation mechanisms, and exhibits a sustained release profile up to 4–6 weeks. The particles
inhibit biofilm formation for up to 4 weeks, and disintegrate and deteriorate biofilms completely after
7 days [116].

Many of the examples shown here can be applied in the next section, since the fundamental
characteristics are similar [117].

2.1.4. Dental Applications

Dental problems, which range from cavities to gum disease or oral cancer, cause enormous
health care costs to the population only considering dental restorations, which is the most common
infection. Resin-based dental composites have been widely used in dentistry to restore decayed teeth.
These composites have sufficient flexural strength and outstanding aesthetics; but nowadays they also
require of antimicrobial characteristics [118].

Monomers containing quaternary ammonium nitrogens were widely applied as part of dental
resins as well as many other active ones [119–121]. Tiller’s group has used antimicrobial polymers
made of poly(2-alkyloxazoline)s for dental materials. They employed a macromeric biocide based on
poly(2-methyl oxazoline) with quaternary ammonium end group, which has the ability to render a
contact-active antimicrobial material. This polymer, used as additive in a commercial dental adhesive,
was able to kill Streptococcus mutans cells in the tubuli of tooth and to inhibit bacterial and human
collagenases and gelatinases, two enzymes related to tissue destruction in periodontal disease [122].
Beyth et al. also improved dental resins by incorporating polyethyleneimine (PEI) NPs, which enhanced
its effectiveness against S. mutans bacteria [123]. Other materials such as silica were also modified with
quaternary ammonium to fight against S. mutans bacteria [124,125].

Silver NPs and mesoporous silica NPs, which are used to incorporate bioactive compounds
such as CHX, are also found in dental materials [126–129]. In fact, CHX was also incorporated into
amorphous calcium phosphate (ACP), Ca3(PO4)2 and calcium fluoride (CaF2) via a spray-drying
technique resulting in dental resin nanocomposites active against S. mutans (ATCC 700610) biofilm
formation. They reduced the acid production and the metabolic activity of the biofilm by 10–20 times
compared to a commercial composite [130]. Moreover, the same group also tested the incorporation of
quaternary ammonium dimethacrylate and Ag NPs into a calcium phosphate nanocomposite [131].
The combination of both antimicrobial agents into the same system produced higher activity against
S. mutans bacteria biofilms than that of either agent used separately. In another studies done by Xu
and coworkers [132,133], it was recently found that the addition of 5% of dimethylaminohexadecyl
methacrylate in the formulation provokes a 3 log reduction against a wide variety of bacteria, including
Gram-positive S. mutans, Enterococcus faecalis (ATCC 35667), Enterococcus faecium (ATCC 4083) and
Parvimonas micra (ATCC 33270), and Gram-negative Porphyromonas gingivalis (ATCC 33277), Prevotella
intermedia (ATCC 25611), Prevotella nigrescens (ATCC 25261), Aggregatibacter actinomycetemcomitans
(ATCC 43717) and Fusobacterium nucleatum (ATCC 25586) bacteria.
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Zinc oxide NPs were also blended into dental composites for antimicrobial purposes. In particular
the use of 10% in weight of ZnO displayed significant antimicrobial activity and reduced growth of
bacterial biofilms against Gram-positive Streptococcus sobrinis (ATCC 27352) bacteria [134]. Moreover,
lower amounts of ZnO or Ag NPs (1–5 wt %) exhibited potent activity against Gram-positive S. mutans
(PTCC 1683) and Lactobacillus (PTCC 1643) bacteria [134–136]. Other antimicrobial agents such as nitric
oxide (NO) [137] have been investigated in dental applications. For instance, the ability of NO-releasing
silica NPs to kill biofilm-based microbial cells was extensively reported by Schoenfisch et al. [138,139].
In another work, a novel strategy to control plaque-biofilms was freshly reported [140]. In this case,
catalytic NPs with peroxidase-like activity were employed to trigger extracellular matrix degradation
and to cause bacterial death within acidic niches of caries-causing biofilm. More precisely, the
catalytic NPs containing biocompatible Fe3O4 were able to catalyse H2O2 decomposition to generate
free-radicals in situ that simultaneously degrade the biofilm matrix and rapidly kill bacterial cells.
In this way, a >5-log reduction of cell viability of S. mutans (ATCC 700610/UA159) bacteria was
achieved. In addition, these NPs reduced apatite demineralization in acidic conditions.

2.2. Food

Food technology is one of the industrial sectors where antimicrobial polymers play an important
role. Nowadays, there is a growing concern regarding not only food preservation and quality
maintenance, but also and more important to guarantee food safety for consumers. Food-borne
diseases are typically caused by consuming foods or beverages contaminated by pathogens, toxins or
chemicals. However, most of these illnesses are infections provoked by pathogens such as bacteria,
viruses, fungi and parasites. Some of the most common pathogens include norovirus, Salmonella,
Clostridium perfringens, Listeria, S. aureus and Campylobacter, which can also cause eventual deaths.
Currently, much effort has been expended on investigating how to prevent food-borne illnesses,
especially in the protection of food from microbial growth during storage. To this regard, antimicrobial
polymeric materials are attracting a great interest in this field as presently, most of the food packaging
is based on polymeric materials [141].

Over the last decades, novel polymer materials for food packaging, especially based on
nanotechnology, have been developed with innovative and more efficient antimicrobial properties.
In addition, antimicrobial polymers can be used as food additives and as edible films. In these two
latter applications, the polymer should be human-safe suitable for oral administration. Typically,
biopolymers such as chitosan and nisin are employed in the food industry. Nevertheless, the
antimicrobial products intended for food industry require exhaustive testing. Especially products
of nanotechnology need especial care due to the concerns related to the undetermined toxicity of
NPs that could be undesired released [142,143]. Next, it will be highlighted the most innovative
systems published over the last decade concerning antimicrobial polymeric nanomaterials used in
food industry to improve food safety and shelf life.

2.2.1. Food-Packaging

The use of polymeric materials for food packaging has considerably augmented due to their
enhanced properties compared to other traditional materials including strength, flexibility and barrier
to oxygen, water vapour, carbon dioxide and other food-related compounds such as flavours and
taints. Recent advances in the area, especially in the polymer nanotechnology, are improving all these
properties even more to address the increasingly more severe requirements in safety and quality of
food products during storage and transportation, and to prolong their shelf life [141]. In fact, the use of
nanocomposites in food packaging has become one of the most proliferating area of research in the food
industry. NPs proportionally possess larger surface area than their corresponding microscale particles,
thus favouring the particle-polymer interactions and enhancing their mechanical and processing
properties. Besides, the inclusion of NPs adds new functionalities to the material as the capability
to release or absorb substances into or from the food or the surrounding; this is known as active
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packaging. At this moment, most of the active packaging materials are designed for antimicrobial
packaging [144–146]. These nanocomposite systems are particularly effective against microorganisms
because of their high surface area and enhanced reactivity. A wide range of antimicrobial agents have
been used or tested in the preparation of antimicrobial nanocomposites for food packaging, including
metal NPs (silver, copper), metal oxide NPs (TiO2, ZnO, MgO), organically modified nanoclays,
natural biopolymers (chitosan) and particles loaded with natural agents (nisin, essential oils) or
synthetic compounds (antibiotics, quaternary ammonium salts, organic acids) [147,148]. Each of these
antimicrobial compounds exhibits a determined mode of action, such as altering metabolic processes or
disrupting the cell membrane. In addition, combinations of more than one antimicrobials incorporated
into packaging have also been investigated as very efficient systems. In relation to the polymer
matrix, mainly petroleum-based polymeric materials have been used to develop antimicrobial food
packaging films including polyethylene (PE), polypropylene (PP), polystyrene (PS), ethylene/vinyl
acetate copolymer (EVA), ethylene-vinyl alcohol copolymer (EVOH) and polyethylene terephthalate
(PET) [149]. However, recent concerns regarding the environmental impact of plastics have conducted
to an increased demand for biodegradable materials such as PLA, PGA, PCL and PVA among
others. Particularly interesting are those biodegradable polymers obtained from renewable sources,
biopolymers, which include starch, cellulose, chitosan, alginate, carrageenan, soy protein, corn zein,
wheat gluten, gelatin, collagen, etc. [150]. Besides, it is of great importance in the food industry the
preparation of nanocomposites based on biodegradable biopolymers such as chitosan that possesses
antimicrobial activity by itself against many fungi, bacteria, and viruses [151].

In general, antimicrobial food packaging films based on either synthetic or natural polymers can
contain antimicrobial agents able to migrate into the food or in contrast, inhibit microbial growth on
the food surface by direct contact. This is dependent on the type of antimicrobial NPs incorporated
into the matrix and on the nanocomposite preparation method. The antimicrobial activity of these
nanocomposites is also greatly influenced by other parameters such as particle size, dispersability and
the interaction between the NP and the polymer. Next, the most important nanocomposites systems
for antimicrobial food packaging will be discussed.

By far, silver NPs (Ag NPs) are the most studied metal NPs with antimicrobial activity
used in nanocomposites films and they are already found in commercially available antimicrobial
materials [152]. This is mainly due to their unique physico-chemical properties and particularly strong
antimicrobial activity against a broad spectrum of bacteria, viruses and fungi. Although the exact
mechanism of action is not clearly known, different modes of action have been proposed for the
antimicrobial function of silver NPs that include the release of silver ions and formation of radicals.
These species can damage cell membrane and interact with proteins, enzymes or DNA [153]. Metallic
silver NPs have been readily incorporated into common non-degradable thermoplastic packaging
materials such as PE, EVOH and polystyrene (PS). A summary of selected papers is shown in Table 1.

Table 1. Antimicrobial nanocomposites based on metal and metal oxide nanoparticles (NPs) in
food packaging.

Nanoparticles Polymer Tested Food Reference

Ag NPs LDPE Barberry [154]
Ag NPs EVOH Chicken, pork, cheese, lettuce, apples, peels, eggshells [155]
Ag NPs PS - [156]
Ag NPs Chitosan - [157]

Ag-Zeolite PLA - [158]
Ag-Clay Agar, zein, PCL - [159]

TiO2 PP Lettuce [160]
TiO2 EVOH, PP, PCL - [161–166]
ZnO LDPE Orange juice [167]
ZnO PVC Apple [168]

ZnO, nisin PLA Liquid egg [169]
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For instance, low-density polyethylene (LDPE) polymer matrix containing Ag NPs was prepared
as packaging material for dried barberry to preserve apparent colour, sensory factors and reduce
microbial growth [154]. Ag-LDPE films with 2 wt % of Ag NPs demonstrated antimicrobial activity
against meld and total bacteria count with 2.3 and 2.84 log reductions of CFU, respectively. In addition,
the incorporation of Ag NPs preserves the red colour of the barberry, brightness, taste and aroma for
longer time in comparison with unloaded packaging. On the other hand, nanocomposites containing
Ag NPs and made of biopolymers such as chitosan and starch were also prepared. Yoksan et al.
developed silver NP-loaded chitosan-starch films for potential application in food packaging [157].
The incorporation of Ag NPs improved properties such as the tensile strength and oxygen gas barrier
and provided bactericidal performance against E. coli (ATCC 35218), Gram-positive S. aureus (ATCC
6538) and Bacillus cereus (ATCC 11778), as shown by agar disk diffusion method.

In addition, other types of nanomaterials containing silver ions are commonly used as
antimicrobial agents in food packaging films, such as zeolites [158] and nanoclay [159]. Regarding
metal oxide NPs, photocatalytic TiO2 and ZnO NPs have been extensively exploited for the
preparation of antimicrobial packaging films due to their strong antimicrobial activity (Table 1).
Basically, their mechanism of action consists in the generation of reactive oxygen species (ROS)
when these NPs are irradiated with ultraviolet light. Cerrada et al. [161–166] prepared different
nanocomposites with antimicrobial activity upon light excitation by incorporating TiO2 NPs into
food-packaging polymers such as EVOH, PP and PCL. These nanocomposites displayed an excellent
performance in killing microorganisms reaching log-reduction of near ca. 8 units upon short
irradiation times. Nanocomposites based on ZnO NPs have also demonstrated optimal antimicrobial
performance for food packaging applications. For example, the antimicrobial capability of ZnO NPs
in LDPE nanocomposites packaging was evaluated in real orange juice samples stored at 4 ◦C [167].
The nanocomposites containing ZnO NPs were able to extend shelf life (6 log reduction of CFU/mL)
of fresh orange juice up to 28 days while maintaining its sensorial parameters.

Furthermore, nanoclays are typically added into polymer matrices to enhance their mechanical
and barrier properties, but also they can be modified in order to provide antimicrobial activity.
Hong et al. published the antibacterial activity of organically modified montmorillonites containing
quaternary ammonium groups [170] and the antimicrobial effect when they are incorporated in
polymer films such as PLA and whey protein [171,172]. They demonstrated a bacteriostatic function
against Gram-positive Listeria monocytogenes (ATCC 19111) bacteria. Besides of the effects of some
modified nanoclays by themselves, several works have described nanoclays able to retain antimicrobial
agents and control their diffusion from the polymer matrices. For instance, the antimicrobial agent
carvacrol was incorporated into wheat gluten/montmorillonite nanocomposites films [173]. It was
demonstrated that in the presence of a sufficiently high content of montmorillonite, the system is able
to retain the active agents, thus protecting them during the processing stage.

Nanoencapsulation of antimicrobial agents is also an interesting alternative to prepare antimicrobial
nanocomposites [174]. Nisin is a cationic peptide produced by Lactococcus lactis subsp. with a broad
spectrum antibacterial activity against food-borne pathogens. However, nisin is able to interact with
various food components and is easily degraded. Thus, its nanoencapsulation can significantly enhance
its antimicrobial effectiveness. As an example, nisin was nanoencapsulated in nanoliposomes [175] and
then incorporated in hydroxypropyl methylcellulose films. Then biodegradable nano-active films were
obtained and can be potentially used as preventive food packaging systems.

2.2.2. Edible Films

Currently, food packaging is based mainly on petroleum-based materials, including PP and PE,
which are not sustainable and create tons of plastic waste every year. As previously commented, there
is an increasing society’s interest for the use of more natural and biodegradable products in food
packaging to reduce waste percentage. Besides, consumers demand safer food with more natural
preservative components rather than synthetic additives. This is forcing food industry to develop
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new packaging strategies that match consumers’ requirements by replacing synthetic packaging and
additives by natural components. Edible packaging using edible and biodegradable biopolymers has
stated as a promising alternative to synthetic films although this does not mean a total replacement
of them [176–182]. Research on the use of edible films as packaging materials aims at improving
food quality and safety with longer shelf life. Such biopolymers principally include polysaccharides
(alginate, starch, pectin cellulose and chitosan) and proteins (whey protein, wheat gluten, collagen,
zein, soy and casein), which can act as a barrier to control the diffusion of water and gases and can
serve as carriers of different food additives such as flavouring agents, antioxidants, vitamins, and
antimicrobials. In particular, the use of edible films containing antimicrobial agents has demonstrated
to efficiently decrease pathogen growth and prolong the shelf life of a wide range of foodstuff. The most
common antimicrobial agents used in edible films are natural compounds including organic acids,
essential oils and antimicrobial biopolymers such as chitosan and nisin. Indeed, such as biopolymers
with antimicrobial activity, they can be directly used as edible films on food [151].

Several aspects must be considered for the selection of the biopolymers and the antimicrobial
agents in addition to their effectiveness against microorganisms. Film-forming behaviour, barrier
and mechanical properties and their interactions with other components present on food are also
important features. Besides, the incorporation of the active agents into the biopolymers has to be
uniform forming homogeneous films, and efficient, by avoiding a rapid diffusion of the substance
that results in partial inactivation of the surface. In general, incorporation of antimicrobial NPs in the
design of edible films, results in films with improved properties not only related to the antimicrobial
activity but also exhibiting better physico-chemical and mechanical characteristics [177,183].

As shown in the previous sections, Ag NPs have been widely used for the preparation of
antimicrobial nanocomposites due to their broad-spectrum antimicrobial properties. The incorporation
of Ag NPs in the formulation of edible films has also been evaluated. For instance, binary blends of
agar and banana were reinforced with Ag NPs in order to prepare edible films with antimicrobial
activity [183]. In this publication, Ag NPs were synthesized in the mixture only by the action of banana
powder without the need of any additional hazardous chemical reagent. Banana powder in addition
to improve water barrier and to have good film forming properties, contains some phytochemicals
able to reduce metal ions and produce NPs. The antimicrobial activity of the resulting nanocomposite
films was tested against food-borne pathogenic bacteria E. coli (ATCC 43895) and L. monocytogenes
(ATCC 15313). It was demonstrated that the incorporation of Ag NPs provides antimicrobial activity in
comparison with the binary blend alone. Besides, composite films showed only bacteriostatic activity
against L. monocytogenes while exhibited excellent bactericidal activity against E. coli.

In another study, Ag NPs were added into pullulan edible films, which is an extracellular
polysaccharide produced by the fungal organism Aureobasidium pullulans [184]. Besides, ZnO NPs
and essential oils from rosemary (Rosmarinus officinalis) and oregano (Origanum minutiflorum) were
also employed as antimicrobial agents. The activity of the resulting composites was investigated
in vitro and in situ on meat and poultry products, against the food pathogens S. aureus (ATCC 11988),
L. monocytogenes (ATCC 94229), E. coli (ATCC 43895) and S. Typhimurium (ATCC 14028). Plate overlay
assays demonstrated that these antimicrobial agents added into pullulan films effectively inhibit the
pathogenic microorganisms when applied to vacuum packaged meat and poultry products stored
at 4 ◦C for up to 3 weeks. These essential oils and many others obtained from plants have been
extensively exploited as natural antimicrobials in edible films to replace synthetic preservatives and
achieve safer products for consumers. However, although essential oils exhibit good antimicrobial
activity against food-borne microorganisms, their low water solubility limits their applicability in food
industry. In fact, edible films are typically prepared from water-soluble polymeric solutions, thus the
incorporation of nonpolar essential oils becomes rather difficult leading to non-homogeneous films.

To improve water dispersion of essential oils in the polymeric solution, the preparation of
nanoemulsion has emerged nowadays as an interesting alternative. For instance, nanoemulsions
of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) with diameters of 180–250 nm
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were prepared by ultrasonication and then dispersed in methylcellulose to obtain antimicrobial edible
films [180]. It was shown that the incorporation of essential oils improves film formation in addition
to provide them of antimicrobial activity. The use of the nanoemulsions significantly reduced the
counts of Penicillium sp. (ATCC 2147) and Aspergillus niger (ATCC 16404) in sliced bread during
15 days in comparison with those prepared from bigger droplet sizes (diameters of 1.3–1.9 µm).
This improved antimicrobial activity achieved when using nanosized droplets is attributed to an
increased bioavailability of the encapsulated essential oils that present a higher surface area. In a
similar way, alginate based edible films were prepared from nanoemulsions of essential oils containing
thyme, lemongrass and sage oil with sizes between 35 and 80 nm [181]. The antimicrobial activity of
the edible films containing the essential oils was then studied against E. coli bacteria. However, only
the thyme-containing film showed a strong antimicrobial effect, reaching 4.71 log reduction after 12 h.
In the other samples no evidence of growth inhibition was found. This can be explained by the high
activity that exhibit thymol molecules present in the essential oil of thyme [185].

Thymol has also been employed as antimicrobial additive in Ch edible films [186]. Chitosan and
its derivatives have been widely investigated as edible coatings due to their biocompatibility, low
toxicity, biodegradability and antimicrobial character [151]. However, the antimicrobial activity of
Ch depends on various parameters such as its degree of deacetylation and its molecular weight.
Besides, Ch activity often decreases when blended with other components such as proteins or
lipids, typically used to enhance the mechanical properties or the water vapour permeability of
the films. Therefore, antimicrobial compounds such as thymol have been incorporated into the
chitosan films to overcome these limitations. Concretely, Ch-tripolyphosphate NPs loaded with
thymol were incorporated by inkjet printing in films made of a blend of Ch and quinoa-protein [186].
It was shown that the films containing the NPs exhibited good water vapour barrier and mechanical
properties. In comparison to control films, they also showed higher antimicrobial activity against
Gram-positive Listeria innocua (ATCC 33090) and S. aureus (ATCC 25923) and Gram-negative
S. typhimurium (ATCC 14028), Enterobacter aerogenes (ATCC 13048), P. aeruginosa (ATCC 27853), and
E. coli (ATCC 25922) bacteria. This strategy of incorporating antimicrobial agents into edible films
by nanoencapsulation has also been employed in many other investigations. In another example,
natamycin, which is a natural antimycotic agent approved by the Food and Drug Administration (FDA)
of United States and by the European Union (E235), was loaded in PNIPAM nanohydrogels [187].
These nanohydrogels were subsequently added to κ-carrageenan and locust bean gum edible films
without almost modifying their main packaging properties. A distinctive feature of this system is that
the nanohydrogel can protect natamycin from the surroundings and allow its smart release depending
on the environmental temperature.

2.2.3. Food Additives

In addition to incorporating antimicrobial agents in polymeric materials used for food packaging,
those antimicrobial compounds can be directly used as additives in food and beverages. The direct
addition of antimicrobial compounds has been principally explored in beverages such as juices and
milk. Inclusion of these antimicrobial agents in food improves the safety of the products inhibiting
the growth of microorganisms and thus preventing from food-borne diseases. Likewise, in edible
films, natural antimicrobials have attracted considerable attention in latest years due to the increasing
consumer demand on food safety. However, both synthetic and natural agents could cause undesired
changes when embedded in the food system, such as loss of the activity of nutrients or modification of
the texture. Hence, low concentrations are typically used to not alter the quality of the food products
but high enough to inhibit microbial growth. In this sense, nanoencapsulation of antimicrobial agents
represents an efficient approach to increase their activity by protecting them from interactions with food
ingredients, augmenting its stability and dispersability, and even by selectively locating them in the
food areas where the microorganisms preferentially proliferate, for instance in water-rich phases. Nisin
is one of the most employed food natural preservatives, belongs to the “Generally Recognized as Safe
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(GRAS)” category and has been permitted by the United States FDA and by the European Union (E234).
Different strategies have been developed to include nisin into NPs for application as food additives
with enhanced capacities [174]. Some of these investigations have compared the antimicrobial activity
obtained by the addition of free nisin with the activity obtained when incorporating nisin-loaded
polymeric NPs. For example, nisin-loaded Ch/Alg NPs (~200 nm of diameter) were evaluated as
nanoadditive in pasteurized and raw milks [188]. As control experiments, two more set of samples
were analysed, milks (pasteurized and raw) with free nisin and milks without nisin. S. aureus bacteria
(ATCC 19117) were inoculated in all the samples and the total counts of S. aureus were then measured
at 24 and 48 h for the pasteurized milk samples and at 0, 6, 10, 14, 18, and 24 h for the raw milk samples.
It was shown that the nisin-loaded NPs were able to inhibit the growth of S. aureus bacteria more
effectively during longer incubation periods than free nisin. Evaluation based on the total counts
reveals a similar reduction of S. aureus bacteria population in pasteurized milk for free nisin and for
nisin-loaded NPs up to 24 h. However, the reduction was more significant for the nisin-loaded NPs at
48 h of incubation. Likewise, a more marked reduction was observed at the longer incubation times
(above 14 h) for the raw milk samples containing NPs. This can be explained by the fact that free nisin
interacts with ingredients present in the milk and consequently the antimicrobial activity decreases
with time, whereas the Ch/Alg NPs protect nisin and prolong its activity. Similar conclusion was
obtained when these NPs were added to Feta cheese samples [189].

In another study, nisin has been encapsulated into NPs composed of three biocompatible and
food permissible polymers, Ch, Alg and Pluronic F68 with particle size ranging from 130 to 170 nm
(as determined by TEM) [190]. The efficiency of the loaded NPs was evaluated in tomato juice and
compared with the results obtained with the addition of free nisin and the unloaded NPs. In a control
experiment without any additives, the growth of microorganisms (M. luteus (MTCC 1809), P. aeruginosa
(MTCC 424), S. enterica (MTCC 1253) and E. aerogenes (MTCC 2823)) was observed within 2 days.
For unloaded NPs, no growth was observed till 2 months. In the case of free nisin, the growth inhibition
was prolonged up to 5 months but seed colour turned black. The best results were obtained with
nisin-loaded NPs which exhibited an antimicrobial effect on tomato juice during 6 months. Therefore,
it was demonstrated that the antimicrobial activity of nisin was prolonged by its encapsulation in
polymeric NPs, although the polymeric NPs containing Ch might contribute to this enhanced activity.

Nanoemulsions containing essential oils have also been developed as nanoadditives to preserve
foods from microbial spoilage. Typically, food grade surfactants are employed for this purpose,
many of them being polymeric surfactants. For instance, Tween 20 and a starch-derivative have
been employed along with other surfactants to encapsulate D-limonene and a mixture of terpenes as
antimicrobials [191]. Generally, it was found that the MIC and minimum bactericidal concentration
(MBC) values of the nanoencapsulated antimicrobials tested on E. coli and Gram-positive Lactobacillus
delbrueckii bacteria and Saccharomyces cerevisiae yeast, were lower than those of free antimicrobials
agents. The antibacterial activity of these compounds was also analysed in pear and orange juices
inoculated with L. delbrueckii (103 CFU/mL) in which a concentration of 5.0 g/L of terpenes was able
to totally inactivate the initial microorganisms. The low concentration of antimicrobial required almost
did not modify the organoleptic properties of the studied juices. In another example, eugenol-loaded
antimicrobial nanoemulsion with droplet diameter of 13 nm was prepared using Tween 80 polymeric
surfactant and tested on an orange juice inoculated with S. aureus (NCIM 2672) bacteria [192]. Kinetic
studies demonstrated that the use of 10% nanoemulsion (0.3% of eugenol in the orange juice) reduces
the bacteria population up to 24 h at 4 ◦C. However, this effect was less marked at 25 ◦C, with an
increase of bacteria population after 6 h. In addition, antimicrobial polymers have been evaluated as
emulsifiers in food industry, such as hydrophobically modified ε-polylysine graft copolymers [193].

2.3. Environmental Science: Agriculture and Water Purification

Material surfaces exposed to the environment are also susceptible of being easily colonized
by microbes present in the soil or transported by the air. In addition, factors such as humidity
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or temperature favour even more the appearance of biofilms, which are difficult to eradicate.
Microbial infections can be ideally prevented by keeping sterile conditions on these surfaces; however,
for long-term applications it is necessary to apply extra treatments so that it is possible to maintain
such conditions. Traditionally, these methods frequently involve undesired toxic disinfectants such as
deoxygenated water, hypochlorite and chemicals that generate reactive oxygen species. The use of
specific small biocidal molecules also shows high efficiency in killing microbes; however, their low
stability and accumulative toxicity are important issues. Moreover, regular dosages must be applied
for all these treatments in order to maintain their activity, which also contribute to the development of
antimicrobial resistance.

As mentioned all along this review, the use of polymers as substitutes or accompanying traditional
biocides can overcome some of these disadvantages. Polymeric materials, due to their macromolecular
properties do not only diminish the riskiness of the low-weight biocides but also improve their stability,
usually exhibit long-term activity, are non-volatile, do not permeate through the skin and also offer
alternative mechanisms of action helping to fight against antimicrobial resistance.

Regarding chemical functionalities, similar structures to those found in biocides for applications
in solution are also present on antimicrobial surfaces. Cationic groups are the most widely employed
as it is well known that they interact with the negatively charged bacterial membrane. In particular,
functionalities such as N-halamines [194–196], PEIs [197], phosphonium salts [198,199], quaternary
ammonium salts [200,201], and guanidines [202–204] are frequently used.

As additional requirements, potential coating materials must provide protection from a broad
range of microbial contaminations, maintain its activity for a prolonged period of time and be stable
under highly stressing environments. Kim et al. [205] prepared a water resistant adhesive coating based
on catechol moieties and quaternized poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA).
The coating exhibited remarkable bacterial killing efficiency against S. aureus (ATCC 25923) and E. coli
(ATCC 12435) after incubation for 24 h and showed stability up to 60 ◦C after 60 days in operation.
Very recently, these authors [206] have successfully modified PP surfaces. The catechol derivative was
quaternized with PPO-g-PDMAEMA and the remaining catechol groups were used to attach silver
NPs. These surfaces showed unaltered antibacterial activities for 120 h.

Metals, such as copper and silver, are also frequently used as active agents to obtain antimicrobial
surfaces. Their strong antimicrobial activities become extremely toxic to bacteria even at exceptionally
low concentrations. For this reason, polymer-metal composites have emerged as a highly efficient
strategy for a wide range of surface applications. Likewise as NPs [207] and metallic salts, [166,208,209]
the number of publications available in literature assessing the antimicrobial properties of these kind
of compounds is constantly increasing.

In addition to the use of cationic groups or metallic NPs as antimicrobial agents, photodynamic
inactivation is another potential strategy to kill bacteria and unlikely to induce antimicrobial resistance.
This mechanism is based on the generation of short-lived singlet oxygen, which is highly oxidative
and cytotoxic by inducing the formation of reactive oxygen species inside the cell cytoplasm. These
species quickly react with redox enzymes that are crucial for cell survival [210]. Molecules called
photosensitizers and photocatalysts are the responsible of forming such species under light irradiation.
TiO2, ZnO, benzophenones, anthraquinones, and porphyrins are some of the best known compounds
with photo-active antimicrobial properties [211]. Wei et al. [212] dispersed Cu and TiO2 photocatalytic
NPs in an epoxy resin and the activity of the resulting coating was tested against E. coli (ATCC 25922)
bacteria. Films containing both inorganic compounds showed enhanced antimicrobial activity
under sunlight compared to Cu-containing films, making this coating highly suitable for outdoor
environmental applications. Porphyrins is one of the approved drugs for photodynamic therapy
and some porphyrin-based polymers were reported by Hynek et al. [213]. In order to optimize
oxygen production, tridimensionally conjugated microporous polymers were produced by substitution
of different porphyrin precursors with appropriate linkers for polymerization via Suzuki-Miyaura
cross-coupling reactions. The authors measured the capability of these materials to generate singlet
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oxygen and it was found that there is a correlation between the amount of singlet oxygen species
generated and the 3D environment of the porphyrins. When porphyrins are horizontally stacked,
as in the 2D conjugated microporous polymers, or are separated by a short organic-linker, most
of the absorbed light energy is dissipated by non-radiative processes. Enlarging the porphyrin
separation leads to effective solid photosensitizers that display a significantly higher activity. Porphyrin
was also incorporated into PAN electrospun fibres. Figure 4 shows the PAN-Por(+) scaffold and
the corresponding scanning electron microscopy image, where the fibres can be clearly observed.
Photodynamic inactivation studies performed on Gram-positive and Gram-negative bacteria confirmed
the photoactive properties of the material which is inactive in the absence of any irradiation, but is
able to destroy the bacteria when illuminated.

Other photosensitive dyes are crystal violet, coumarins, phthalocyanines, rose bengal, eosin,
methylene blue or toluidine blue [214–220]. Although they are less known, they are also capable of
effectively inducing formation of reactive oxygen species. The antimicrobial activity against different
pathogens has been evaluated on crystal violet alone embedded in poly(dimethylsiloxane) (PDMS)
films [221] or combined with ZnO, [222] and methylene blue functionalized silicones [223]. It was
demonstrated they possess a good antimicrobial performance under white light. Whitten’s group has
extensively worked on this approach [224,225] and they have also proposed a possible mechanism
of action for these systems [228]. Although several modes of action have been described in the
literature [3,5,110,226–230], this key point is still on debate. However, it seems to be clear that their
use reduces the risk of resistance. In addition, the best advantage of the photo-induced antimicrobial
systems is their continuous activity under light exposure that makes these materials very interesting
for surfaces exposed to the environment.
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There are many ways to classify polymeric surfaces with biocidal activity but depending on
how this function is incorporated into the polymer they can be generally classified as biocidal
polymers, polymeric biocides or biocide-releasing polymers [5,210]. Biocidal polymers are those
presenting intrinsic antimicrobial activity in their structure; polymeric biocides are those carrying the
active molecules covalently linked onto their backbone; and biocide-releasing polymers, in which the
polymers act as delivery platforms of small biocides to the environment under diverse conditions
(Figure 5). Then, surfaces based on biocidal polymers or polymeric biocides kill microorganism upon
contact in contrast to the mechanism of action of the releasing systems. When considering the design of
the antimicrobial surface, contact-killing surfaces are preferred compared to releasing surfaces as these
possess limited shelf life, are more likely to promote antimicrobial resistance and can cause toxicity to
the environment after sustained exposure.
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Kumar et al. [231] presented contact-killing surfaces based on nitrogen-rich hyperbanched
polyurethanes with intrinsic antimicrobial activity against both bacteria types and some fungi.
Alternatively, other authors selected covalent modification of polytetrahydrofurane or polyurethane
matrices with azetidinium salts or quaternary ammonium compounds, respectively, to prepare
non-leaching coatings [232–234].

Nonetheless, a major drawback of these surfaces is that their capacities will fail with time due
to damage, contamination or, as the case of the contact-killing surfaces, to the accumulation of death
microorganisms. For this reason, biocides that possess the ability of self-renewing are desired. That is,
their antimicrobial properties should be auto-recovered without the necessity of changing material or
applying new treatments. For example, polymeric film prepared by Dorner et al. [235] consisting of an
antimicrobial-biodegradable multi-layer film was able to renew its antimicrobial properties during
its decomposition process. Following another concept, Yan et al. [236] designed a coating capable
to switch from bactericidal to bacteria repellent surface under wet environment, thus promoting
self-cleaning of the surface from dead cells.

2.3.1. Antibiofouling Surfaces

Adhesion-resistant surfaces are a kind of antimicrobial surfaces that without requiring the
presence of an antimicrobial by itself, indirectly promotes bacteria removal. Basically, these surfaces
repel the adhesion of microbes via different physical repulsion techniques thus avoiding biofouling
formation on them. Biofouling is one of the major problems associated to surfaces in contact with the
marine environment and its elimination is a tedious and highly cost process. In addition, biofouling
present on ship hulls increases frictional drag that directly relates with reduced speeds and an increase
in fuel consumption meaning higher costs for shipping companies.

The application of several antifouling coatings based on metallic coatings or organometallic-
containing paints has been traditionally the most extended approach. Nevertheless, during last years
the appearance of severe environmental regulations and health restrictions demands new eco-friendly
technologies to fight against biofouling. In this sense, polymers that present antifouling properties by
themselves are one of the most promising alternatives nowadays, although non-toxic biocide-releasing
systems are also employed [237,238].
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It is well known that the intensity of the adhesion of the microorganisms to a particular surface
is directly related to the surface energy [239]. Very low surface energies give very weak adhesions
that can be reverted by water frictional force (see Figure 6a, top). This is the case of PDMS or
fluorinated polymers, with surface energies below 20 mN/m. Oppositely, materials with very
high surface energies are also highly hydrophilic and tend to retain a water layer on top of them.
Then, interaction of proteins and other biomolecules is impeded as it requires previous rearrangement
of water molecules on the surface, which is a thermodynamically unfavourable process (see Figure 6a,
bottom). Poly(ethylene glycol)-derivatives belongs to this second group and are probably the most
studied antifouling polymers. In this sense, Li et al. [240] prepared low energy slippery surfaces
based on hydrophobic porous poly(butyl methacrylate-co-ethylene dimethacrylate) copolymer. It was
shown that their antifouling properties against P. aeruginosa biofilms were highly dependent on the
bacteria strain studied, viz. wild type and laboratory strains. On the other hand, Yang et al. [241]
obtained multiple antifouling/bactericidal coatings by anchoring active polymeric brushes onto
barnacle cement via grafting from and click chemistry techniques. These surfaces were modified
with hydrophobic and hydrophilic brushes of poly(poly(ethyleneglycol) methylether methacrylate),
poly(2,3,4,5,6-pentafluorostyrene), poly(N-hydroxyethyl acrylamide) and poly(2-(methacryloyloxy)
ethyltrimethylammonium chloride). Reduction of both adsorption of bovine serum albumin protein
and bacteria fouling of E. coli (ATCC 14948) and S. epidermidis (ATCC 36984) was demonstrated.

Nanomaterials 2017, 7, 48 22 of 42 

 

surface energies are also highly hydrophilic and tend to retain a water layer on top of them. Then, 

interaction of proteins and other biomolecules is impeded as it requires previous rearrangement of 

water molecules on the surface, which is a thermodynamically unfavourable process (see Figure 6a, 

bottom). Poly(ethylene glycol)-derivatives belongs to this second group and are probably the most 

studied antifouling polymers. In this sense, Li et al. [240] prepared low energy slippery surfaces based 

on hydrophobic porous poly(butyl methacrylate-co-ethylene dimethacrylate) copolymer. It was 

shown that their antifouling properties against P. aeruginosa biofilms were highly dependent on the 

bacteria strain studied, viz. wild type and laboratory strains. On the other hand, Yang et al. [241] 

obtained multiple antifouling/bactericidal coatings by anchoring active polymeric brushes onto 

barnacle cement via grafting from and click chemistry techniques. These surfaces were modified with 

hydrophobic and hydrophilic brushes of poly(poly(ethyleneglycol) methylether methacrylate), 

poly(2,3,4,5,6-pentafluorostyrene), poly(N-hydroxyethyl acrylamide) and poly(2-(methacryloyloxy) 

ethyltrimethylammonium chloride). Reduction of both adsorption of bovine serum albumin protein 

and bacteria fouling of E. coli (ATCC 14948) and S. epidermidis (ATCC 36984) was demonstrated. 

 

Figure 6. Schematic representation of antibiofouling surfaces. (a) Adhesion-resistant surfaces; (b) 

Non-toxic biocide releasing matrices. 

Although less frequent, antifouling coatings based on the release of non-toxic biocides from 

polymeric matrices are also considered. To select the correct matrix, it is necessary to attend at the 

polymer degradation rates as it will alter the release profile of the active agents and will affect the 

mechanical properties and shelf life of the film. Low water soluble matrices degrade slowly but 

protect better from corrosion and oxidation; however, they are not efficient in long-term prevention 

of biofouling formation. Then, partially water-soluble matrices are preferred as they offer a better 

control on the biocide release (Figure 6b). For example, a PCL/poly(butylene succinate) blend was 

employed as carrier for the release of organic antifoulant (4,5-dichloro-2-octyl-isothiazolone) [242]. 

The antifoulant was released at a constant rate as the blend degrades in marine environment, which 

can be also modulated by the blend composition. Similarly, copper oxides have also been frequently 

used as active agent in antibiofouling formulations [243]. However, dissolution of such biocides used 

in self-polishing coatings leads to their accumulation in marinas, thus resulting toxic to aquatic life. 

In this case, low-releasing antifouling coatings can be obtained by carrying out the polymerization of 

copper NPs functionalized with acrylic moieties [244]. In this way, copper NPs became embedded in 

the polymer backbone limiting its freedom to leach out. Alternatively, Movahedi et al. [245] proposed 

to make use of the copper naturally present in the seawater to load microparticles of 

poly(tris[(benzyltriazol) methyl]amine). These particles, which are embedded into a matrix of PMMA, 

(b) 

Figure 6. Schematic representation of antibiofouling surfaces. (a) Adhesion-resistant surfaces;
(b) Non-toxic biocide releasing matrices.

Although less frequent, antifouling coatings based on the release of non-toxic biocides from
polymeric matrices are also considered. To select the correct matrix, it is necessary to attend at the
polymer degradation rates as it will alter the release profile of the active agents and will affect the
mechanical properties and shelf life of the film. Low water soluble matrices degrade slowly but
protect better from corrosion and oxidation; however, they are not efficient in long-term prevention
of biofouling formation. Then, partially water-soluble matrices are preferred as they offer a better
control on the biocide release (Figure 6b). For example, a PCL/poly(butylene succinate) blend was
employed as carrier for the release of organic antifoulant (4,5-dichloro-2-octyl-isothiazolone) [242].
The antifoulant was released at a constant rate as the blend degrades in marine environment, which
can be also modulated by the blend composition. Similarly, copper oxides have also been frequently
used as active agent in antibiofouling formulations [243]. However, dissolution of such biocides used
in self-polishing coatings leads to their accumulation in marinas, thus resulting toxic to aquatic life.
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In this case, low-releasing antifouling coatings can be obtained by carrying out the polymerization of
copper NPs functionalized with acrylic moieties [244]. In this way, copper NPs became embedded
in the polymer backbone limiting its freedom to leach out. Alternatively, Movahedi et al. [245]
proposed to make use of the copper naturally present in the seawater to load microparticles of
poly(tris[(benzyltriazol) methyl]amine). These particles, which are embedded into a matrix of PMMA,
specifically coordinate this element into its structure but in such a way that the copper is still
bioavailable for the microorganisms to take it up.

2.3.2. Agriculture

Although polymers were initially used as mere structural materials in the fabrication of
greenhouses, nowadays new smart polymeric nanomaterials and delivery systems help the agricultural
industry in many different ways. Polymers can enhance the capability of the plants to absorb nutrients,
protect the environment from pollutants through filters or combat viruses and other crop pathogens.
For example, the presence of parasites that takes away nutrients from the soil results in a decreased
land production. This problem has been solved by covering the soil with certain polymeric films able to
keep the soil warm during the nights by reflecting the infrared light emitted by the earth. This process
ensures decontamination of the soil before seeding and the replacement of highly toxic materials
traditionally used such as methyl bromide. Besides, the use of biodegradable polymers for this
purpose as those carrying PVA or alginates, [246,247] offers extra advantages as their auto-elimination
after use. These materials degrade in eco-friendly sub-molecules saving costs associated with their
‘special’ disposal and reducing environmental pollution derived from its illegal burning.

In particular, biocidal polymers can be employed to increase the efficiency of pesticides and
herbicides promoting at the same time the usage of lower doses. This is important as a prolonged
exposure to these agrochemicals not only threats operators’ health but also small biocides can
easily propagate into the food chain. In addition, due to the environmental conditions that they
are exposed to, the majority of the biocidal dose applied is lost and do not reach to complete its
action. However, when these molecules are supported on solid polymeric matrices, their toxicity is
considerably reduced and their stability under environmental conditions, such as temperature, light
or humidity, improved [248]. In addition, encapsulation of biocides can protect from degradation
and can modulate their release rates allowing a prolonged delivery over the time, supplying the
right quantities of active agent for an efficient action without causing damage to the crop (Figure 7).
From this point of view, several authors have described the preparation of polymeric systems based on
polyurea resins or biodegradable poly(3-hydroxybutyrate) for the nanoencapsulation of light-sensitive
pesticides, fungicides or herbicides as avermeticin [249], phoxim [250] or metribuzin [251], among
others [252,253].

Nanomaterials 2017, 7, 48 23 of 42 

 

specifically coordinate this element into its structure but in such a way that the copper is still 

bioavailable for the microorganisms to take it up. 

2.3.2. Agriculture 

Although polymers were initially used as mere structural materials in the fabrication of 

greenhouses, nowadays new smart polymeric nanomaterials and delivery systems help the 

agricultural industry in many different ways. Polymers can enhance the capability of the plants to 

absorb nutrients, protect the environment from pollutants through filters or combat viruses and other 

crop pathogens. For example, the presence of parasites that takes away nutrients from the soil results 

in a decreased land production. This problem has been solved by covering the soil with certain 

polymeric films able to keep the soil warm during the nights by reflecting the infrared light emitted 

by the earth. This process ensures decontamination of the soil before seeding and the replacement of 

highly toxic materials traditionally used such as methyl bromide. Besides, the use of biodegradable 

polymers for this purpose as those carrying PVA or alginates, [246,247] offers extra advantages as 

their auto-elimination after use. These materials degrade in eco-friendly sub-molecules saving costs 

associated with their ‘special’ disposal and reducing environmental pollution derived from its illegal 

burning. 

In particular, biocidal polymers can be employed to increase the efficiency of pesticides and 

herbicides promoting at the same time the usage of lower doses. This is important as a prolonged 

exposure to these agrochemicals not only threats operators’ health but also small biocides can easily 

propagate into the food chain. In addition, due to the environmental conditions that they are exposed 

to, the majority of the biocidal dose applied is lost and do not reach to complete its action. However, 

when these molecules are supported on solid polymeric matrices, their toxicity is considerably 

reduced and their stability under environmental conditions, such as temperature, light or humidity, 

improved [248]. In addition, encapsulation of biocides can protect from degradation and can 

modulate their release rates allowing a prolonged delivery over the time, supplying the right 

quantities of active agent for an efficient action without causing damage to the crop (Figure 7). From 

this point of view, several authors have described the preparation of polymeric systems based on 

polyurea resins or biodegradable poly(3-hydroxybutyrate) for the nanoencapsulation of light-

sensitive pesticides, fungicides or herbicides as avermeticin [249], phoxim [250] or metribuzin [251], 

among others [252,253]. 

 

Figure 7. Application of nanotechnology in pesticide delivery. 

Regarding controlled release of biocides, stimuli-responsive systems, which release their cargo 

under UV light irradiation, are particularly useful in terms of environmental applications. Tan et al. 

[254] prepared photo-responsive polymeric particles by creating a dual crosslinked structure. A 

permanent covalent crosslinking and a reversible CD-based host-guess interaction keep the initial 

closed form of the particles. However, under UV light, the guess undergoes changes on its 

conformation disrupting its interactions with the host. As consequence, the structure opens, 

Figure 7. Application of nanotechnology in pesticide delivery.



Nanomaterials 2017, 7, 48 24 of 44

Regarding controlled release of biocides, stimuli-responsive systems, which release their
cargo under UV light irradiation, are particularly useful in terms of environmental applications.
Tan et al. [254] prepared photo-responsive polymeric particles by creating a dual crosslinked structure.
A permanent covalent crosslinking and a reversible CD-based host-guess interaction keep the initial
closed form of the particles. However, under UV light, the guess undergoes changes on its conformation
disrupting its interactions with the host. As consequence, the structure opens, permitting the release of
the loaded content. Similarly, Ding et al. [255] synthetized a self-assembled photo-responsive PEG with
the photolabile o-nitrobenzyl group and dichlorophenoxyacetic acid grafting (2,4-D),(2,4-D-NBA-PEG)
(see Figure 8). The amphiphilic characteristics of this complex allow the system to assemble into
nanometric micelles in water protecting the cargo. The release of the active agent takes place in a
controlled fashion due to the photolytic cleavage of the link between the polymer and the herbicide
under UV light. Most importantly in agriculture, the sunlight, which possesses a low UV intensity, is
the source of light and the main controller of that release.

Nanomaterials 2017, 7, 48 24 of 42 

 

permitting the release of the loaded content. Similarly, Ding et al. [255] synthetized a self-assembled 

photo-responsive PEG with the photolabile o-nitrobenzyl group and dichlorophenoxyacetic acid 

grafting (2,4-D),(2,4-D-NBA-PEG) (see Figure 8). The amphiphilic characteristics of this complex 

allow the system to assemble into nanometric micelles in water protecting the cargo. The release of 

the active agent takes place in a controlled fashion due to the photolytic cleavage of the link between 

the polymer and the herbicide under UV light. Most importantly in agriculture, the sunlight, which 

possesses a low UV intensity, is the source of light and the main controller of that release. 

 

Figure 8. Schematic illustration for the assembly process of a photo-sensitive polymer-agrochemical 

conjugate and its photocleavage process under light irradiation and subsequent cargo release. 

Plastic films are another big giant in the agriculture market. However, and as mentioned before, 

it is well known that most of plastics used today are non-degradable and their recyclability is difficult 

and expensive. This is the case of commodity thermoplastics such as PE or PP widely used in 

agriculture due to their good mechanical and processability properties. Also, abusive use of biocides 

is generating an important problem of environmental contamination and biocidal-resistance. Thus, 

the main concern today is to obtain more environmental friendly plastics maintaining at the same 

time the other requirements. Eco-friendly polymeric biocides eliminate any or both of these issues. 

For example, biodegradable polymers as PLA and PCL, [256] or some natural polymers such as 

polysaccharides [257,258] can be used instead of the non-biodegradable polymer matrices as well as 

natural biocides as some natural oils can be incorporated as active agents [259]. Mallakpour et al. [260] 

described a polymeric film based on a poly(amino acid) derived from N,N’-(pyromellitoyl)-bis-L-

tyrosine dimethyl ester that was biodegradable and biologically active at the same time. In another 

example lavandin essential oil, a natural biocide, was encapsulated into biodegradable PEG and into 

n-octenyl succinic-modified starch as controlled release platforms [261]. Undoubtedly, combination 

of a biodegradable polymer and a natural biocide is the most ecological alternative. 

2.3.3. Water Purification 

The treatment of water to eliminate microbial contamination not only concerns public health. 

Biofilm and biofouling microbial contaminations can also cause corrosion, souring and plugging of 

wells and reservoirs, and reduced flow rates. Then, the formation of biofouling is a main concern in 

the water distribution and filtration technologies and the complete cleaning from inconvenient 

microbes is still a challenge. The use of chlorine or other water-soluble disinfectants for this purpose, 

although effective, is associated with problems of residual toxicity. Even if minimal amounts of the 

substance are used, toxic residues can accumulate in food, in drinking water or in the environment. 

In addition, chlorine ions react with organic substances present in water yielding to trihalomethane 

analogs that are suspected of being carcinogenic. For these reasons, their use should be avoided and 

removal of microorganisms from water with non-soluble polymeric disinfectants turns into the best 

method for water purification. This means that the use of antimicrobials supported on membranes, 

fibres or as surface coatings, which kill microorganism by contact instead of by releasing biocidal 

agents, eliminates the major associated drawbacks. Nevertheless, some water soluble polymeric 

biocides have been considered for water purification as long as their toxicity is demonstrated to be 

low enough to suppose a health risk. For example, polyhexamethylene guanidine hydrochloride, a 

cationic biocide currently used in the treatment of drinking water, was blended with PEG and the 

UV light

Assembling

Photo-labile bond

Photo-responsive PEG

Figure 8. Schematic illustration for the assembly process of a photo-sensitive polymer-agrochemical
conjugate and its photocleavage process under light irradiation and subsequent cargo release.

Plastic films are another big giant in the agriculture market. However, and as mentioned
before, it is well known that most of plastics used today are non-degradable and their recyclability
is difficult and expensive. This is the case of commodity thermoplastics such as PE or PP widely
used in agriculture due to their good mechanical and processability properties. Also, abusive use of
biocides is generating an important problem of environmental contamination and biocidal-resistance.
Thus, the main concern today is to obtain more environmental friendly plastics maintaining
at the same time the other requirements. Eco-friendly polymeric biocides eliminate any or
both of these issues. For example, biodegradable polymers as PLA and PCL, [256] or some
natural polymers such as polysaccharides [257,258] can be used instead of the non-biodegradable
polymer matrices as well as natural biocides as some natural oils can be incorporated as active
agents [259]. Mallakpour et al. [260] described a polymeric film based on a poly(amino acid) derived
from N,N′-(pyromellitoyl)-bis-L-tyrosine dimethyl ester that was biodegradable and biologically
active at the same time. In another example lavandin essential oil, a natural biocide, was
encapsulated into biodegradable PEG and into n-octenyl succinic-modified starch as controlled release
platforms [261]. Undoubtedly, combination of a biodegradable polymer and a natural biocide is the
most ecological alternative.

2.3.3. Water Purification

The treatment of water to eliminate microbial contamination not only concerns public health.
Biofilm and biofouling microbial contaminations can also cause corrosion, souring and plugging of
wells and reservoirs, and reduced flow rates. Then, the formation of biofouling is a main concern
in the water distribution and filtration technologies and the complete cleaning from inconvenient
microbes is still a challenge. The use of chlorine or other water-soluble disinfectants for this purpose,
although effective, is associated with problems of residual toxicity. Even if minimal amounts of the
substance are used, toxic residues can accumulate in food, in drinking water or in the environment.
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In addition, chlorine ions react with organic substances present in water yielding to trihalomethane
analogs that are suspected of being carcinogenic. For these reasons, their use should be avoided and
removal of microorganisms from water with non-soluble polymeric disinfectants turns into the best
method for water purification. This means that the use of antimicrobials supported on membranes,
fibres or as surface coatings, which kill microorganism by contact instead of by releasing biocidal
agents, eliminates the major associated drawbacks. Nevertheless, some water soluble polymeric
biocides have been considered for water purification as long as their toxicity is demonstrated to be low
enough to suppose a health risk. For example, polyhexamethylene guanidine hydrochloride, a cationic
biocide currently used in the treatment of drinking water, was blended with PEG and the leaching
of the active to the medium was carefully examined. Quantities of 0.35–0.5 ppm of the biocide were
constantly released along 250 L of passing water, which is enough for bacteria removal but still safe for
humans [202].

Regarding insoluble disinfectants, the most common ones are mainly crosslinked anion-exchange
resins, including quaternary ammonium-type resins, macroporous and macroreticular resins,
polyiodide resins, and insoluble polyelectrolytes [262]. Alshehri et al. [263] synthetized a curcumin
formaldehyde resin to purify polyphenols present in wastewater, which also showed good activity
against several bacterial and fungal strains compared to a standard drug, kanamycin. Also, a set of
non-soluble polyacrylonitrile (PAN) films modified with amines of different chain length were prepared
by Alamri et al. [264]. The antimicrobial activity was introduced by linking benzaldehyde-derivative
moieties onto the amine-functionalized films. Bactericidal efficiency was tested against patient-isolated
Gram-positive (S. aureus) and Gram-negative (P. aeruginosa, E. coli and Salmonella typhi) bacterial strains,
and against some patient-isolated fungi (Aspergillus flavus, A. niger, Candida albicans, Cryptpcoccus
neoformans). The result showed an increasing efficiency with the amount of phenolic hydroxyl groups
into the structure of the polymer. In addition, Bonenfant et al. [265] performed the modification of
carboxymethylcellulose and β-CD-based polymers with different quaternary ammonium compounds
and these compounds were successfully used in the removal of E. coli from wastewater.

Regarding water purification systems, special attention has been placed on N-halamines as active
agents [194,266]. N-halamine and its derivatives have appeared as superior biocides in terms of
efficiency, long-term stability, and recharge ability in the treatment of microbial contaminations. These
are compounds which possess a nitrogen atom covalently linked to a halogen (X), normally chlorine.
Unlike other undesirable chlorine sources, its antimicrobial activity relies on the direct transfer of
the oxidative halogen (X+) from the N-halamine nitrogen to the cell wall of the organism by direct
contact followed by oxidation of the lipids in the microbial membrane, rather than dissociation of
X+ into water followed by diffusion over to a cell. This particular mechanism of action makes these
compounds safe to be used in terms of toxicity, as ions do not leach to the surrounding medium
to perform its action. In addition, these compounds can be regenerated after exposure of these
surfaces to a chlorine source as bleach allowing their reusability during several cycles. As an example,
N-halamine-modified surfaces did not show loss of integrity after exposure to the equivalent of
300 washing cycles with abrasive chemicals demonstrating the high stability of these compounds.
Besides the surface recovered 100% of their activity after 100 chlorination cycles [267]. N-halamines
used as purification systems can be found in many other examples. Jiang et al. [268] polymerized
2-acrylamido-2-methyl-1-(5-methylhydantoinyl)propane monomer with 3-(trimethoxysilyl)-propyl
methacrylate and covalently attached it onto silica gel and sand particles. After chlorination,
a contaminated water flow was passed through the particles packed into a column and bacteria
population was reduced in 7 logs within 10 s of contact time, demonstrating its high efficiency in
water treatment. N-bromo-dimethylhydantoin-polystyrene beads were also tested in the removal of
E. coli (ATCC 15597) and bacteriaphage MS2 (ATCC 15597-B1) from contaminated water according
to the NSF-231 Standard Protocol for Testing Microbiological Water Purifiers. Beads were effective
in the purification of 550 L and its production was scaled up to kilograms showing potential use as
purification systems at industrial scale [269].
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An alternative approach to remove microbes from water is the employment of metal-polymer
nanocomposites. The small size of the NPs limits their use in some applications that require robust
surfaces. Then, metallic NPs have been commonly embedded into polymer matrices forming
nanocomposites in order to provide them with the necessary substrate to extend their applications
on solid surfaces as those required in water purification [270,271]. Silver NPs were immobilized in
a multi-layer film of weak electrolytes, PALA hydrochloride and poly (acrylic acid) (PAA), and a
final crosslinking step with glutaraldehyde was applied to reduce the water solubility of the polymer
layers thus enhancing the stability of the material for long-term applications. Antimicrobial activity
was then evaluated against Gram-positive and Gram-negative bacteria as well as against industrial
wastewater where a reduction of 90% of the present coliforms was achieved. In a similar manner,
Liu et al. [272] incorporated silver NPs onto a membrane made of PAN following a layer-by-layer
approach and subsequent crosslinking. The resulting membrane showed activity against both types of
bacteria, positive and negative, and more important the presence of the NPs did not affect membrane
performance. This observation is crucial as nanofiltration through membranes is an important section
of the water treatment market. In fact, this technique offers some advantages including high water
flux, low operation pressure, less energy consumption, and low operation and maintenance costs.

Jewrajka et al. [273] also described the preparation of a silver-polymer nanocomposite for
ultrafiltration purposes. The authors synthesized a set of poly(acrylonitrile-co-acrylic acid) membranes
by mixing PAN/PAN-co-PAA/PAN-co-PAA-Ag at different ratios and their properties were compared
in terms of membrane performance and antimicrobial activity. Membranes containing both copolymer
and silver NPs showed better wettability and water flux in addition to good bactericidal properties.
Furthermore, the addition of a small amount of PEG as additive in the blend improved the protein
antifouling capabilities of the membranes. It is worth to mention that less than 1 wt % of these
nanofillers were used to prepare these formulations. This means that good antimicrobial yields can be
obtained without necessarily have a massive increase of costs. To overcome the poor water-solubility
issue of some biocidal polymers, inorganic particles such as silica or sand can be used as substrates.
In this sense, magnetic silica NPs were decorated with polymeric brushes of oligo(ethylene glycol)
methacrylate coupled to a natural antimicrobial peptide, Magainin I, and their antibacterial activity
was tested against Gram-positive Listeria ivanovii [274]. In addition to their antimicrobial properties,
these particles also offered the possibility to be easily retained and re-dispersed in aqueous media as
many times as desired just by applying an external magnetic field.

2.3.4. Air Purification

As previously mentioned, particles of both biological and non-biological origin can be transported
by the air. Bacterial and fungal cells, endospores and spores can travel through this way and infect
the environment even when the infection focus is situated far away from it. Then, air filtration is
important in order to control such spreading and purify the air especially in susceptible areas such as
hospitals or food and pharmaceutical manufacturing industries. Some of the common fungal strains
isolated from air filters belong to genera Aspergillus, Penicillium, Cladosporium, Phoma and Mucor, and
regarding bacterial strains Micrococcus, Staphylococcus, Pseudomonas or Bacillus have been found among
too many others.

The use of antimicrobial polymers-containing filters, as bioaerosol filters, helps to solve this
issue [275–277]. Natarajan et al. [276] described a PP-based filter modified with polyaniline, which
showed high efficiency in the removal of E. coli, B. subtillis and S. aureus strains from contaminated
air. Taylor et al. [277] also evaluated the activity of HEPA (High Efficiency Particle Arresting) filters
made of polyurethane fibres functionalized with quaternary ammonium antimicrobial groups. These
filters were tested against the main bacteria strains commonly responsible for nosocomial infections
in hospitals including some multi-resistant species. The successful results against all the strains
revealed them as good filters with broad-spectrum bactericidal properties. It is worth to point out
the importance of using filters able not only to retain but also to kill the entrapped microorganisms,
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because it is equally important to reduce the risk of a secondary infection. However, the information is
limited and only few examples can be found in literature in the last few years. Then, more research on
this field would be necessary given the importance of this matter.

2.4. Fabrics

Fabrics or textiles are any cloth made from yarn or fibres by weaving, knitting, felting, etc. As we
have shown in the previous sections, the society demands clothes with antimicrobial properties to
avoid contamination and/or bad smells during sports/leisure practicing, in addition to those used in
hospitals or sanitary services. Likewise, this implies the use of polymers with intrinsic antimicrobial
activity, or their chemical or physical modification to incorporate organic or inorganic antimicrobial
compounds [4]. Cotton is undoubtedly the polymer most consumed in this context and the most
studied. Worley’s group [278–280] has extensively applied halamine compounds to enhance the
antimicrobial activity of natural, mainly cotton, but also synthetic fabrics, such as PP or PAN. Cotton
coatings based on hydantoin diol were also combined with TiO2 NPs. Those fabrics showed excellent
antimicrobial properties against S. aureus (ATCC 6538) and E. coli O157:H7 (ATCC 43895) bacteria.
Besides, their stability under UV light was enhanced [280]. Cotton fabric was also loaded with
graphene oxide by dipping coating method and then immersed in TiCl3 aqueous solution acting as
both a reducing agent and a precursor to yield a fabric coated with graphene/TiO2 nanocomposite. The
material was able to self-clean by titania photocatalytic action and to eliminate S. aureus (ATCC 25923),
E. coli (ATCC 25922) bacteria and C. albicans (NCPF 3153) fungi [281]. Titania NPs have been also
introduced in synthetic fabrics, such as nylon, to obtain protective clothing [282].

Equally, silver NPs were quickly implemented in fabrics [283,284]. Also, silver and ZnO NPs
were used to support dyes in cotton and their activity was proved against S. cerevisiae yeast [285].

Durability and healing characteristics are other properties hardly pursuit in fabrics. Recently,
the synergy between different methodologies was able to create cotton with tuneable colours and
durable antibacterial and self-healing superhydrophobic properties. For that, cotton was treated
by the solution-dipping method which involved a three-step sequential deposition of branched
poly(ethylenimine) (PEI), Ag NPs of tailored colours, and fluorinated-decyl polyhedral oligomeric
silsesquioxane (F-POSS) [286].

3. Conclusions and Future Development

Here, we have shown some of the most relevant application areas of nanomaterials based on
antimicrobial polymers. In general, nanoscience and nanotechnology have helped to create new
systems and, indeed new antimicrobial systems with improved properties. It seems that new strategies
can be developed to achieve enhanced performance but no doubt, that combinations of existing ones
could be effective and promising approaches. We can find different examples in the literature to this
respect; for example, LV-loaded NPs with silver core and mesoporous silica shell, which are able to
reduce 7.5 and 15 times the MIC values of pure LV against E. coli and K. pneumoniae bacteria [287].
Moreover, these NPs can reduce the E. coli infection in peritoneal cavity of the mice by nearly three
orders of magnitude. Another example is the preparation of surfaces with double effect; viz. able to
prevent the adhesion of bacteria and having a bactericidal effect.

In addition to the application areas described in this review, there are many other fields
not mentioned in which antimicrobial polymeric nanosystems are either important, such as paint
formulations, where indoor or outdoor antibacterial and antifungal properties are desired; [288,289] or
water hygiene papers [290,291]. Besides, in the nano-era where graphene and related materials are
breakthrough we will see important developments in those areas of applications [292,293].

The research on the development of more potent antimicrobial polymeric materials without
compromising the human toxicity is increasing and will be enhanced in the upcoming years. In spite
of this, researchers should put more efforts in the use of standardized protocols and microorganisms
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strains in order to have a more accurate and valuable data, which will allow us to go deeper into the
mechanism of how microorganisms act and how we should prevent and/or combat them.
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ACP amorphous calcium phosphate
Alg alginate
ALM alveolar like macrophages
AM ampicillin
Arg arginine
AZ azithromycin
Bla β-lactamase
BSA bovine serum albumin
CaP calcium phosphate
CD cyclodextrin
CFU Colony-forming unit
Ch chitosan
CHX chlorhexidine
CL clarithromycin
CP ciprofloxacin
DOTAP 1,2-dioleoyl-3-trimethylammonium-propane chloride salt
DS dextran sulfate
EVA ethylene/vinyl acetate copolymer
EVOH ethylene-vinyl alcohol copolymer
FDA Food and Drug Administration
F-POSS fluorinated-decyl polyhedral oligomeric silsesquioxane
Gg gellan gum
GRAS Generally Recognized as Safe
GT gentamicin
HA hydroxyapatite
HEPA high efficiency particle arresting
Hy hyaluronic acid
IFN-γ interferon-gamma
IL-12 interleukin-12
LCST lower critical solution temperature
LDPE low-density polyethylene
LV levofloxacin
MBC minimum bactericidal concentration
MIC minimum inhibitory concentration
MRSA methicillin-resistant S. aureus
MSN mesoporous silica nanoparticles
MSSA methicillin susceptible S. aureus
MX moxifloxacin
PNIPAM poly(N-isopropyl acrylamide)
NPs nanoparticles
NR norfloxacin
OFX ofloxacin
PAA polyacid acrylic
PAANa poly(sodium acrylate)



Nanomaterials 2017, 7, 48 29 of 44

PALA polyallylamine
PAN polyacrylonitrile
pBA poly(n-butyl acrylate)
PBCA poly(butyl cyanoacrylate)
PCL polycaprolactone
PDAEMA poly(2-aminoethyl methacrylate)
PDMS poly(dimethylsiloxane)
PDO polydioxanone
PE polyethylene
PEG poly(ethylene glycol)
PEI polyethyleneimine
PEO poly(ethylene oxide)
PET poly(ethylene terephthalate)
PGa penicillin G amidase
PGA poly(glycolic acid)
PGCL poly(glycolide-co-caprolactone)
PLA poly(lactide)
PLGA poly(lactic-co-glycolic acid)
PMMA poly(methyl methacrylate)
p-(NβGlcEAM) poly(N-2-(β-D-glucosyloxy)ethyl acrylamide)
p(NβGalEAM) poly(N-2-(β-D-galactosyloxy)ethyl acrylamide)
Por Porphyrins
PPO poly(propylene oxide)
PP polypropylene
PS polystyrene
PU polyurethane
PVA poly(vinyl alcohol)
PVP poly(N-vinylpyrrolidone)
RIF Rifampicin
ROS reactive oxygen species
TDI toluene-2,4-diisocyanate
TNF-α tumour necrosis factor-α
TOB tobramycin
TPP tripolyphosphate
VC vancomycin
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