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Brown adipose tissue (BAT) is considered an interesting target organ for the treatment of 
metabolic disease due to its high metabolic capacity. Non-shivering thermogenesis, once 
activated, can lead to enhanced partitioning and oxidation of fuels in adipose tissues, 
and reduce the burden of glucose and lipids on other metabolic organs such as liver, 
pancreas, and skeletal muscle. Sustained long-term activation of BAT may also lead to 
meaningful bodyweight loss. In this review, we discuss three different drug classes [the 
thiazolidinedione (TZD) class of PPARγ agonists, β3-adrenergic receptor agonists, and 
fibroblast growth factor 21 (FGF21) analogs] that have been proposed to regulate BAT 
and beige recruitment or activation, or both, and which have been tested in both rodent 
and human. The learnings from these classes suggest that restoration of functional BAT 
and beige mass as well as improved activation might be required to fully realize the 
metabolic potential of these tissues. Whether this can be achieved without the undesired 
cardiovascular side effects exhibited by the TZD PPARγ agonists and β3-adrenergic 
receptor agonists remains to be resolved.

Keywords: brown adipose tissue, thermogenesis, uncoupling protein 1, drug discovery, PPARγ agonists, 
thiazolidinediones, β3-adrenergic receptor agonists, FGF21 analogs

iNTRODUCTiON

According to the International Diabetes Federation (IDF), 8.3% of adults worldwide  –  370 
 million people – have type-2 diabetes (T2D), and the number of people with the disease is set 
to rise beyond 592 million in under 25 years (1). Although there are many drugs available for 
diabetes, none of them safely and durably prevent or reverse disease progress and its associated 
comorbidities. Poor diet, sedentary lifestyle, and obesity are considered major risk factors for 
diabetes. Inappropriate fuel handling by adipose tissue, liver, and skeletal muscle, combined 
with ectopic lipid deposition in key metabolic organs (such as liver, pancreas, muscle, and heart) 
have been hypothesized to play a significant role in the development of insulin resistance. Insulin 
resistance increases the overall burden on β-cells, which over time leads to β-cell failure and 
development of T2D.
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also expressed in committed skeletal muscle precursors (19, 20). 
The developmental origin of the beige adipocyte remains to be 
elucidated. The whole-body NST will have contributions from 
both classical brown and beige adipocytes.

It is now beyond doubt that BAT is present in adult humans 
and plays a role in NST (3). BAT activity can be detected by 
18F-fluorodeoxyglucose (18F-FDG) uptake using PET–CT (2, 4, 
5). Retrospective analysis of populations that have undergone 
PET–CT examination indicates that the prevalence of BAT varies 
between 1 and 5%. For example, one study on 4011 asymptomatic 
individuals (<5% obese subjects) showed that BAT prevalence is 
5% in female and 1.3% in male (21). The BAT-positive subjects 
had lower body mass index (BMI), less visceral and subcutaneous 
fat areas, lower fasting glucose and TG levels, and increased HDL 
cholesterol concentrations compared to the BAT-negative sub-
jects. Similar results were reported for 56 healthy volunteers (22), 
and for cancer patients (2, 23). The inverse correlation between 
BAT activity and BMI was further confirmed in non-diabetic 
subjects over a wide range of body compositions (BMI ranging 
from 22 to 48 kg/m2) (4, 24–27). A recent retrospective analysis of 
18F-FDG uptake data (analysis of the neck regions of two relatively 
large cohorts of individuals) reports that the average body weight 
of BAT-positive individuals is approximately 5 kg lower compared 
to that of BAT-negative subjects (21, 23).

Using a combination of MRI and molecular analysis, Enerbäck’s 
group clearly demonstrated that iBAT in human infants consists 
of classical brown adipocytes (15). However, the molecular signa-
ture of brown adipocytes isolated from the neck regions of adult 
humans resembles that of the rodent beige phenotype rather than 
classical brown adipocytes (15, 28–31). What causes the BAT 
phenotype transformation between infant and adult humans is 
not understood. It is conceptually important to unravel the func-
tion, regulation, and differentiation of beige and classical brown 
adipocytes in order to be able to pharmacologically enhance 
thermogenesis in humans. For example, if the adipocytes with 
various white and beige appearances in adult human neck region 
are, in fact, simply dormant brown adipocytes, they may be read-
ily re-activated by cold or sympathomimetics. In addition, it is 
important to understand the translational aspects of BAT biology, 
i.e., whether the same or different pharmacological agent(s) will 
show desirable effects in preclinical animal species and man?

BAT AND MeTABOLiC SiGNiFiCANCe

The contribution of BAT to whole-body metabolism in rodents 
has recently been examined using tools such as radioactive tracers 
and PET–CT imaging. Bartelt et al. showed that BAT is the major 
site of triglyceride-rich lipoprotein (TRL) clearance during acute 
cold exposure (32). Cold exposure also dramatically increased the 
glucose disposal to BAT tissue. The remarkable capacity of BAT to 
take up substrates is illustrated by the ratio of BAT mass to the total 
glucose and TG uptake by BAT compared to that of other major 
organs in mice under cold challenge. Labbe et  al. extended this 
observation through PET–CT analysis of the rate of substrate flux 
and oxidation in the iBAT of both warm- and cold-adapted rats (33). 
The rate of glucose uptake into iBAT was relatively low at 27°C but 
increased 10-fold upon acute cold exposure and increased 46-fold 

FiGURe 1 | white adipose tissue stores excess energy as triglycerides that can be mobilized by lipolysis to generate FFA for use by other tissues. 
BAT is the main site of NST, which is carried out by UCP1. Beige adipocytes have uncoupling capabilities similar to brown adipocytes, but are found in what is 
normally considered WAT. Appropriate partitioning and oxidation of fatty acids into BAT, WAT, beige adipocytes, and other metabolic organs can reduce ectopic fat 
deposition in metabolic organs, resulting in improved insulin sensitivity. Green arrows indicate appropriate partitioning and red arrows indicate inappropriate 
partitioning.

Adipose tissue can be grossly divided into two major depots, 
white adipose tissue (WAT) and brown adipose tissue (BAT). 
WAT stores excess energy as triglycerides (TGs), which can 
be mobilized by lipolysis to generate free fatty acids (FFAs) for 
use by other tissues. BAT, on the other hand, is the main site of 
non-shivering thermogenesis (NST), which requires a brown 
adipocyte-specific protein called uncoupling protein 1 (UCP1).

Non-shivering thermogenesis by BAT is an interesting target 
for the treatment of metabolic disease due to the high metabolic 
capacity of BAT. BAT is highly vascularized and richly innervated 
by sympathetic nerves, and its activation is predominantly regu-
lated by the sympathetic nerve system via β-adrenergic receptors 
(β-ARs). Enhancing energy expenditure (EE) through activation 
of NST by β3-adrenergic receptor (β3-AR) agonists has been inves-
tigated as an alternative to inhibition of food intake for bodyweight 
loss. This has, however, been unsuccessful in human clinical trials. 
This lack of effect on EE was partly attributed to negligible BAT 
function in adult humans compared to the situation in rodents.

The rediscovery of BAT in the adult human in 2007, and the 
subsequent demonstration of functional involvement of human 
BAT in NST have revitalized this area (2–5). In addition, the 
presence of brown-like adipocytes in WAT [referred to as beige 
or brown-in-white (brite) adipocytes] further increased the 
interest in brown adipocyte biology, as WAT mass is relatively 
large and any increase in cellular energetics in this tissue may 
have a significant impact on whole-body metabolism and EE. 
The beige nomenclature will be used for this review. Utilization 
of FFAs during NST could lead to depletion of brown and or beige 
adipocytes’ lipid stores, which may result in redistribution of fuels 
[including glucose and non-esterified fatty acids (NEFA)] toward 
brown and beige adipocytes. In turn, this could lead to a reduced 
fuel over-supply to other metabolic organs (heart, skeletal muscle, 
and liver) and, thus, improved insulin sensitivity (Figure 1).

Transcriptional and hormonal regulation of the “brown-
ing” program of adipose stem cells and characterization of the 
molecular signature have been reviewed extensively elsewhere 
(6–12). This paper focuses on the metabolic potential of BAT 
and beige adipocytes, how these systems can be manipulated by 
pharmacological means, and how to assess if a brown adipocyte 
phenotype has been achieved by pharmacological intervention. 
Finally, we discuss the challenges of drug discovery in this area by 
reviewing three classes of clinically investigated pharmacological 
agents that regulate various aspects of BAT and beige adipocyte 
function: thiazolidinedione (TZD) PPARγ agonists, β3-AR ago-
nists, and fibroblast growth factor 21 (FGF21) analogs.

BROwN ADiPOSe TiSSUe iN  
ADULT HUMANS

Typically, BAT is located in the interscapular (iBAT), cervical, 
auxiliary, perirenal and paraaortic areas of animals or human 
infants (13–15). In adult humans, BAT depots have a diffuse ana-
tomic distribution, with mixtures of white and beige adipocytes, 
seeming to coexist in close proximity. Beige adipocytes have also 
been reported to arise in what are normally considered WAT 
depots (such as inguinal adipose in rodents) in response to vari-
ous stimuli such as cold, TZDs, and β-AR agonists (9). In humans, 
beige adipocytes were found in the WAT of pheochromocytoma 
patients due to the presence of catecholamine-secreting tumors 
(16, 17) and in the subcutaneous adipose of severely burned 
patients where heat loss is increased and who experience prolonged 
adrenergic stress (18). Both lineage-tracing studies and transcrip-
tional profiling of classical brown and beige adipocytes indicate 
that these two cell types seem to originate developmentally from 
distinct cell lineages. Classical brown adipocytes in interscapular 
BAT arise from precursors that are myf5+, a gene known to be 
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also expressed in committed skeletal muscle precursors (19, 20). 
The developmental origin of the beige adipocyte remains to be 
elucidated. The whole-body NST will have contributions from 
both classical brown and beige adipocytes.

It is now beyond doubt that BAT is present in adult humans 
and plays a role in NST (3). BAT activity can be detected by 
18F-fluorodeoxyglucose (18F-FDG) uptake using PET–CT (2, 4, 
5). Retrospective analysis of populations that have undergone 
PET–CT examination indicates that the prevalence of BAT varies 
between 1 and 5%. For example, one study on 4011 asymptomatic 
individuals (<5% obese subjects) showed that BAT prevalence is 
5% in female and 1.3% in male (21). The BAT-positive subjects 
had lower body mass index (BMI), less visceral and subcutaneous 
fat areas, lower fasting glucose and TG levels, and increased HDL 
cholesterol concentrations compared to the BAT-negative sub-
jects. Similar results were reported for 56 healthy volunteers (22), 
and for cancer patients (2, 23). The inverse correlation between 
BAT activity and BMI was further confirmed in non-diabetic 
subjects over a wide range of body compositions (BMI ranging 
from 22 to 48 kg/m2) (4, 24–27). A recent retrospective analysis of 
18F-FDG uptake data (analysis of the neck regions of two relatively 
large cohorts of individuals) reports that the average body weight 
of BAT-positive individuals is approximately 5 kg lower compared 
to that of BAT-negative subjects (21, 23).

Using a combination of MRI and molecular analysis, Enerbäck’s 
group clearly demonstrated that iBAT in human infants consists 
of classical brown adipocytes (15). However, the molecular signa-
ture of brown adipocytes isolated from the neck regions of adult 
humans resembles that of the rodent beige phenotype rather than 
classical brown adipocytes (15, 28–31). What causes the BAT 
phenotype transformation between infant and adult humans is 
not understood. It is conceptually important to unravel the func-
tion, regulation, and differentiation of beige and classical brown 
adipocytes in order to be able to pharmacologically enhance 
thermogenesis in humans. For example, if the adipocytes with 
various white and beige appearances in adult human neck region 
are, in fact, simply dormant brown adipocytes, they may be read-
ily re-activated by cold or sympathomimetics. In addition, it is 
important to understand the translational aspects of BAT biology, 
i.e., whether the same or different pharmacological agent(s) will 
show desirable effects in preclinical animal species and man?

BAT AND MeTABOLiC SiGNiFiCANCe

The contribution of BAT to whole-body metabolism in rodents 
has recently been examined using tools such as radioactive tracers 
and PET–CT imaging. Bartelt et al. showed that BAT is the major 
site of triglyceride-rich lipoprotein (TRL) clearance during acute 
cold exposure (32). Cold exposure also dramatically increased the 
glucose disposal to BAT tissue. The remarkable capacity of BAT to 
take up substrates is illustrated by the ratio of BAT mass to the total 
glucose and TG uptake by BAT compared to that of other major 
organs in mice under cold challenge. Labbe et  al. extended this 
observation through PET–CT analysis of the rate of substrate flux 
and oxidation in the iBAT of both warm- and cold-adapted rats (33). 
The rate of glucose uptake into iBAT was relatively low at 27°C but 
increased 10-fold upon acute cold exposure and increased 46-fold 

FiGURe 1 | white adipose tissue stores excess energy as triglycerides that can be mobilized by lipolysis to generate FFA for use by other tissues. 
BAT is the main site of NST, which is carried out by UCP1. Beige adipocytes have uncoupling capabilities similar to brown adipocytes, but are found in what is 
normally considered WAT. Appropriate partitioning and oxidation of fatty acids into BAT, WAT, beige adipocytes, and other metabolic organs can reduce ectopic fat 
deposition in metabolic organs, resulting in improved insulin sensitivity. Green arrows indicate appropriate partitioning and red arrows indicate inappropriate 
partitioning.

after cold acclimation at 10°C. Similarly, NEFA levels rose 6-fold 
upon acute cold exposure, and ~100-fold after cold acclimation. 
The metabolic activity of the iBAT reached levels similar to that of 
heart and liver after 6 h of cold exposure. In spite of these results, it 
should be kept in mind that although BAT glucose uptake per unit 
volume of tissue is important, the bulk of glucose turnover during 
cold exposure is mediated by skeletal muscle metabolic activation 
even when shivering is minimized (7).

It is more challenging to determine the specific contribution of 
beige adipocytes to whole-body metabolism. Bartelt et al. showed 
that acute cold exposure also increases TRL uptake in inguinal 
WAT (iWAT), but to a smaller extent compared to iBAT (32, 
34). Seale’s group reported an aP2-PRDM16 transgenic mouse 
that exhibited a highly favorable metabolic phenotype, in which 
iBAT remained unchanged but with extensive browning in iWAT. 
This suggests that beige adipocytes may contribute to the overall 
metabolic phenotype observed in this mouse (35).

On the whole-body level, Reitman’s group dissected the 
relative contributions of cold-induced, diet-induced, and physi-
cal activity-associated EE in mice in relation to the basal meta-
bolic rate (BMR) at various temperatures (36). This work clearly 
illustrated that at 22°C, the temperature at which most reported 
metabolic studies have been conducted, mice expend a relatively 
large amount of energy to generate heat (120% of BMR). Adult 
humans, on the other hand, live in or near their thermoneutral 
zone, with a relatively small contribution from adaptive thermo-
genesis to EE (5% of BMR) (11). Interestingly, in mice housed at 
thermoneutrality (30–32°C), the relative contributions of BMR, 
diet, physical activity, and adaptive thermogenesis in mice to 
overall EE are reported to be ~60, 12, 25, and 0%, respectively 
(36). These figures are very similar to the relative contributions 
seen in humans with low activity levels, and might represent 
experimental conditions more suitable for translational research 
in this field. The EE increase in relation to external temperature is 
conceptually depicted in Figure 2 (not scaled to real data).

Numerous studies that address the role of human BAT activa-
tion and its quantitative impact on whole-body metabolism have 
been published. Based on the heat production capacity of mouse 
BAT, Rothwell and Stock proposed in the 1980s that 40–50 g of 
BAT, if maximally activated, could account for 20% of daily EE 
in human (37). More recently PET–CT measurements estimated 
the average active BAT volume in healthy humans to be 137 cm3, 
corresponding to a conservative estimate of around 50 g BAT mass 
(11). Virtanen et al. estimated the EE of human BAT to be 55 W/
kg (5) based on the rate of glucose uptake during cold exposure, 
as measured by dynamic PET–CT. These conservative estimates 
suggest that the EE of fully activated BAT could amount to 2–5% 
of BMR. Recent cold exposure experiments confirmed that the 
cold-induced NST-associated increase in EE accounts for 0–15% 
of BMR (11). Using a human body-composition model (38), we 
further extrapolated that a 4% increase of BMR could lead to a 
3% bodyweight reduction per year, assuming that the effects are 
sustained. A key assumption in such an extrapolation is that func-
tional tolerance can be avoided (39). In support of this assumption, 
some pieces of evidence suggest that increased thermogenesis is 
not always fully compensated for and negated by an increase in 
food intake, for reasons that are not fully understood (40).
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Cypess et  al. recently reported a 13% increase in BMR as a 
result of BAT activation upon administration of an acute dose 
of the β3-AR agonist mirabegron (41). Again, assuming that 
this BMR increase could be sustained upon chronic treatment, 
modeling suggests that this could potentially lead to an 8% 
bodyweight loss per year in BAT-positive healthy men. Besides 
potential functional tolerance, it remains uncertain if chronic 
β-AR-mediated stimulation of BAT is possible without encoun-
tering the side effects often associated with β-AR agonists.

Bodyweight reduction has been shown to have positive effects 
not only on preventing the progression of pre-diabetes to dia-
betes, but also leads to a reduction of hemoglobin A1c (HbA1c) 
(42). More recently, Hanssen et  al. showed that 10-day cold 
acclimation in obese T2D patients could increase BAT activity, 
which was in turn associated with a reduction of BAT TG content 
and increased EE (43). One very encouraging observation is the 

43% improvement of glucose infusion rate during a clamp study. 
Importantly, the improvement in insulin sensitivity of both 
adipose and skeletal muscle appeared before any bodyweight 
change could be seen (43). As indicated by Hanssen et  al., the 
cold-induced improvement in insulin sensitivity exceeds that 
which was observed after long-term exercise training. To place 
this in a pharmacological context, this improvement in insulin 
sensitivity is similar in extent to that seen after 2-week treatment 
with dapagliflozin (Farxiga/Forxiga), which affords an 18% 
improvement in tissue glucose disposal (44).

FUNCTiONAL BROwN/BeiGe 
ADiPOCYTeS

The remarkable metabolic capacity of classical brown adipocytes 
in the activated state has been well characterized using rodent 
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brown adipocytes. Functional characterization of beige adipo-
cytes from the inguinal adipose tissue of mice or differentiated 
beige adipocytes from human adipose stem cells suggests that 
these cells are functionally similar to classical brown adipocytes 
(45, 46). The developmental origin of brown and beige adipocytes 
is currently an area of intense research and has been extensively 
reviewed elsewhere (47, 48).

Uncoupling of the mitochondrial transmembrane proton 
gradient in brown adipocytes in order to generate heat in 
response to cold is a complicated but well-orchestrated event. 
The key metabolic and signaling pathways in the brown or beige 
adipocyte are summarized in Figure 3. To be able to carry out this 
function, brown adipocytes need to be equipped with a complex 
machinery that is able to (i) signal through norepinephrine (NE) 
or other catecholamines via β-ARs, (ii) generate intracellular FFAs 
through hydrolysis of TGs from lipid droplets (lipolysis), and (iii) 
uncouple the ATP-generating process via UCP1 activation (13, 
49). Chronically, cold challenge leads to a recruitment process in 
which cell proliferation, mitochondrial biogenesis, and angiogen-
esis are enhanced. Given the broad range of cellular processes that 
are involved in these events, it is not surprising that large numbers 
of genes/factors have been described to regulate the differentia-
tion and function of brown and beige adipocytes (9, 34).

The β3-AR has emerged as a leading molecular target for the 
activation of brown or beige adipocytes (18, 41). Rodent and 
human adipose tissue display different β-AR expression profiles. 
(50–53). In mouse, the β3-AR is highly expressed in both BAT 
and WAT with several-fold higher abundance than the β1-AR, 
whereas in the adult human, the β3-AR is only expressed in BAT. 
In human WAT, β1-AR has been reported to be 50-fold more 
abundant than β3-AR (52). The β3-AR subtypes also differ in 
their potency toward various ligands, G-protein coupling, and 
desensitization. The binding affinity of NE to β3-AR was reported 
to be in the low micromolar range, while the potency for cAMP 
accumulation is in the low nanomolar range when measured 
in intact cells, suggesting that the coupling efficacy to adenylyl 
cyclase of β3-AR was higher than that of β1-AR (52, 54). In addi-
tion, β1-AR desensitizes more rapidly than β3-AR upon exposure 
to agonists. This led to the hypothesis that β1-AR may mediate 
the NE response to low levels of sympathetic stimulation. On 
the other hand, the activation of β3-AR may require higher levels 
of sympathetic stimulation, but once activated this receptor is 
likely to deliver a more sustained effect (52). It is important to 
note that circulating NE levels are generally in the low nanomolar 
concentration range, and it is likely that NE concentrations at 
the synaptic clefts will be much higher during cold response, 
providing sufficiently high local concentrations in BAT to enable 
local activation of β3-AR in spite of the low plasma concentration. 
Recently, several studies have shown that systemic administra-
tion of adrenergic activators, such as isoproterenol (ISO) and 
ephedrine, fail to elicit BAT activation in man (55–57). To prop-
erly interpret these clinical data, it is crucial to understand if the 
plasma concentrations of the adrenergic agonists used reached 
a sufficiently high concentration to enable activation of lipolysis 
and thermogenesis in human BAT.

Norepinephrine-mediated β-AR activation results in an 
increased intracellular cAMP concentration, which in turn 

stimulates lipolysis in brown adipocytes via activation of the 
protein kinase A pathway. Lipolysis is a stepwise process with 
different enzymes acting at each step: TGs are hydrolyzed by 
desnutrin/adipose triglyceride lipase (ATGL) to form diacylg-
lycerol (DAG). DAG is then hydrolyzed by hormone-sensitive 
lipase (HSL) to monoacylglycerol and, subsequently glycerol, 
with a fatty acid released at each stage. Intracellular FFAs are the 
direct activators of UCP1 (58). In humans, the BAT radiodensity 
(which is indicative of intracellular TG stores) is inversely corre-
lated with NST, strongly suggesting that depletion of intracellular 
TG occurs during cold exposure. In rats, inhibition of lipolysis 
by nicotinic acid-mediated GPR109a agonism significantly 
reduced the oxidative capacity of iBAT in response to cold, again 
suggesting a key role for lipolysis in UCP1-mediated thermo-
genesis (33). Additionally, adipose tissue-specific knockout of 
ATGL led to the formation of “whitened” brown adipocytes and 
resulted in impaired lipolysis and defective thermogenesis in 
BAT (59–62).

The brown adipocytes’ cold-depleted energy stores are 
replenished by de novo lipogenesis and glycogen synthesis, 
which requires cellular uptake of circulating glucose and FFAs 
(derived either from TRLs or from lipolysis in WAT). In brown 
adipocytes, glucose uptake is mostly mediated by glucose 
transporter 1 (GLUT1) and glucose transporter 4 (GLUT4) and 
subsequently stored as glycogen or converted to lactate through 
anaerobic glycolysis. As shown in Figure 3, FFAs are transported 
into the cell by cluster of differentiation 36 (CD36) and TGs are 
subsequently synthesized through re-esterification by a series 
of enzymes, including glycerol-3-phosphate acyltransferase 
(GPAT) and diacylglycerol O-acyltransferases (DGATs) (49). 
The process of recruitment of new brown or beige adipocytes 
and the maintenance of mature adipocyte function during acute 
and chronic cold acclimation are subject to complex transcrip-
tional and hormonal regulation, for example, by PPARγ, bone 
morphogenic proteins (BMPs), the thyroid axis, and FGF21. 
These regulatory mechanisms have been extensively reviewed 
elsewhere (8, 47, 48, 63).

The functional activity of BAT is reduced by chronic warm 
acclimation, old age, obesity, and diabetes. Rodent models of 
genetic deficiency of leptin (ob/ob, db/db, and obese fa/fa rats) are 
cold sensitive, and their brown adipocytes have a white adipocyte 
appearance with reduced expression of UCP1 protein (64, 65). 
Old age and lack of cold challenge also reduce the thermogenic 
activity of the brown adipocytes (66). Brown adipocytes isolated 
from guinea pigs housed at 30°C appear unilocular, although 
these cells appear to retain their brown adipocyte identity and 
are able to respond to NE with a robust increase of thermogenesis, 
which is not the case for adipocytes isolated from WAT (67). In 
humans, BAT activity is inversely correlated with age, fat mass, 
and BMI. Insulin-stimulated glucose uptake is also compromised 
in the BAT of diabetic individuals (68). Recent reports that both 
chronic cold acclimation and weight loss can enhance BAT 
activity in humans are encouraging (27, 69, 70), indicating that 
reduced BAT function may be restored. In this respect, adipocytes 
or adipose precursor cells are highly plastic and able to adapt to 
the functional needs, as has been shown in rodent using lineage 
tracing experiments (71).

http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org


FiGURe 3 | Diagram showing key metabolic and signaling pathways in brown or beige adipocytes.

November 2015 | Volume 6 | Article 1746

Peng et al. BAT: Unlock the Potential

Frontiers in Endocrinology | www.frontiersin.org

THiAZOLiDiNeDiONeS

The TZDs [represented by rosiglitazone (Avandia) and piogl-
itazone (Actos)] are a chemical class of PPARγ agonists used as 
insulin sensitizers for the treatment of T2D (72). The primary 
site of action of the TZDs is adipose tissue, where they improve 
several functional aspects, including the uptake and storage of 
plasma NEFA. They also increase FFA mobilization under fast-
ing conditions and enhance postprandial suppression of FFA 
mobilization by insulin (73).

Thiazolidinediones have been shown to increase UCP1 
expression and BAT mass in rodents. Rosiglitazone has been 
shown in vitro by several laboratories to induce UCP1 in rodent 
brown adipocytes and differentiated adipose stem cells (74–77). 
In addition, chronic treatment of human subcutaneous adipose 
stem cells with rosiglitazone upregulated several components of 
the mitochondrial electron transport chain, which is consistent 
with what has been observed in human (78). The UCP1 protein 
in human adipocytes differentiated in  vitro in the presence of 

rosiglitazone is only functional when cells have been allowed 
to differentiate for a longer time than is typically reported in 
mouse studies (45). Although TZDs have the ability to recruit 
the “browning program” in both mouse and human adipocytes, 
the thermogenic capacity of UCP1-expressing cells cannot be 
unleashed without subsequent activation (e.g., by β-AR agonists). 
An increase in the oxygen consumption rate (OCR) of human 
adipocytes differentiated in vitro in the presence of rosiglitazone 
could only be observed when the cells were stimulated with 
isoproterenol or in the presence of exogenously provided FFAs. 
The increase of OCR in these beige cells is completely UCP1 
dependent, as UCP1 knock-down abolishes the effect (45).

Various in vivo rodent models of insulin resistance have been 
used to show that the TZDs increase UCP1 mRNA in iBAT 
and overall iBAT weight. However, this is not associated with 
a subsequent increase in thermogenesis or whole-body EE. In 
addition, TZD treatment leads to the brown adipocytes becom-
ing lipid filled (79–81). This led to the hypothesis that obese and 
diabetic animals or humans could first be primed by a PPARγ 
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agonist to expand the BAT capacity, followed by its activation via 
a β-AR agonist. This concept was tested pre-clinically in ob/ob 
mice by pre-treating with a PPARγ agonist (COOH, a non-TZD 
PPARγ agonist) followed by treatment with the β3-AR agonist 
CL-316,243. Synergistic effects on EE and bodyweight reduction 
were indeed observed in this single study (82). However, a later 
study using rosiglitazone followed by acute cold exposure failed 
to reproduce these effects (83). A possible explanation for the lack 
of increased EE in spite of increased TG storage, UCP1 expression 
and BAT mass induced upon PPARγ activation by rosiglitazone 
(84) may be the downregulation of β3-AR and iodothyronine 
deiodinase type II (DIO2) expression caused by TZD treatment 
(85, 86). In addition, as COOH belongs to a different structural 
class of PPARγ agonists to the TZDs, it is not unlikely that dif-
ferent outcomes could be observed between the two compounds. 
In humans, 12 weeks of pioglitazone treatment has been shown 
to generate a small increase in UCP1 mRNA levels in subcutane-
ous adipose tissue (87). However, combined pioglitazone and 
ephedrine treatment for 12 weeks in obese human subjects failed 
to deliver significant bodyweight reduction (88).

When comparing the observed outcomes of studies employing 
PPARγ agonists, it must be kept in mind that even structurally 
closely related compounds may exhibit very different PPARγ-
dependent pharmacodynamic profiles. This is, in part, due to 
ligand-dependent modulation of the PPARγ protein that leads 
to recruitment of different coactivator and corepressor proteins, 
in turn resulting in a unique transcriptional profile for each com-
pound (89). Since the identification of PPARγ as the molecular 
target of the TZDs (90), significant effort has been invested by 
the pharmaceutical industry in PPARγ agonist drug discovery 
(91–96) albeit largely without commercial success (97). The avail-
ability and high throughput of PPARγ LBD-based ligand binding 
assays and chimeric PPARγ–GAL4 reporter gene/transactivation 
assays enabled the generation of many highly potent, structurally 
diverse, selective PPARγ full and partial agonists. Despite this, 
since the launch of pioglitazone and rosiglitazone, no new selec-
tive PPARγ agonists have survived clinical testing and remain on 
the market, mainly due to preclinical and clinical safety issues 
(98–101). The central role of PPARγ in adipose biology has, how-
ever, not diminished due to these failures and PPARγ remains an 
attractive but challenging drug target.

The lack of translation between in  vitro receptor binding 
and the functional (both in  vitro and in  vivo) effects of the 
compounds and inter-species differences in PPARγ biology are 
considered major obstacles in this field. This is due to a number 
of factors, including the combinatorial nature of the activation 
of the PPARγ:RXR heterodimer (102, 103), subtle differences in 
coactivator/corepressor recruitment between superficially related 
compounds (104–107), ligand effects on the extent of posttrans-
lational modifications (108, 109), and non-transcriptional effects 
of the ligands (72). This suggests that a reductionist approach to 
PPARγ agonist discovery based on the use of isolated protein 
domains and chimeric reporter gene assays is unlikely to provide 
compounds with the desired functional or clinical outcome.

Since the “traditional” approach of optimizing receptor bind-
ing and agonist potency has not borne fruit, a radical change 
in the preclinical approach to PPARγ drug discovery is needed 

in order for the functional potential (for example, browning of 
WAT) of small-molecule PPARγ activation to be realized. For 
example, the application of phenotypic screening in relevant cell 
systems [i.e. primary human cells (110)] is one approach to front-
load the functional assessment of compounds, with traditional 
in vitro assessment of PPARγ activity included in a secondary 
wave of assays. In addition, the recent widespread availability 
of omics techniques (such as RNAomics and proteomics) makes 
the preclinical identification of PPARγ agonists with a desirable 
functional profile a realistic prospect. A combination of such 
approaches avoids focus on a single receptor-dependent path-
way or mechanism and allows pleiotropy to be accounted for. 
However, whether the perceived target-related risk associated 
with PPARγ agonism is considered acceptable in proportion 
to the potential commercial viability of a safe PPARγ agonist 
remains to be seen.

BeTA-3 ADReNeRGiC ReCePTOR

Several sympathomimetic β3-AR agonists that selectively stimulate 
rodent brown and white adipocyte lipolysis were discovered from 
the mid-1980s onward (e.g., BRL-37344, CL-316,243, and CGP-
12177A) (50, 51, 111). Early optimization of these compounds was 
mostly performed in rodent tissue or cell models, as the human 
β3-AR was not cloned until 1989 (112). The compounds showed 
potent anti-obesity and anti-diabetic effects in rodent models of 
obesity and diabetes, but none of these compounds advanced 
beyond the clinical phase II due to lack of efficacy. Specifically, 
compounds optimized using rodent β3-AR did not effectively 
translate to human. Several β3-AR agonists were synthesized 
and evaluated after the cloning of human β3-AR cDNA (113). 
A summary of studies investigating the effect of β3-AR agonism 
on EE in man is given in Table 1. Note that many binding and 
adenylyl cyclase activity assays were performed using isolated 
membrane preparations, returning β3-AR binding affinities in 
the micromolar range for the compounds tested. Lower potencies 
(in the nanomolar range) have been reported for the same com-
pounds when measured in whole-cell assays (cAMP, lipolysis, or 
respiration) (52), suggesting a G-protein coupling efficiency for 
the β3-AR that is only captured in a whole-cell context.

Most early human trials of β3-AR agonists used bodyweight 
reduction as a clinical endpoint, to be achieved through increased 
EE. Data on BAT activation and metabolic parameters are scarce, 
with the exception being for the CL-316,243 study (124). In this 
study, treatment of lean healthy men for 4 weeks did not increase 
EE, but resulted in a 45% increase of insulin-mediated glucose 
disposal and a reduced 24-h respiratory quotient (24-h RQ), 
indicating enhanced fat oxidation. Intriguingly, CL-316,243 sig-
nificantly increased fasting FFA levels in parallel with improved 
insulin action. These data are in line with recently published 
improved glucose infusion rates in T2D patients after 10 days of 
mild cold exposure (43). In both cases, improved insulin action 
preceded any significant weight loss. This improved action of 
insulin may be due to partitioning of FFAs toward BAT, which 
in turn reduces the fatty acid burden on other metabolic tissues 
(see Figure 1). Indeed, improved glucose uptake was seen in the 
skeletal muscle of T2D patients after cold exposure (43).

http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org


TABLe 1 | In vitro properties of β3-adrenergic receptor agonists that have been tested in humans, and their effect on energy expenditure in man.

PHYSiCAL AND PHARMACOKiNeTiC PROPeRTieS

Compound 
name(s) and 
chemical 
structure

CL-316,243 ZD7114 ZD2079 (Talibegron) L-796568 TAK-677 (Rafabegron) Mirabegron (YM-178) 

Mw (g/mol) 466.8 (Na2 salt), 421.8 (free 
acid)

418.5 315.4 624.7 402.9 (free acid) 396.5

clogP −1.4 2.1 −0.3 5.3 0.7 1.3

Human β3 
potency/Te

EC50 1.15 μM/0.63a (114) Kact 20 nM (for ZD201651, the 
major active metabolite) (115)

Kact 191 nM/0.91a (116)b 3.6 nM/0.94a (117) EC50 0.062 nM/1.16a (118) 22 nM/0.8a (119)

Rodent β3 
potency/Te

Rat Ki 1 μM, Kact 0.71 nM/1a in 
β3 overexpressing CHO cells 
(111)

– – – 0.016 nM/1.1a (rat cAMP) –

Fold selectivity  
β3:β2:β1

1:228:96
Based on CHO data (114). 
Reported as an antagonist @ β1 
and β2 (120)

– – 1:667 (partial):1333 (partial) 1:209 (partial):1032 (partial) 1:>446 (partial):>446 (partial)

T1/2/%F 16 h/10% (human)c – – >8 h/17% (rat) – –

PHARMACODYNAMiCS

Population Healthy young lean males (124) Obese men and women with 
BMI 27–39 kg/m2 (115)

Obese men and women 
with BMI 27–39 kg/m2 
(115)

Healthy overweight to obese 
men (121)

Obese men and women, mean 
BMI 33.9 kg/m2 (122)

Healthy male subjects with 
detectable BAT (41)

Administration 1.5 g/day for 8 weeks (n = 10) 150 mg/day for 2 weeks (n = 5) 1.2 g/day for 2 weeks 
(n = 9)

375 mg/day for 28 days 
(n = 10)

0.5 mg BID for 29 days 
(n = 22)

200 mg acutely (n = 12; 
crossover study)

Placebo (n = 4) 300 mg/day for 2 weeks (n = 8)
Placebo (n = 22)

Placebo (n = 8) Placebo (n = 10) Placebo (n = 4)

exposure 30 ± 11 nM (steady-state Cmin) – – 77 ± 30 nM (steady-state 
Cmin)

24 ± 13 nM (at t = 2 h) 781 ± 184 nM (Cmax)

Fold in vitro eC50 <0.1 – – >20 >1000 >30

BAT activity – – – – – Significant increase in BAT 
glucose uptake, from 1 to 
130 mL × SUVmean × g/mL

energy 
expenditure

24-h EE after 8 weeks did not 
differ from baseline

No effect on 24 h EE Trend for stimulatory 
effect on 24-h EE (2.4%)

Mean change in 24-h EE 
upon treatment did not differ 
significantly between treated 
and placebo

Slight increase (~50 kcal/day) 
in 24-h EE at the highest dose

Increased resting metabolic 
rate by 203 ± 40 kcal/day 
(+13%; p = 0.001)

(Continued)
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Similarly to CL-316,243 treatment, chronic dosing of the β3-
AR agonists ZD7114 and ZD2079 did not significantly increase 
EE, although the latter compound showed a tendency toward a 
non-statistically significant increase of 2% (115).

Data have been reported for both acute and chronic dosing 
of β3-AR agonist L-796568 in overweight to obese men. Acutely, 
van Baak et al. (125) reported a significant increase (8%) in EE 
after 4 h for the highest dose used. However, no average increase 
was observed over the period of observation, 0–4  h. Chronic 
dosing of L-796568 for 4 weeks did not result in any significant 
change in EE (121). The authors discuss possible reasons for this 
lack of effect, e.g., declining plasma exposure levels over time, 
insufficient agonist-induced BAT proliferative capability of β3-
AR-responsive tissues in humans during chronic stimulation, 
potential downregulation of β3-AR receptors, or other functional 
feedback. We believe that the small effect on EE observed in the 
acute study is another reason.

A chronic β3-AR agonism study (using TAK-677) in obese 
humans with no observed effect on EE or diabetic parameters 
was reported by Redman et  al. (122). Whether BAT activation 
truly occurred after administration of compound was not care-
fully assessed in this study, which makes data interpretation 
challenging.

In contrast to the above-mentioned β3-AR agonism studies, 
Cypess et al. recently reported a ~13% increase in resting meta-
bolic rate (RMR) upon acute treatment with high doses of β3-AR 
agonist mirabegron (41). In this study, healthy young male sub-
jects with detectable BAT were selected in order to provide proof 
of concept (PoC) for β3-AR agonist-mediated BAT activation. 
Importantly, it was found that BAT metabolic activity was a sig-
nificant predictor of the changes in RMR. This study also reports 
a weak correlation between cold- and drug-induced detectable 
BAT activities. Generally, such data from the same individuals 
are important to help put the large quantity of cold-induced BAT 
activation data into a drug-discovery context. It remains to be 
investigated if the reported energy-expenditure effect is sustained 
upon chronic dosing and if the efficacy of mirabegron will persist 
in females and other patient subpopulations, such as those with 
different ages and BMIs.

The failure of β3-AR agonists to show clinical effects on weight 
loss decreased interest in the mechanism as a means of treating 
the metabolic syndrome. However, the recent rediscovery of BAT 
in adult humans as well as the demonstration of functional activa-
tion of BAT by a β3-AR agonist may lead to a resurgent interest 
in β3-AR agonists for the treatment of metabolic disorders. The 
observation that improved insulin action preceded any sig-
nificant weight loss upon β3-AR agonist treatment is particularly 
encouraging.

Clearly, important questions remain unanswered with respect 
to the role of the β3-AR and the clinical profile of β3-AR agonists. 
In order to make significant progress in β3-AR drug discovery, the 
lack of translation from rodent to human (i.e., receptor expres-
sion and functional differences) and from in vitro to in vivo for 
the human setting needs to be resolved. The clinically assessed 
β3-AR agonists exhibit structural and physicochemical property 
diversity; however, clinical plasma exposures relative to EC50 are 
similar for the chronic and acute studies (Table 1), and activation 
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of BAT would therefore be expected in the chronic studies. The 
lack of effect on EE observed in the chronic studies may either 
be due to not measuring a mechanism-relevant clinical endpoint 
or that the patients recruited lacked sufficient BAT to lead to an 
effect on overall EE. The activation of pre-existing BAT by β3-AR 
agonists may require a personalized healthcare approach, unless 
combined with a compound or mechanism to expand the BAT 
depot.

Finally, cardiovascular side effects have been associated 
with β3-AR agonist treatment, usually attributed to insufficient 
selectivity toward the β1- and β2-ARs. However, the in vitro func-
tional activity of many of the clinical compounds assessed does 
not explain the increase in heart rate observed – several of the 
compounds are functional β1-AR antagonists (β1-AR blockers), 
and as such could be expected to have the opposite effect to that 
clinically observed. The complex nature of AR biology needs to 
be further investigated if this mechanism is to be reconsidered as 
a means of activating BAT.

FiBROBLAST GROwTH FACTOR 21

Fibroblast growth factor 21 (FGF21) is a member of the endo-
crine FGF 19/21/23 family. FGF21 protein is expressed in liver, 
pancreas, and adipose tissue and is regulated by fasting, ketogenic 
diet, low protein diet, PPARγ, and PPARα activation as well as 
glucagon action (126). It acts through binding to a cell-surface 
receptor complex composed of conventional FGF receptors 
(FGFR1c/2c/3c) and the co-factor β-Klotho, leading to activa-
tion of FGF receptor substrate 2α and ERK1/2 phosphorylation. 
While FGF receptors are ubiquitously expressed, β-Klotho 
expression is restricted to a few tissues, including BAT, WAT, and 
liver (127, 128), which are the main sites of FGF21 action. When 
administered pharmacologically, FGF21 enhances EE and insulin 
sensitivity, reduces bodyweight, glucose, and lipids, and thus has 
the potential to be used for treatment of the metabolic syndrome 
via multiple mechanisms (129–131).

Functional enhancement of existing BAT and recruitment of 
beige adipocytes have been hypothesized to be the mechanism 
behind the EE increase, bodyweight loss, and improved glucose 
and lipid homeostasis induced by FGF21. FGF21 expression 
is increased in BAT upon cold challenge (132, 133). Adipose-
derived FGF21 acts in an autocrine/paracrine manner to increase 
expression of UCP1 and other thermogenic genes, such as PGC1α, 
PRDM16, BMP8b, and DIO2 in iBAT and iWAT (134, 135). In 
neonates, FGF21 expression in liver is increased by suckling, 
which occurs via activation of PPARα, leading to induced BAT 
thermogenesis (136).

Attempts have been made to directly assess the contribu-
tion of BAT and beige adipocytes to FGF21-mediated effects. 
Surgical resection of iBAT in two different mouse models 
showed that FGF21-mediated EE increase and bodyweight 
reduction were retained (137, 138). However, one of the studies 
showed that several beige adipocyte markers, including PPARγ, 
PRDM16, PGC1α, and CIDEA tended toward upregulation in 
subcutaneous adipose tissue, and perigonadal adipose weight 
also was reduced (138). The authors propose that residual 
BAT and beige adipocytes may have compensated for the loss 

of iBAT. Recently, the role of UCP1 in mediating the phar-
macological effects of FGF21 was assessed by treating UCP1 
knockout (UCP1 KO) mice with either recombinant FGF21 or 
FGF21 fused with fragment crystallizable region (Fc-FGF21) 
(139, 140). Surprisingly, several FGF21-mediated effects were 
largely retained in the absence of UCP1. Again, compensatory 
mechanisms seem to be activated in UCP1 KO mice treated 
with recombinant FGF21. In FGF21-treated UCP1 KO mice, 
reduced food intake offset the decrease in EE and resulted in 
a similar bodyweight reduction to that observed in FGF21-
treated wild-type mice. In addition, genes regulating fatty acid 
metabolism were upregulated in liver and epididymal adipose 
tissue, suggesting that FGF21 recruits UCP1-independent 
pathways in these tissues to compensate for the lack of UCP1. 
An intriguing observation was a two- to threefold increase in 
FGF21 secretion in iBAT when UCP1 KO mice were challenged 
by cold, suggesting that FGF21 may be one of the factors that 
recruit alternative thermogenic mechanisms when iBAT/UCP1 
fails to generate heat. It should be noted that many previous 
publications have showed remodeling of the WAT in UCP1 KO 
mice, and that alternative thermogenic mechanisms have been 
discussed (141, 142).

In spite of the attractive metabolic effects of FGF21, devel-
opment of FGF21-based therapeutics has encountered several 
technical challenges, including short in vivo half-life and poor 
biophysical properties of FGF21 protein (e.g., it is prone to aggre-
gation). To date, three different analogs of FGF21 have advanced  
to concept testing in human: (130, 143, 144) (i) LY2405319 (an 
aggregation-resistant FGF21 analog), (ii) PF-05231023 (FGF21 
linked to a Fab fragment of a scaffold antibody), and (iii) ARX-
618 (PEGylated FGF21). For both LY2405319 and PF-05231023, 
the effects on TG (close to 50% reduction in 28 days), LDL cho-
lesterol, and HDL cholesterol were substantial and bodyweight 
reduction was significant. However, the failure of FGF21 analogs 
to achieve clinically meaningful glucose-lowering effects was 
unexpected, and the mechanism behind this remains to be 
understood. Recently, Genentech reported a bispecific monoclo-
nal antibody agonist that binds to both FGFR1c and β-Klotho, 
with sustained effects on NST, EE, and bodyweight over a 35-day 
period after a single administration to diet-induced obese mice 
(145). The effects on glucose and lipids were similar to those 
observed after administration of recombinant FGF21, and 
mostly attributed to peripheral FGF21 action as CNS exposure 
of the antibody was reported to be minimal. Together, these 
data further support the importance of BAT function in FGF21 
action. As for the β3-AR agonist story, it may be important for 
future clinical concept testing to assess BAT recruitment/activa-
tion in order to understand if sufficiently high FGF21 levels have 
been achieved in patients. In addition, it is critical to constantly 
monitor potential safety concerns of this treatment principle in 
all studies, including bone density, growth hormone resistance, 
and female fertility.

PeRSPeCTiveS

The understanding of BAT physiology has increased rapidly in 
recent years. Data generated in both rodents and humans in 
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