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ABSTRACT
Food web and gene regulatory networks (GRNs) are large biological networks, both of which can be
analyzed using theMay–Wigner theory. According to the theory, networks as large as mammalian GRNs
would require dedicated gene products for stabilization. We propose that microRNAs (miRNAs) are those
products. More than 30% of genes are repressed by miRNAs, but most repressions are too weak to have a
phenotypic consequence.The theory shows that (i) weak repressions cumulatively enhance the stability of
GRNs, and (ii) broad and weak repressions confer greater stability than a few strong ones. Hence, the
diffuse actions of miRNAs in mammalian cells appear to function mainly in stabilizing GRNs.The
postulated link between mRNA repression and GRN stability can be seen in a different light in yeast, which
do not have miRNAs. Yeast cells rely on non-specific RNA nucleases to strongly degrade mRNAs for GRN
stability.The strategy is suited to GRNs of small and rapidly dividing yeast cells, but not the larger
mammalian cells. In conclusion, the May–Wigner theory, supplanting the analysis of small motifs, provides
a mathematical solution to GRN stability, thus linking miRNAs explicitly to ‘developmental canalization’.

Keywords:microRNAs, network stability, canalization, May–Wigner theory, systems biology, RNA
crosstalk

INTRODUCTION
Large networks characterize many biological sys-
tems. Of particular interest to ecologists and evo-
lutionists are food webs and gene regulatory net-
works (GRNs). These large and highly connected
networks are intrinsically unstable according to the
May–Wigner theory [1]. Stability is defined as the
speed at which every node would return to the equi-
librium after perturbation. Hence, in large networks,
the probability that all nodes would return to the
equilibrium is diminished. The issue of stability has
been extensively analyzed for food webs [1–3] but
the underlying mathematics of stabilization should
be common among networks.

Stability of GRNs is an especially challenging
problem for several reasons. First, GRNs are
typically large with thousands of nodes, each
representing the abundance of anmRNA. Size alone
may demand that GRNs evolve mechanisms for

stabilization. Second, there are as many types of
GRNs as there are tissues in multicellular organ-
isms. The stabilizing mechanism thus needs to be
general. Third, unlike food webs that may tolerate
substantial fluctuations in node values (i.e. species
abundance), GRNs can only function within a small
range of transcript abundance as transcriptome
data show. Fourth, and perhaps most importantly,
GRN stability may underlie the ‘developmental
canalization’ proposed byWaddington [4].

Canalization is a metaphor for water traveling
along canals [4]. Ever perturbed constantly, water
always returns to the canal and flows along a pre-
determined path. There are two types of motion:
(i) flowing along the path and (ii) returning to the
canal quickly after perturbation. These two motions
occur in very different timescales and canalization
(in the narrow sense) refers to the second motion.
GRN canalization means the quick return to the
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developmental path after the network is perturbed,
for example, by cell divisions.

Although ‘canalized development’ originally re-
ferred to phenotypic stability, every level of net-
work subsumed under the phenotype—including
the metabolome, proteome and transcriptome—
should be stable as well. A stable GRN, measured
by the transcriptome, is hencenecessary for develop-
mental canalization and could be the first step in the
process. For GRN stability, microRNAs (miRNAs)
have been postulated to be the canalizing molecules
[4–9].These are a very large class of small regulatory
RNAs that degrade mRNAs and repress translation,
the former being particularly important [10].

While substantial literature have implicated a role
for miRNAs in canalization [11–14], a rigorous the-
ory that connects known miRNA actions to GRN
stability is still absent. Many analyses have been car-
ried out on small motifs of 2–5 nodes [5,9], but mo-
tifs cannot be easily expanded into a network. For
example, adding only one extra node to a coherent
motif can make it incoherent, and vice versa [7].
An alternative approach is the large RNA:RNA net-
works [15,16], which at present cannot address the
stability issue. In this study, we provide a mathemat-
ical solution to GRN stability by applying the May–
Wigner theory to the empirical data on miRNA
activities.

RESULTS
Diffuse actions of miRNAs
For regulatory genes, miRNAs seem paradoxical for
two reasons: (i) exclusive downregulation of their
direct targets, and (ii) broad and weak repression of
hundreds of target genes. In the conventional view,
miRNAs repress targets in order to effect phenotypic
changes, but that view is contradicted by their pe-
culiar properties presented above [17]. By analyz-
ingmultiplemiRNA targets andphenotypes concur-
rently, Liufu et al. [18] recently concluded that the
role of miRNAs is indeed in minimizing phenotypic
fluctuation (i.e. canalization) rather than effecting
directional changes, as has been heatedly debated
[17,19,20].

We first present the defining characteristics of
miRNAs, i.e. weak and broad repression of mRNAs.
Unlike previous analyses [21–29], this study pays
special attention to weak interactions, which will
later be subjected to mathematical interpretation.

Number of targets
We examined 178 conserved miRNAs in human
cells for their target sites following the common

protocol (Fig. 1A; seeMethods). Random seedswith
the same CG content served as the control. If all
potential targets are counted, the median number
of target genes would be 694, >60% higher than
the control. The numbers for the moderately and
highly conserved targets were 473 and 114 (64 and
185% higher than the control), respectively. While
highly conserved target sites are generally consid-
ered more reliable, Xu et al. [30] have shown that
weakly conserved targets are also evolutionarily sig-
nificant. Hence, the number of targets per human
miRNA is likely to be between 100 and 500 [31–33]
(Fig. S1-A, B).

The large number of target sites is even more
puzzling for lowly expressed miRNAs. Given their
limited repression capacity, these miRNAs might
be expected to have far fewer targets. Figure 1B
shows the prediction to be qualitatively true. How-
ever, the slope of the regression is extremely mild
with a decrease of one-third of the target num-
ber when the expression decreases by >1000-fold
(Fig. S1-C, D). Hence, if only strong repres-
sions are functional, then more than one-half of
the miRNAs expressed in any tissue would be
non-functional.

Strength of repression
With hundreds of targets, each miRNA is expected
to exert weak effects on most targets. A typical ex-
ample is given in Fig. 1C, which is based on six tran-
scriptome data sets from the knockout line of hsa-
29a miRNA (Fig. S2). The fold changes of target
genes are symmetrically distributed around a peak
that corresponds to ∼3% repression. Note that the
peak is not at 0%, as is the case for non-targets. Even
though hsa-29a is moderately to highly expressed,
the degradation of its targets is no more than 5%,
on average.

Weak repression can still result in noise as long
as the weak targeting collectively does not take up
much of the total capacities of mRNAs. Therefore,
we measured the fraction of each miRNA’s capacity
that was used in weak repression. The distribution
of effort (DOE) sums up all repressions of a certain
strength, weighted by the expression level of the
target gene. Figure 1D shows thatmiRNAs usemost
of their repression capacity to exert small influences
on a large number of target genes. Indeed, only
∼10% of the total repression capacity is used
for the stronger repression (black bar, Fig. 1D).
If we consider miRNAs that are themselves lowly
expressed, DOE across all miRNAs would be
even more biased toward weak repressions. We
next analyzed weak repressions in the context of
the GRN.
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Figure 1. Predicted target number in relation to the observed derepression by miRNA knockout. (A) Number of miRNA target genes predicted by
TargetScan (grey bars) vs. control (white bars) based on the shuffled seeds of the same miRNAs. The comparison is done at three levels of evolutionary
conservation (see also Figure S1-A, B). (B) Correlation between the expression level of 109 miRNA seeds and the predicted number of moderately
conserved targets. The correlation is positive but the slope is very small (see text and also Figure S1C, D). (C) Distribution of fold change in the
expression of target genes in miRNA (hsp-29a) knockout lines between experiments and controls (red lines) and between controls (blue lines). The
median increase upon miRNA knockout is<10%. (See also Figure S2). (D) DOE on target repression by each of 6 miRNAs. These efforts are categorized
into four levels depending on the effect of repression, ranging from <10% to >30%. DOE sums up the repressions across all target genes, weighted
by their expression level. Strong repression of >30% generally takes up ∼10% of a miRNA’s repression capacity.

GRN stability in relation to expression
repression
May pointed out that large interacting systems are
difficult to stabilize, contradicting the belief that
large systems are inherently stable [1]. The theory
may be particularly suited to GRNs because cell
functions depend on transcriptome stability [34],
and losing even a small number of genes can have
severe consequences [35,36]. Furthermore, GRNs
are periodically perturbed by cell divisions and a
speedy return to equilibrium seems vital to the
cells. Because the stability in transcript abundance

has been analyzed mainly at the level of small mo-
tifs [5,9], we expanded the analysis to the network
level.

In a GRN with N genes, let xi(t) denote the
mRNA concentration of gene i at time t. When
the system is at an equilibrium, dxi

d t = 0 for all i’s.
Here, we approximated small perturbations near the
equilibrium by a linear system (although the system
could be non-linear globally):

dxi
d t

= Bi − Di xi (1 ≤ i ≤ N) (1)
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where Bi = bi + Si , with bi being the hypothetical
transcription rate if influences of all other genes on
gene i cancel out. Also:

Si =
N∑

j=1, j �=i

ai j x j (2)

where Si is the aggregate effects of other genes on
gene i, with aij being the strength of transcriptional
regulation by specific protein–DNA binding of gene
j on gene i.Di is the decay rate of the mRNA of gene
i, which would include possible autoregulation.

Following the approach of May [1] and Allesina
et al. [2] for studying species interaction net-
work (SIN) stability, we designated the interactions
among genes by a matrix,M. The diagonal element,
Mii, represents the effect of xi on itself and the off-
diagonal element, Mij, is the regulation strength of
gene j on gene i.M is the Jacobian matrix:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂F1
∂x1 (X)

∂F1
∂x2 (X)

∂F1
∂xn (X)

· · ·
∂F2
∂x1 (X)

∂F2
∂x2 (X)

∂F2
∂xn (X)

...
. . .

...
∂Fn
∂x1 (X)

∂Fn
∂x2 (X) · · · ∂Fn

∂xn (X)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

where:

Fi (x1, x2, . . . xn) = Fi (X ) = dxi
d t

= bi + Si (X) − Di xi (1 ≤ i ≤ N) (4)

Given(3) and(4), the elementsof thematrix are:

Mii = −Di and Mi j = ai j (i �= j ). (5)

We note that the dynamics of change in xi are
linearized near equilibrium. Therefore, equations
(3–7) are ‘local analysis’ as they approximate the
true dynamics only in the small vicinity near equilib-
rium. The actual equilibrium is usually determined
by empirical means, such as RNA sequencing. We
first considered a network with only one gene (N=
1) where the stability condition is:

∂F1

∂x1
(X) = − D1 < 0. (6)

In other words, the slope of F1 at equilibrium is
negative. In this system of N = 1, the local analysis
approximates the equilibrium as:

x1 = b1
D1

. (7)

By increasing D1 and b1 in proportion, this sys-
tem could gain stability without changing the equi-
librium and, indeed, the transcription and degrada-
tion have been shown to coevolve [37,38].

When N > 1, the stability of the system is mea-
sured in N orthogonal directions. The equivalent of
N negative slopes pertaining to the stability is ex-
pressed as N negative eigenvalues, which is satis-
fied if and only if the leading eigenvalue of the ma-
trix M is negative (‘eigenvalue’ in this paper only
refer to the real part of eigenvalue, ‘leading eigen-
value’ is the eigenvalue have largest real part). The
leading eigenvalue can be approximated as R – D
[2,39]. R, a function of the interaction strength (i.e.
the off-diagonal elements), is the leading eigenvalue
of thematrixM0, which has the same off-diagonal el-
ements as M but all diagonal elements are 0. D =∑N

i=1 Di
N (=

∑N
i=1 Mii
N ) is the average degradation

rate.Therefore, the stability condition is:

R − D < 0 (8)

While R and D are usually obtained numerically,
an analytical approximation can be derived from
equation 1 of Tang et al. [3] when applied to actual
transcription data of yeast and mammals (see later
sections). Let the connectivity r be the proportion of
non-zeroMijs (i �= j ), and letμ andσ 2 be themean
and variance of the non-zero off-diagonal elements.
When u ≈ 0 or< 0, and E(Mi j × Mji ) ≈ 0,

R ≈ σ
√
r N. (9)

Therefore, the stability condition is approximated
by:

σ
√
r N − D < 0. (10)

Equation (10) is suggestive of the roles of
miRNAs, which increase D by catalytically degrad-
ing mRNAs [10].The degradation can be expressed
in two parts:

−Di = −(di + mi ) (11)

where di is the basal decay constant and mi is the
total effect of all miRNAs on the decay of gene i.
Clearly, a larger Di would make the system more
stable.

Properties and predictions of the theory
germane to miRNA functions
Properties
We now briefly emphasize some key features of the
model. First, stability in this study means that the
entire system would return to exactly the same
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Figure 2. GRN stability in relation to the spread of total miRNA repression in the GRN. (A) The y-axis is the probability of GRN stability, determined by
the proportion of cases yielding a negative leading eigenvalue in 200 simulations. The x-axis is the variation in interaction strength presented as the
(relative) standard deviation ofMij. The repression is distributed over 1–100% of the entire GRN. While the total repression is constant, the probability
of stability increases when the effect is spread more broadly over the network. The increase is most rapid from 1–25% and slows down gradually.
(B) Distributions of eigenvalues as miRNA targeting becomes more diffuse. If the repression is concentrated on a few genes, only a small fraction of
eigenvalues is affected, shown by the outliers on the left. Neither the bulk of the distribution nor the leading eigenvalue is noticeably changed. Only
when the targeting is sufficiently broad would the entire distribution shift to the left, thus dragging along the leading eigenvalue.

equilibrium after small perturbations. Hence, the
timescale is small for GRNs, in at most tens of
minutes. At a larger timescale, the stability does
not mean stasis as the equilibrium, x (x = b/D)
may gradually change. For example, through stages
of development, b may change while D keeps the
GRN close to the equilibrium. Note that stability
and change (either evolution or development) are
not antithetical. Second, a stable GRN is necessary
but not sufficient for biological stability. Both the
proteome and metabolome downstream may have
to be stabilized as well. Third, in the theory, the
diagonal elements are affected by miRNAs but
miRNAs themselves are not in the network, as
explained below.

In mammalian cells, the total number of miRNA
molecules has been reported to be in the same or-
der of magnitude as the number of mRNAs [40,41].
Therefore, the abundance of miRNA per locus is >

100-fold greater than that of an averagemRNAgene.
Furthermore, the turnover of miRNAs occurs much
more slowly than that of mRNAs. The half-life of

miRNAs inmammalian cells averages about 120 h in
comparison with that of mRNAs at 6–8 h [42,43].
The estimates on miRNA half-lives vary partly be-
causemiRNAprocessingusually yields twoproducts
[44] and the minor product, so-called miR∗, may
be quickly degraded [45,46]. The relevant popula-
tion of miRs in this study is the major product of the
highly expressed miRNAs.The abundance and slow
turnover of miRNAs make them nearly unchanged
in the time frame of local perturbation. These fea-
tures alsomake themuniquely suited to be the canal-
izing molecules.

Predictions
Thetheorymakes several predictions, which provide
a unified perspective on a suite ofmiRNAproperties
that have only been explained individually. One key
property in fact has never been explained.

Broad distribution of the degradation effect of miRNAs:
how broad? The theory shows that the average
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Figure 3. Number of miRNA target sites on genes with different levels of expression, ranging from high to low from left to right in 10 different groups,
each containing 10% of all genes. The left sets of panels are analyses of all targets of 109 miRNA seeds, and the right sets of panels are those of
conserved targets. Analyses of two different levels of evolutionary conservation are shown but the pattern is observable in all (see Supplementary
Data). For each level, six tissues are analyzed. Note that very highly expressed genes appear to avoid having a very large number of target sites.
(See also Figure S3).

degradation, D =
∑N

i=1 Di
N , or the total degrada-

tion, DT = D × N, is a main determinant of GRN
stability. This property does not suggest how DT
should be distributed. Inmetazoan cells, the total re-
pression effect is distributed among many miRNAs
and the effect of each miRNA is further distributed
over hundreds of target genes. Qualitatively, the to-
tal repression of miRNAs is diffusive over the entire
GRN.

Here, we provide a quantitative evaluation of var-
ious distributions of miRNA targeting while keep-
ing their aggregate effect constant, at 10% of the
total (i.e.

∑N
i=1 mi = 10%

∑N
i=1 Di ). Figure 2A

shows that, given the same network complexity, the
GRN is more likely to be stable when miRNA tar-
geting becomes more diffuse (i.e. targeting more
genes with less intensity; see Methods). When only
1% of the mRNAs are targeted for repression by all
miRNAs, the probability of GRN stability is only
slightly higher than a GRN without any repression.
On the other hand, when the repression already cov-
ers 25% of all transcripts, further spread would have
only incremental benefits on the stability.

An intuitive explanation is illustrated in Fig. 2B.
When miRNAs target a small percentage of genes,
only a few eigenvalues are affected and shifted very
far to the negative side. The leading eigenvalue is
hardly affected, hence resulting in only marginal im-
provement in GRN stability. The more diffuse the

targeting, the more eigenvalues are shifted to the
left, eventually dragging the leading value down. Es-
timates of miRNA targeting fall in the range of 25–
60%of allmRNAs in human cells [31,32], in reason-
able accordwith the theoretical prediction of>25%.
The next section will explore whether targeting is
randomly distributed among all mRNAs.

Avoidance of very highly expressed mRNAs. Another as-
pect is the expression levels ofmiRNA targets. In this
theory,miRNAs are expected to avoid targeting very
highly expressed genes. Given a fixed repression ca-
pacity, targeting the most highly expressed genes is
a wasteful strategy for two reasons. First, highly ex-
pressed genes may act as ‘sponges’ [47], soaking up
many miRNAs and leaving few available for other
less highly expressed targets. Second, high abun-
dance transcripts should be less affected by stochas-
tic fluctuations; for example, after cell divisions.This
prediction is supported by empirical data. Figure 3
is a typical example in which relatively few highly
expressed genes have a high number of target sites
(Fig. S3).

Preference for transcription factor targeting. Given the
collective targeting by miRNAs, almost all classes
of genes are their targets. In the entire GRN,
transcription factors (TFs) are the well-known class
of targets preferred by miRNAs and there are many
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explanations [48–51]. Here, the GRN theory offers
a newperspective basedon thehierarchical structure
within the network. Since TFs constitute a higher
level and highly connected sub-network, the the-
ory would predict TFs to be preferentially targeted
by miRNAs. A detailed presentation is given in the
Supplemental text where various explanations are
compared.

Comparisons of GRNs with and without
miRNAs
An alternative approach to the function of
miRNAs is to compare GRNs with and with-
out miRNAs. We used human GRNs for the former
and yeast GRNs for the latter. While the theory of
network stability (Eqs. 8–10) requires sufficient
repressions of mRNAs, there are other solutions
besides the actions of miRNAs. In fact, repressing
mRNAs non-specifically via RNases (as yeast cells
do [52]) could be a more powerful means to confer
GRN stability. The comparison may reveal different
strategies of GRN stabilization and shed further
light on the functionality of miRNAs. In comparing
human and yeast GRNs, we estimated the diagonal
and off-diagonal elements of the interaction ma-
trix M separately, and then put them together to
compare their stability.

Degradation (the diagonal elements)
The degradation rates of transcripts in many GRNs
have been measured, usually by turning off thetran-
scription and monitoring the decay of mRNAs
[53,54]. It is known that the mean half-life for
yeast mRNAs is ∼15 min [55], whereas it is 4–
8 h for human mRNAs [43]. Figure 4A and B
show that the median decay constant (measured
in molecules/hour) for yeast mRNAs is 17.4 times
larger than that for human mRNAs. Interestingly,
when calibrated against their respective cell dou-
bling times of 1.5 and 24 h, the degradation rates
are roughly equal (6.87 vs. 6.33) for yeast and
human transcription factors (TFs, red shades of
Fig. 4A and B).

Onemight expect the variation in degradation to
bedrivenbynatural selection tofine-tune the expres-
sion level, xi. The regression of xi over Di is indeed
significantly negative for yeast and human genes, but
the correlation coefficient is small (R2 = 0.364 and
0.101 for yeast and human, respectively; Fig. 4C and
D). Importantly, this is not a simple inverse relation-
ship, as xi spans three orders of magnitude and Di
varies by only one order (Fig. 4C andD). Evenwhen
weexclude the tails of thedistributions (5%oneither
end), xi still varies 10-fold more thanDi.

Therefore, the variation in expression is largely
due to the variation in synthesis rather than degrada-
tion (see Supplement on Di variation). If the many
cellular components, including miRNAs and RNA-
binding proteins, that function in mRNA degrada-
tion do not set the level of gene expression, the ques-
tion is then ‘what rolesmaymRNAdegradation play
in the GRN?’.

Strength of gene interaction (the off-diagonal
elements)
Figure 4A and B show that D is much larger in
the yeast GRN than in human. Since the smaller
R – D is, the greater the stability becomes (Eq. 8),
yeast GRN could be much more stable than human
GRN. Alternatively, yeast GRN might have a corre-
pondingly largerR (Eq. 9) and the twoGRNswould
be comparably stable. We hence analyzed the mea-
surements ofMij based on experiments that delete or
suppress the expression of one TF at a time [56,57].
These two databases are used for both biological
and technical reasons, and they are also the largest
publicly accessible databases. Nevertheless, the con-
clusion does not depend on the actual databases
used. The TF sub-network is most responsible for
the stability of the entire GRN, given its higher po-
sition within the hierarchy (see below). The effects
ofTFdeletion/suppression are assayedby transcript
analysis (seeMethods and the Supplemental text for
further explanations).

We now describe the construction of the yeast
GRN. In order to determine the proper size of the
network, we ranked genes by their expression in de-
scending order.The set of themost highly expressed
TFs with N = 356 collectively accounted for 99%
of total mRNAs. N = 356 is the size of the yeast
GRN. The procedures for estimating the regulation
strength have been widely reported. Several were
used here [56,57] (seeMethods).

The distribution of the estimated regulation
strength is given in Fig. 4E and its inset. Among all
interactions, 4234 are significant with P < 0.001,
yielding a connectivity of r= 0.076. Figure 4E shows
the significant regulations with red bars, which are
approximated by a normal distribution. The non-
significant regulations are set to 0. The normal dis-
tribution containing all significant interactions is
shown relative to the entire set in the inset. In
summary, positive:negative regulation is evenly split
with a 0.504:0.496 ratio.Themean (μ) and standard
deviation (σ ) are 0.0144 and 0.432 (see legends).
The mean and standard deviation of the absolute
value of the interaction strength (|Mij|) are, respec-
tively, 0.379 and0.207.Wenote that, inorder to con-
struct the GRN, we estimate the mean, variance and
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Figure 4. Measurements of degradation and interaction in GRNs. (A, B) Density plot of Di (mRNA decay constant). TFs
(shaded in red) have higher degradation rates than the rest of the transcriptome (blue). The rates shown are calibrated by
the respective cell cycle time, by which the two systems are comparable in degradation. In actual time, yeast mRNAs are
degraded 17 times faster than human mRNAs. (C, D) The relationship between the expression level of mRNAs and the decay
constant. The y-axis spans three orders of magnitude while the x-axis spans only one order. Hence, the expression level of
genes is only marginally affected by the degradation constant. The dotted lines mark 5% and 95% of the distribution. In this
restricted range, Y also varies more than X by 10 fold. (E, F) Distribution of the interaction strength between genes in yeast
and human GRN. The strength is the change in the abundance of mRNA of gene i upon the knockout (yeast) or knockdown
(human) of gene j. Significant changes (P < 0.001) are marked in red and approximated by a normal distribution marked by
the blue line. The inset displays this portion of significantly changed genes relative to all genes.
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Mij

Figure 5. The interaction matrix (M) and its eigenvalues. (A) A random 50× 50 block of the interaction matrix,M, is shown for
the yeast and human GRNs. Off-diagonal elements that are significantly positive or negative (see Fig. 4E and F) are indicated
by a color of the heatmap. Diagonal elements are not shown (marked by the dashed line). Note that the yeast GRN is slightly
denser than the human GRN. (B) Distribution of the eigenvalues of GRNs, which are complex numbers with real and imaginary
parts. The GRN is constructed with the parameters obtained from the measurements of Fig. 4, with the off-diagonal elements
following a normal distribution (Fig. 4E and F) and the diagonals set to zero. Two different network structures (random network
and power-law) are modeled but the outputs are similar. The leading eigenvalue, marked by a solid vertical line, has a value
of R (see equations (8) and (10)). The GRN stability requires that R–D< 0.

distribution of Mij. The identities of specific nodes
that are connected are not crucial in determining the
identify. This aspect of GRN in relation to miRNA
function will be discussed.

In the human GRN, the corresponding Mij dis-
tribution is shown in Fig. 4F where N = 746 and
r = 0.031. The positive:negative split is 0.53:0.47,
μ=–0.0322 andσ =0.244.Themeanand standard
deviation of |Mij| are 0.195 and 0.151 (see Meth-
ods). A presentation of a small portion (50× 50) of
each of the twoGRNs is shown in Fig. 5A.The com-
parison visually portrays the difference in connec-
tivity between human and yeast GRNs (r = 0.031
vs. r = 0.076) with the latter being denser. There-
fore, while the human GRN is larger than that of

yeast (N = 746 vs. N = 356), the number of con-
nections per node, N2r

N , is very similar with Nr =
23.1 vs. 27.1.The effective sizes [58] are hence simi-
lar between the two GRNs.The interaction strength
in the human network appears weaker, but only
mildly so.

In both networks, significant regulations are
not randomly distributed among nodes as a small
fraction of nodes are disproportionately more con-
nected than the rest [59,60]. Figure S4 presents the
distributionof in-degree connections, or thenumber
of significant regulations going toward a node as re-
quired in (2). The observed distribution is closer to
the power-law than to random distribution, corrob-
orating previous analyses [59,60].



RESEARCH ARTICLE Chen et al. 1185

GRN stability in yeast vs. human: joint effects
of diagonal and off-diagonal elements
With the off-diagonal Mij values, the eigenvalues of
thematrixM0 can be determined as shown in Fig. 5B
for yeast (black dots) and human (red dots) GRNs.
Note that the diagonal elements ofM0 are set to 0, in
comparison withM of (3). Marked by a vertical line
in Fig. 5B, R roughly corresponds to the ‘radius’ of
the eigenvaluedistribution.The twopanels ofFig. 5B
also show that the eigenvalue distributions are not
noticeably changed by the network structure (ran-
dom vs. power-law interactions).

The R values in yeast and human GRNs differ
very slightly (2.2 vs. 1.8 in Fig. 5B) over a wide range
of cut-offs used in the estimation. Given that R is
similar and D is 15 times larger in yeast, R – D is
muchmore negative in yeast than in human. In other
words, the yeast GRN is much more stable than the
human GRN; thus, when perturbed, the yeast GRN
should be able to return to equilibrium much more
rapidly. Interestingly, yeast cells can divide 15 times
faster than human cells (1.5 h vs. 24 h) and, hence,
would be perturbed more frequently.

DISCUSSION
Comparative strategies of canalization
We applied the May–Wigner theory to two very
different GRNs, one with and the other without
miRNAs. The yeast GRN may be able to use a sim-
pler strategy for GRN stabilization because unicel-
lular organisms do not have different tissues with
different cellular properties. Furthermore, because a
typical haploid yeast cell is only 1% as large as an
average-sized human cell [61,62], the transcription
rate per unit volume can be much higher in yeast
than in human cells. For these reasons, the yeast
GRN may be able to have non-specific degradation
of transcripts that is as rapid as transcription can
keep up. This simple strategy would be neither fea-
sible nor necessary for human GRNs. In metazoans,
GRNs may need to adjust the strategy of stabiliza-
tion in different cell types. Their larger cell volume
also demands far more transcripts; thus, a high rate
of mRNA degradation may stress the supply to a
much larger degree. A suitable strategy formammals
would be to degrade mRNAs more selectively and
modestly, andmiRNAsmight have evolved for these
reasons.

Canalization by miRNAs in metazoans
The pervasive weak action of miRNAs has been a
contentious issue, giving rise to the view that most
targets are biologically irrelevant [17,18,44,63–67].
Since the sum of weak repressions accounts for

>90% of the total activities of miRNAs, it is diffi-
cult to reconcile this view with a simple calculation.
Instead, the May–Wigner theory suggests that weak
repressions can cumulatively contribute toGRNsta-
bility [17]. Furthermore, themorediffuse the repres-
sion effect, the more stable the network.

In animals, miRNAs may be the true system-
level regulators. It is their wiring pattern, rather
than specific links between genes, that is germane
to their function. Importantly, by stabilizing GRNs,
miRNAs would stabilize the downstream pheno-
type, albeit indirectly. These molecules are hence
the likely agents of developmental canalization pro-
posed by Waddington >60 years ago [7,8,68–70].
A recent study [18] found that miRNAs often con-
trol the same phenotypes incoherently throughmul-
tiple target genes. Incoherent control loops are usu-
ally associated with stasis rather than change [11–
14]. Finally, the contrast between the diffuse ac-
tions of miRNAs in animals and the more concen-
trated repressions in plants [71,72] raises interest-
ing questions about the divergence between plants
and animals in relation to the ancestral functions of
miRNAs.

Caveats - The theory presented here is a sharp
break from the conventional views on miRNA func-
tionality.Naturally, caveats need tobeheeded. In the
first section of the Supplement, most common ob-
jections, as well as our rebuttals, are given.

METHODS
Number of targets
Target sites of 178 conserved miRNA’s from eight
closely related species were predicted in the human
genome by seed matching using TargetScan (tar-
getscan.org). Seed matches better than 7mer were
considered target sites.The associated random seeds
with the same CG content serve as the control. Tar-
get sites are stratified by conservation into three lev-
els: all target sites, moderately conserved target sites
and strongly conserved target sites (Table S2).

Similar analyses were applied to 94 conserved
miRNAs in fly and 167 conserved miRNAs in
mouse. Conserved miRNA family lists and untrans-
lated regions (UTRs) were downloaded from Tar-
getScan.org. The numbers of conserved miRNA
families and 3′-UTRs are shown in Table S1. Data
of miRNA expression come from Landgraf et al. and
Lyu et al. [73,74].

Strength of repression
To measure the regulation strength of single
miRNAs, we examined the change of transcriptome
after single miRNA knockout (or knockdown).
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The transcriptome data of knockout or knockdown
lines were downloaded from the Gene Expres-
sion Omnibus database. We collected ∼50 data
sets to examine their repeatability and selected 5
high-quality (correlation between replication >

0.99) data sets for further analysis (Table S3). The
microarray data were processed by the Bioconduc-
tor package. To measure the strength of miRNA
repression, we calculated the pairwise fold change
of each sample, and separated the fold changes into
two categories: (i) between an miRNA-deficient
transcriptome and a wild-type one, and (ii) between
two miRNA-deficient transcriptomes or two wild-
type ones. These two categories of fold changes
were directly compared by density plot.

DOEsumsupall repressionsof a certain strength,
weighted by the expression level of the target gene.
These efforts were categorized into four levels de-
pending on the effect of repression, ranging from
<10% to >30%. DOE sums up the repressions
across all target genes, weighted by their expression
level. Strong repression of >30% generally takes up
∼10% of a miRNA’s repression capacity.

Simulations of the degradation effects of
miRNAs
Random matrices were generated with the parame-
tersN= 500, r= 0.1,Mi j (i �= j )∼N(0, a) and d=
0.1. The value a ofN(0, a) increases from 0.1275 to
0.1675.The probabilities of stability were calculated
from 200 simulations. We plotted four cases to illus-
trate the influence of target numbers on the eigenval-
ues (Fig. 2A and B).

Decay rate
The mRNA half-life data were downloaded from
public data [43,55], which contained the half-life
measurements for 5656 yeast mRNAs and 10 290
human mRNAs. We transformed the half-life mea-
surements into the decay rate using the exponential
model:

d = l n2
t

where d is decay constant in units of hours−1 and t is
the half-life in units of hours.

For further comparisons, the decay constants of
yeast and human mRNAs were shown as the value
normalized by the cell cycle time (1.5 h for yeast and
24 h for human), in units of cell cycle−1.

Strengths of gene interactions
To measure the strength of gene–gene transcrip-
tional regulation, we examined the change of
transcriptome after single TF knockout or knock-

down. The normalized transcriptome data were
downloaded from public data [56,57]. The fold
changes between the control and TF-deficient
transcriptome were calculated with corresponding
P values. Significant transcription regulations were
defined by P < 0.001. We represented gene–gene
interaction strength (Mij) with fold changes for
significantly differential expressions.

Construction of matrixM
The size of the matrix,N, is determined by the num-
ber of TFs that in aggregate account for 99% of the
total transcripts. We generated two kinds of net-
work: an Endos Renyi network and a power-law net-
work, using R package(igraph) in order to deter-
mine thenon-zero elements in thematrix.Thevalues
of non-zero elements in the network were sampled
from the gene–gene regulations estimated above.
The eigenvalues were calculated and plotted in the
complex plane (Fig. 5B).

Considerations of selective pressure
The arguments presented in this study are mecha-
nistic in nature. For biological systems, these argu-
ments have to incorporate selective forces as is done
explicitly in other studies [75–77]. These consid-
erations also underlie the overall approach of this
current study.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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