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a b s t r a c t

Hereditary diseases and complex traits often manifest in specific tissues, whereas their causal genes are
expressed in many tissues that remain unaffected. Among the mechanisms that have been suggested for
this enigmatic phenomenon is dosage-sensitive compensation by paralogs of causal genes. Accordingly,
tissue-selectivity stems from dosage imbalance between causal genes and paralogs that occurs particu-
larly in disease-susceptible tissues. Here, we used a large-scale dataset of thousands of tissue transcrip-
tomes and applied a linear mixed model (LMM) framework to assess this and other dosage-sensitive
mechanisms. LMM analysis of 382 hereditary diseases consistently showed evidence for dosage-
sensitive compensation by paralogs across diseases subsets and susceptible tissues. LMM analysis of
135 candidate genes that are strongly associated with 16 tissue-selective complex traits revealed a sim-
ilar tendency among half of the trait-associated genes. This suggests that dosage-sensitive compensation
by paralogs affects the tissue-selectivity of complex traits, and can be used to illuminate candidate genes’
modes of action. Next, we applied LMM to analyze dosage imbalance between causal genes and three
classes of genetic modifiers, including regulatory micro-RNAs, pseudogenes, and genetic interactors.
Our results propose modifiers as a fundamental axis in tissue-selectivity of diseases and traits, and
demonstrates the power of LMM as a statistical framework for discovering treatment avenues.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Technological advancements in genome mapping and sequenc-
ing have largely increased our knowledge of the genetic determi-
nants of monogenic and complex diseases. Disease-causing genes
and disease-associated genetic variations have been recorded for
hundreds of diseases and complex traits [1,2]. However, functional
understanding of the molecular mechanisms by which these
genetic determinants impact health remains limited. Across hun-
dreds of genetic diseases, clinical manifestation is often limited
to few tissues, as demonstrated by neurodegenerative disorders,
muscular dystrophies, and even cancers [3]. In an effort to illumi-
nate disease mechanisms, several studies have turned to analyze
the mechanisms that underlie the tissue-specific manifestation of
genetic diseases (e.g., [4–7], reviewed in [8]). These were made
possible by large-scale tissue profiling resources, such as the
Genotype-Tissue Expression (GTEx) consortium [9] and the Human
Protein Atlas [10], covering tens of tissues. Using these datasets,
studies repeatedly showed that tissue-specific diseases manifesta-
tion does not stem from tissue-specific expression of disease-
causing genes in disease-susceptible tissues. Rather, disease-
causing genes and variants are often expressed in many additional
tissues that do not show disease symptoms [4,5,11]. Among the
explanations for tissue-selectivity were expression-based mecha-
nisms, such as over-expression of disease causing genes in
disease-susceptible tissues [4,5]; Regulatory-based mechanisms,
such as the presence of tissue-specific eQTLs in disease-
susceptible tissues [7]; and network-based mechanisms, such as
the occurrence of tissue-specific protein interactions in disease-
susceptible tissues [5,11] (reviewed in [8]).

A general conception for the tissue-selectivity of diseases
relates to tissue-selective compensation. Accordingly, tissue-wide
robustness to the causal aberration occurs owing to the presence
of a compensatory factor, and thus disease phenotypes emerge
wherever this factor is limited. Gene duplicates, namely paralogs,
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are known to have common functionalities and were shown to
compensate for each other’s loss (reviewed in [12]). In human,
with the exception of a few paralogs that showed mutual depen-
dence [13], large-scale assays of human cell lines revealed mostly
compensatory relationships between paralogs [13–15]. The rela-
tionship between gene dosage and paralogs was also studied with
respect to Mendelian disease genes with distinct modes of inheri-
tance, leading to somewhat controversial results [16–18]. For
example, autosomal dominant disease genes were enriched for
paralogs that arose from whole genome duplication [19,18],
whereas autosomal recessive genes were enriched for paralogs
that arose from old small-scale duplication [17].

We recently tested this conception at large-scale by studying
the role of paralogs in over 120 hereditary diseases based on hun-
dreds of tissue transcriptomes gathered by GTEx [20]. We showed
that paralogs of disease-causing genes tend to be under-expressed
relative to the causal gene in disease-susceptible tissues, suggest-
ing that their compensatory function is relatively limited in these
tissues and allows for disease phenotypes to emerge (Fig. 1A).
Fig. 1. Quantitative relationships between causal genes and their paralogs. A. A model o
paralog (marked P). In the healthy state, the redundant functions of both genes are repres
functionality (dashed lines). In the unaffected tissues, the limited functionality of the cau
(right), masking is insufficient due to relatively low expression of the paralog (small circl
(red) across disease-susceptible tissues. C. The distribution of causal genes according to th
to the number of susceptible tissues, and the distribution of causal genes and their paralog
expression ratios (log-transformed) of causal genes and their paralogs in disease-susce
causal genes with a single paralog. Middle: 137 causal genes that were compared to e
compared to the summed expression of all their paralogs. The black line indicates the m
reader is referred to the web version of this article.)
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The tendency for relative under-expression of paralogs was com-
mon across various subsets of causal genes, diseases, and tissues.

Here, we aimed to expand our view of dosage-sensitive molec-
ular mechanisms in several ways. Firstly, we gathered a dataset
composing of 382 tissue-selective diseases and 11,215 tissue tran-
scriptomes that was over 3-fold larger than used in Ref. [20]. Sec-
ondly, to assess simultaneously the contribution of multiple factors
we employed the linear mixed model (LMM) methodology. By
using LMM, we were able to account for the clustered nature of
the data formed by the donors, and to efficiently adjust the associ-
ation of the outcome with the main independent factor (tissue
type) to multiple covariates potentially confounding the associa-
tion at question [21]. LMM findings pointed to paralog identity
levels and disease mode of inheritance as additional modulators
of causal-gene and paralog expression. However, the relative
under-expression of paralogs in disease-susceptible tissue was
the strongest consistent factor. Thirdly, we analyzed dosage-
relationships in complex traits. Specifically, we focused on 16
tissue-selective traits, and analyzed paralogs relationships in 135
f the relationship between a causal gene (marked C) and its functionally-redundant
ented as common interactors. In the aberrant state, the causal gene loses some of its
sal gene is masked by the presence of its paralog. In the diseases-susceptible tissue
e). B. The distribution of 382 hereditary diseases (yellow) and their 295 causal genes
e number of paralogs they have. D. The distribution of hereditary diseases according
s according to number of tissues expressing at 1 TPM or above. E. The distribution of
ptible versus unaffected tissues. The distributions are shown as follows: Left: 158
ach of their two most closely related paralogs. Right: 137 causal genes that were
edian value. (For interpretation of the references to colour in this figure legend, the
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candidate trait-associated genes identified via genome-wide asso-
ciation studies (GWAS). We found that tissue-selective under-
expression of paralogs is also common among complex traits.
Fourthly, we turned to analyze the relevance of additional classes
of genetic modifiers, including micro-RNA regulation, transcribed
pseudogenes, and genetic interactors of disease-causing genes, to
the tissue-selectivity of Mendelian diseases. Altogether, our find-
ings provide positive evidence for the relevance of dosage-
sensitive mechanisms in tissue-selective disease manifestation.
They also demonstrate the power of LMM as a statistical frame-
work for analysis of quantitative genetic relationships.
2. Results

2.1. Factors affecting expression ratios of causal genes and paralogs

To study the quantitative relationships between causal genes
and paralogs across tissues, we gathered a set of 382 hereditary
diseases with manually-curated tissue-selective manifestations
(Fig. 1B, Table S1). These diseases were caused by mutations in
295 distinct causal genes, each of which having at least one high-
confidence paralog (Methods, Fig. 1C). To obtain a quantitative
molecular view into these diseases we employed the large-scale
transcriptomic dataset of GTEx, consisting of 11,215 transcriptome
profiles sampled from 51 tissues and 714 donors [9]. This dataset
was over 3.7-fold and 26.7-fold larger in terms of genes and tran-
scriptomic profiles, respectively, than the dataset used in Ref. [20]
(Fig. S1). We first examined the tissue-selectivity of these diseases,
their causal genes and their paralogs. As observed previously
[5,11], diseases were highly tissue-specific, whereas their causal
genes were broadly expressed across the human body (Fig. 1D).

Next, we examined the quantitative relationship between cau-
sal genes and paralogs in disease-susceptible versus unaffected tis-
sues. We modeled the quantitative relationships by the expression
ratios of causal genes and their paralogs across tissues (Methods).
Focusing on the subset of 158 (54%) causal genes with a single par-
alog, revealed a tendency for higher expression ratios in disease-
susceptible tissues (p < E16, Mann-Whitney (MW), Fig. 1E left).
The same tendency was shared by the 137 remaining causal genes,
where expression ratios were computed for causal genes and each
of their top two paralogs (p < E16, MW, Fig. 1E middle). Lastly, to
account for causal genes with multiple paralogs that provide col-
lective compensation, we examined the expression ratio between
these 137 causal genes and the summed expression levels of their
paralogs. The tendency for higher expression ratio in disease-
susceptible tissues remained significant (p < E16, MW, Fig. 1E
right). Thus, the trend observed previously in a smaller disease
dataset was maintained [20].

The above analysis did not consider the potential impact of
other factors on the observed expression ratios, including tran-
scriptomic and disease-related factors (Fig. 2A). Candidate tran-
scriptomic factors included donor parameters (e.g., sex, age,
cause of death), sample parameters (e.g., autolysis score, ischemic
time), and profile parameters (e.g., RNA integrity number),
extracted from GTEx. Candidate disease-related factors included
disease mode of inheritance, namely autosomal dominant versus
recessive, and paralogs’ sequence identities, which have already
been pointed out by other studies [17,18,22]. Along with the
impact of tissue type that we accounted for above, namely
disease-susceptible versus unaffected tissues, we considered a
total of 12 distinct factors (Methods).

To test the impact of each of these factors while controlling for
confounding factors, and to account for the inherently clustered
nature of GTEx (where each subject is represented by a distinct
cluster), we turned to a multivariable model that combines mixed
4026
and fixed effects. Given the log normal distribution of the expres-
sion ratios (Fig. S2A), LMM was the best fit (Methods). In the
LMM we regressed expression ratios of causal genes and paralogs
on 12 independent variables, each representing a different factor,
as specified in the regression equation (Methods, Fig. 2A). We then
applied the formulation to model expression ratios in the single
paralog and multi paralogs scenarios described above (Fig. 1E).
Regression findings included the standardized coefficients deter-
mined by the LMM per variable and their statistical significance
(Fig. 2B and Table S2). Only five factors were significant in all sce-
narios, including tissue type, paralogs sequence identity, mode of
inheritance, RNA integrity number, and the date of nucleic acid iso-
lation batch. Out of those, tissue type, paralogs’ sequence identi-
ties, and disease mode of inheritance had the strongest
independent impacts. Notably, paralogs’ sequence identities and
disease mode of inheritance coefficients were positive in certain
scenarios and negative in others, implying that they contributed
to higher or lower expression ratio, respectively. In contrast, tissue
type coefficient was consistently positive in all scenarios, support-
ing the aforementioned relationship between causal genes and
their paralogs in the disease-susceptible tissues.

To test the generalizability of the LMM findings, we analyzed
separately subsets of diseases sharing the same susceptible tissue.
We focused on the four tissues with over 15 causal genes: brain
(123 causal genes), heart (32 causal genes), muscle (18 causal
genes), and skin (18 causal genes). Per tissue, we applied the
LMM separately to causal genes with a single paralog, top two par-
alogs, and sum of paralogs. Similar to the analysis above, the stan-
dardized coefficients of causal gene-paralog similarity and disease
mode of inheritance were relatively high, yet inconsistent across
tissues and across scenarios (the potential association with disease
mode of inheritance was not due to the fraction of genes with dom-
inant inheritance per tissue, Fig. S3). In contrast, across all but one
case, the standardized coefficient of tissue type was both relatively
high and consistently positive (Fig. 2C). Thus, tissue type positively
affected expression ratios between causal genes and their paralogs
across scenarios and disease subsets.

2.2. Tilted expression ratios between paralogs in tissue-selective
complex traits

Given that the impact of tissue type on expression ratios is com-
mon among genes that are causal for tissue-selective phenotypes,
we went on to test whether it is also common among genes that
are likely causal for tissue-selective complex traits. We concen-
trated on complex traits that were analyzed via GWAS, a genetic
screening methodology that identifies genetic variations that are
common across patients versus healthy individuals. The identified
genetic variations are typically spread across the genome and often
implicate several genes in the same genomic region, challenging
the identification of trait-causing genes [23]. We analyzed 16
tissue-selective traits for which candidate genes harboring trait-
associated genetic variations were identified and ranked by the
statistical significance of their trait association [24]. The tissue-
selectivity of each trait was manually curated (Methods). Per trait,
we considered only candidate genes with highly significant trait
associations (p < E�15), and that had at least one high-
confidence paralog (Methods, Fig. 3A, Table S3). Altogether, we
analyzed 135 genes, including 78 genes with a single paralog and
57 genes with multiple paralogs. Similar to hereditary diseases,
these traits were highly tissue-specific, whereas candidate genes
and their paralogs tended to be expressed broadly across the body
(Fig. 3B).

To test whether tissue type impacts expression ratios of candi-
date genes for complex traits, we employed the LMM regression
separately to each candidate gene and its paralog(s). We then



Fig. 2. LMM analysis of expression ratios between causal genes and their paralogs. A. The different factors that might impact expression ratios (left) and the resulting LMM
formulation (right). B. The standardized coefficient values that were determined by the LMM. Left: LMM analysis of 158 causal genes with a single paralog. Middle: LMM
analysis of 137 causal genes that were compared to each of their two most closely related paralogs. Right: LMM analysis of 137 causal genes that were compared to the
summed expression of all their paralogs. C. The standardized coefficient values that were determined by the LMM for subsets of causal genes with distinct susceptible tissues.
Results are shown in the single paralog, top two paralogs, and sum of all paralogs scenarios. In each scenario case, LMMwas applied separately to causal genes associated with
brain, heart, skeletal muscle and skin diseases.
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extracted candidate genes where, similarly to disease-causing
genes, expression ratio was positively and significantly affected
by tissue type, which we denoted as LMM positive (Fig. 3C).
LMM regression revealed that 71 out of 135 candidate genes were
LMM positive. LMM positive genes were found in 15 out of 16
traits and consisted of 35–56% of the candidate genes per trait
(Fig. 3D). They were also similarly frequent per susceptible tissue
(Fig. 3E).

It is compelling to suggest that LMM positive genes are more
likely to be trait-associated. One such LMM positive gene was
TCF7L2, which was significantly associated with fasting proinsulin
(adjusted p = 1.01E�176). Although proinsulin is synthesized in
pancreas, TCF7L2 was not preferentially expressed in pancreas,
implying that TCF7L2 expression alone would not reveal its
tissue-specific impact. However, by considering its expression rel-
ative to its paralog TCF7L1, its pancreas-specificity is revealed
(Fig. 4A). An intriguing example is presented by the fatty acid
desaturase (FADS) gene cluster consisting of FADS1, FADS2, and
FADS3. FADS1 and FADS2 encode the delta-5-desaturase and
delta-6-desaturase, respectively, but the role of FADS3 in fatty acid
metabolism is unclear. All FADS genes were detected by GWAS as
candidate genes associated with blood measures of total choles-
terol, HDL, LDL, fasting glucose, and triglyceride. All of these traits
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are associated with the liver, while triglycerides are also associated
with the small intestine and adipose tissues. Given that the FADS
genes are closely related, we used the sum of paralogs model.
FADS1 was LMM positive in liver (adjusted p = 7.97E�61), support-
ing its association with liver-specific traits. Though its liver-
susceptibility cannot be foretold by its liver expression, it became
clearer upon considering its expression ratio relative to its par-
alogs, which is maximal in liver (Fig. 4B). FADS2 had similar
results. FADS3, in contrast, was LMM positive only for the triglyc-
erides trait (adjusted p = 7.47E�57, Fig. 4C). In support of this, high
expression of FADS3 in adipose tissue was previously associated
with increased risk for familial combined hyperlipidemia and
higher triglyceride levels in Mexican population [25].

2.3. Beyond paralogs: LMM analysis of additional dosage-
compensatory relationships

The analyses above focused on causal gene compensation by its
paralogs. Next, we turned to investigate additional mechanisms
that could modify the impact of widely expressed causal genes
on the tissue-selectivity of diseases. The first mechanism we con-
sidered was causal gene regulation by micro-RNAs (miRNAs). miR-
NAs are small non-coding RNA molecules that regulate gene



Fig. 3. LMM analysis of expression ratios between candidate trait-causing genes and their paralogs. A. The fractions of complex traits, candidate genes, and their paralogs, per
trait-susceptible tissue. B. The distribution of 16 complex traits according to the number of tissues in which they manifest, and the distribution of 135 candidate genes and
their 178 paralogs according to number of tissues expressing them at 1 TPM or above. C. The scheme for applying LMM to each candidate gene, resulting in identification of
candidate genes with positive and significant impact of tissue type on candidate gene – paralog expression ratio. D. The fraction of candidate genes per trait out of the total set
of candidate genes, with LMM positive genes marked in red. E. The fraction of candidate genes per trait-susceptible tissue with LMM positive genes marked in red. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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expression post-transcriptionally by inhibiting mRNA translation
potentially leading to its degradation (Fig. 5A). Here we explored
the possibility that the quantitative relationships between causal
genes and their regulating miRNAs were altered in disease-
susceptible tissues. Data of miRNAs that were shown experimen-
tally to interact with the transcripts of causal genes were extracted
from miRecords [26], of which only three miRNAs were measured
in GTEx (Fig. 5B, Table S4). The LMM revealed that tissue type pos-
itively affected expression ratio between causal genes and their
miRNAs (p = 4.6E�70, Fig. 5C). These results suggest that the inhi-
bition of causal genes by their miRNAs was reduced in the disease-
susceptible tissue.

The second mechanism we tested involved pseudogenes of cau-
sal genes. Pseudogenes are DNA sequences that resemble func-
tional genes yet lack the capacity to encode for proteins.
Transcribed pseudogenes were previously shown to indirectly reg-
ulate their respective coding genes, for example by acting as micro-
4028
RNA sponges [27] (Fig. 5D). We examined whether the quantitative
relationships between causal genes and their pseudogenes were
altered in disease-susceptible tissues. For that, we extracted pseu-
dogenes that were members of a causal gene homologs family [28],
and that were expressed in GTEx. Owing to their low expression
levels, we considered three expression thresholds for pseudogenes:
1, 0.5, and 0.1 transcripts per million reads (TPM), which allowed
us to analyze 7, 8, and 10 causal genes, respectively (Fig. 5E,
Table S5). We applied LMM to all three sets. Tissue type coefficient
was insignificant at the 1TPM subset, yet was positive at the lower
thresholds (p < E�195, Fig. 5F), and had stronger impact relative to
other factors. This suggests that the relative expression of causal
genes and their pseudogenes is higher in disease-susceptible tis-
sues, implying less indirect regulation by pseudogenes.

The third mechanism that we examined was epistasis, or
genetic interaction, where the phenotypic effect of an aberrant
causal gene was dependent on the presence or absence of an aber-



Fig. 4. Examples for candidate trait-associated genes showing tissue type effects on expression ratios. Trait-associated tissues were marked red. A. Top: The expression of
TCF7L2 across tissues according to GTEx. Its expression in pancreas, its trait-associated tissue, is smaller than its expression in most other tissues. Bottom: The expression
ratio between TCF7L2 and its paralog TCF7L1 across tissues according to GTEx. Median expression ratio was highest in pancreas (p = 1.01E-176). B. Top: The expression of
FADS1 across tissues according to GTEx. Its expression in liver, its trait-associated tissue, is not up-regulated relative to other tissues. Bottom: The expression ratio between
FADS1 and the sum of its paralogs, FADS2 and FADS3. Median expression ratio was particularly high in liver (p = 7.79E-61). C. Top: The expression of FADS3 across tissues
according to GTEx. FADS3 was associated with multiple traits and trait-associated tissues, including liver, small intestine, and adipose tissues. Bottom: The expression ratio
between FADS3 and the sum of its paralogs, FADS1 and FADS2. Median expression ratio was high particularly in adipose tissues (p = 7.47E-52). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Applying LMM to analyze quantitative relationships between causal genes and additional types of modifier genes. A. A regulatory miRNA binds its target causal gene in
unaffected tissues, thereby exerting post-transcriptional regulation. In the disease-susceptible tissue (right), a lower level of the miRNA would result in reduced post-
transcriptional regulation over the causal gene. B. The tissue-specificity of three diseases, and the distribution of three causal genes and two miRNAs according to number of
tissues expressing them at 1 TPM or above. C. The standardized coefficient values that were determined by the LMM. D. A transcribed pseudogene might indirectly regulate
the causal gene, potentially by binding a miRNA that is a common regulator of both. A lower level of the transcribed pseudogene in the disease-susceptible tissue (right)
would result in reduced pseudogene-exerted effects. E. The tissue-specificity of diseases, and the distribution of causal genes and pseudogenes according to number of tissues
expressing them at 1 TPM or above (dark gold; nine diseases and seven causal genes), 0.5 TPM or above (gold; 10 diseases and eight causal genes), and 0.1 TPM or above (light
gold; 15 diseases and 10 causal genes). F. The standardized coefficient values that were determined by the LMM. G. Regular levels of causal genes and their genetic interactors
across unaffected tissues do not lead to phenotype. However, the combination of causal gene aberration and low expression level of the genetic interactor might lead to
phenotype specifically in disease-susceptible tissues (right). H. The tissue-specificity of 79 diseases, and the distribution of 67 causal genes and their genetic interactors (92
positive interactors, light grey; 169 negative interactors, dark grey), according to number of tissues expressing them at a level � 1 TPM. I. The standardized coefficient values
that were determined by the LMM for positive (light grey) and negative (dark grey) genetic interactors using the summed expression model.
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rant modifier genes. However, instead of the modifier gene being
aberrant, we tested whether it is relatively lowly expressed (mim-
icking aberration) in disease-susceptible tissues (Fig. 5G). We
extracted data of positive and negative genetic interactors of 67
4029
causal genes and 79 hereditary diseases from BioGRID. Notably,
38 causal genes corresponding to 45 diseases had both positive
and negative genetic interactors (Fig. 5H, Table S6). We applied
LMM to each set separately, while considering the ratio between
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causal genes and the summed expression levels of either their pos-
itive or negative genetic interactors. Tissue type coefficient was
positive in both cases (p < E�101, Fig. 5I), implying more likelihood
for epistatic interactions in those tissues. However, a much larger
impact on ratios was due to disease mode of inheritance
(p < E�300). Altogether, despite the limited available data, our
analysis suggests a role for additional classes of genetic modifiers
in tissue-selectivity of diseases.
3. Discussion

We presented a computational analysis of molecular mecha-
nisms that potentially underlie the tissue-selective manifestation
of hereditary diseases and complex traits. These diseases and traits
tend to manifest in a highly tissue-specific manner, albeit the ubiq-
uitous expression of their causal or associated genes. Knowledge of
the molecular mechanisms that govern diseases and traits mani-
festation is critical for better understanding of human physiology
and pathophysiology, but is currently limited [8]. Here we focused
on mechanisms involving dosage-sensitive relationships between
causal genes and potential modifier genes. To model these rela-
tionships, we relied on large-scale human tissue transcriptomes,
encompassing 51 tissues and 11,215 transcriptomic profiles, that
were mapped in a consistent manner by GTEx [9]. Though these
profiles might be challenging for protein-level analyses, they con-
stitute a powerful resource for comparative analyses at the tran-
scriptomic level.

Using this large-scale dataset, we modeled quantitative rela-
tionships by calculating, per transcriptomic profile, the ratios
between transcript levels of relevant molecules [20]. We then ana-
lyzed these relationships across profiles via LMM regression, which
was not previously used for analyses of tissue-selectivity. LMM
provided a statistical framework for simultaneous analysis of the
relationships between multiple factors on expression ratios.
Specifically, LMM allowed to point to factors that could affect the
relationships between paralogs while controlling for other factors.
This is feasible only in a multivariable model and was not possible
with a univariable analysis. Additionally, the natural clustering of
observations within one subject was controlled for by assigning
each subject with a random effect (cluster). The flexibility of the
LMM scheme allowed us to analyze sample- and disease-related
factors (Fig. 2A), to analyze subsets of genes and individual genes
via several models (Figs. 2C and 4), and to assess multiple modifier
classes (Fig. 5).

We first applied LMM to study the quantitative relationships
between causal genes and their paralogs. The relevance of paralogs
was shown previously for a subset of hereditary diseases, support-
ing insufficient compensation by paralogs in disease-susceptible
tissues [20]. Here, by using LMM and larger disease and transcrip-
tomic datasets, we found that expression ratios were tilted in
disease-susceptible tissues (Fig. 2B, C), in agreement with previous
results [20]. Whereas interpreting regression coefficients could be
problematic when crude estimates of association are considered,
the usage of a multivariable statistical tool enabled to account
for the possibility of confounding factors that could have been
associated with the tissue type variable. Consequently, the inclu-
sion of other factors in the model enabled a valid estimation of
the relationship between paralog expression ratios and tissue type.
Nevertheless, the presence of residual confounding factors, which
were not measured and therefore were not part of the analysis
and not adjusted for, could not be ruled out.

LMM findings also pointed to the impact of paralog identity
levels and disease mode of inheritance on expression ratios
(Fig. 2B). Across diseases, expression ratios tended to be higher
for causal genes and paralogs with larger sequence identity, poten-
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tially due to dosage sharing between closely-related paralogs [29].
Expression ratios also tended to be higher for autosomal recessive
disease genes, for which previous studies had conflicting conclu-
sions [17,18]. However, these results were not consistent across
disease subsets (Fig. 2C).

Following the analysis of hereditary diseases, we turned to ana-
lyze whether quantitative relationships between causal genes and
their paralogs may play a role in the tissue-selectivity of complex
traits. Using single-gene LMM regression, we found that tissue type
was a significant factor in about half of the trait-associated genes
(Fig. 3D, E). This analysis could therefore be used to illuminate dis-
ease mechanisms (Fig. 4A), or to prioritize candidate genes for
tissue-selective complex traits, as demonstrated by the different
FADS genes (Fig. 4B, C).

We used the LMM framework to analyze three additional
classes of modifiers. The first two modifier classes that we tested
revolved around post-transcriptional regulation of causal genes,
either via miRNAs (Fig. 5A) or pseudogenes (Fig. 5D). These modi-
fiers were demonstrated previously to affect disease emergence,
though not in a tissue-selective manner [27]. Although relying on
small datasets, LMM analysis of both classes revealed that the ratio
between a causal gene and its potential modifier was higher in the
disease-susceptible tissue, supporting their potential impact on
tissue-selective manifestation (Fig. 5C, F). These results should be
revisited when more data are available. The last class was related
to epistasis (Fig. 5G). LMM findings revealed that regardless of
the type of genetic interaction, tissue type had a significant impact,
though its effect was smaller compared to disease mode of inher-
itance (Fig. 5I). LMM regression can readily be used to assess the
impact of additional factors and modifier classes across diseases,
genes, or tissues. It could be applied to other questions, for exam-
ple, to model or predict tissue type based on various factors [30],
such as the factors that were modeled in the current study.

Altogether, our analyses support the role of genetic modifiers as
a fundamental axis in the tissue selective manifestation of heredi-
tary diseases and complex traits. Unraveling functional redun-
dancy in paralogs of causal genes was already shown to set the
ground for drug development, as in cases of hereditary spinal mus-
cular atrophy [31,32], and cancer [33,34]. Revealing additional
genetic modifiers may clarify the pathogenesis and open novel
treatment avenues.
4. Methods

Transcriptomic dataset: RNA-sequencing profiles of human
tissues were obtained from GTEx portal (version 7) [9], and con-
sisted 11,215 transcriptomic profiles sampled from 51 primary tis-
sues (samples from transformed cells were not included). We
united sub-tissues of the same main tissue, including sub-tissues
of skin, of heart, and of brain, which resulted in 37 tissues. Hence-
forth, we analyzed only causal genes that were expressed above 1
TPM in at least half of the samples of a given tissue, and in at least
20% of the tissues, including the disease-susceptible tissue.

Diseases, traits, and genes datasets: We analyzed 382 heredi-
tary diseases with manually-curated tissue-selective manifestation
[11]. Disease-causing genes with a known molecular basis were
downloaded from OMIM [1] (Table S1). The dataset of complex
traits included 16 traits that were previously analyzed via GWAS.
We manually-curated the tissue manifestation of each trait. The
genes associated with each traits were collected by Marbach
et al. [24], which applied the Pascal tool to assemble single-
nucleotide polymorphisms (SNPs) summary statistics into gene
probability scores [35]. Using these scores, we considered as candi-
date genes per trait only genes with p-value < E�15, which
resulted in 135 trait-associated genes (Table S3).
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Genetic modifiers of causal genes: Paralogs of causal genes
were extracted from Ensembl-biomart using R package ‘biomart’
(download date: 8/7/2019). We included paralogs with over 40%
reciprocal sequence identity that were co-expressed with their
respective causal gene above 1 TPM in at least 20% of the tissues.
miRNAs that interact with causal genes via experimentally-
validated interactions were extracted from miRecords [26]
(Table S4). Transcribed pseudogenes of causal genes were collected
from a dataset of 3281 pseudogene-gene families, where a pseudo-
gene was associated with a gene family based on its sequence sim-
ilarity to the family consensus sequence [28] (Table S5). We
included in the analysis pseudogenes that were expressed at levels
exceeding 0.1, 0.5, and 1 TPM. Positive and negative genetic inter-
actors of causal genes were extracted from BioGRID [36] (Table S6).

Computation of quantitative relationships: To quantify the
relationship between a causal gene and its modifier gene we com-
puted the ratio between their expression levels per sample, across
all samples that expressed both genes at levels exceeding 1 TPM
(different thresholds were applied to pseudogenes). In the top
two paralogs analysis, we computed the ratio between the expres-
sion level of a causal gene and (i) the expression level of its par-
alogs with highest reciprocal sequence identity, and (ii) the
expression level of its paralogs with the second highest reciprocal
sequence identity, resulting in two ratios computed per sample per
causal gene. In the sum of paralogs analysis, we computed the ratio
between the expression level of a causal gene and the sum of the
expression levels of all its paralogs, per sample. In the analysis of
genetic interactors, we computed the ratio between the expression
level of a causal gene and the sum of the expression levels of all its
positive interactors, or all its negative interactors, per sample. In
paralogs and genetic interactors analyses, we excluded pairs where
the paralog or the genetic interactor were disease-causing in the
same tissue as the causal gene.

LMM analysis: To account for the clustered nature of the GTEx
dataset (where each cluster represents a distinct subject), it was
imperative to use a modeling technique that combines mixed
and fixed effects. To identify a suitable modeling technique, we
analyzed the distribution of expression ratios between causal
genes and their paralogs. The log expression ratio was normally
distributed (Fig. S2A). Since our dataset met the assumptions of
the log normal model, and since the normal distribution has been
profoundly used in statistical modeling, we selected LMM. As part
of the sensitivity analysis, we also applied the quasi-Poisson
model. The estimates obtained with the quasi-Poisson model fol-
lowed the trends obtained with the log normal model (Fig. S2B).
Next, we used LMM to identify factors that impact quantitative
relationships between causal genes and potential modifier genes.
For that, we log-transformed the expression ratio, and designated
it as the dependent outcome of the LMM.We defined it as normally
distributed per sample. The different factors served as independent
variables. These factors consisted of donor parameters, sample
parameters, and transcriptomic parameters, which were down-
loaded from GTEx; and disease-related parameters, including tis-
sue type, mode of inheritance, and paralogs’ sequence identities.
The formulation appears in Eq. (1) below. We accounted for the
clustered nature of the data formed by the same donors by assign-
ing a random intercept to each donor. Each factor was represented
as a vector to LMM. We applied LMM to gene sets as described in
the Results, and per gene for candidate genes for complex traits.
LMM findings in each analysis included a coefficient per factor
and its statistical significance. To enable comparison between fac-
tors with different ranges of values, each coefficient was standard-
ized. The standardized coefficients expressed the expected change
in the log-transformed expression ratios in standard deviation
units, per change of a standard deviation in the independent
regression terms. The statistical significance of each factor was
4031
adjusted for multiple hypothesis testing via Bonferroni correction.
LMM was implemented using R (version 3.5.2) and the lme4
package.

log expressionratioð Þ ¼ aþ lDonor þ b1Tissuetype

þ b2Modeofinheritance

þ b3RNAintegritynumber

þ b4Autolysisscore

þ b5paralogssequenceidentityþ b6Sex

þ b7Causeofdeathcase1

þ b8Causeofdeathcase2

þ b9Causeofdeathcase3

þ b10Causeofdeathcase4þ b11Age

þ b12TimeSamplespentinPAXgenefixative
þ b13Ischemictime

þ b14Dateofnucleicacidisolationbatch

þ b15Dateofgenotypeorexpressionbatch

þ e
ð1Þ

A short description of the factors and their values range appears
below: 1. Tissue type: unaffected tissues (0), disease-susceptible
tissues (1). 2. Sex: male (0), female (1). 3. Age: age of donor, 20
to 79. 4. Cause of death: original values were 0, 1, 2, 3, and 4, which
we represented by dummy variables. Cause 0 was kept out of the
regression, and a factor was created for each remaining cause;
the value of each factor value was set to 1 if matched donor cause
of death, and 0 otherwise. 5. Ischemic time:�1226 to 1739. 6. Time
sample spent in PAXgene fixative: 240 to 1673. 7. RNA integrity
number: 3 to 10. 8. Autolysis score: none (0), mild (1), moderate
(2), and severe (3). 9. Date of nucleic acid isolation batch:
17/05/2011 to 21/11/2014. 10. Date of genotype or expression
batch: 30/10/2011 to 16/01/2015. 11. Mode of inheritance: autoso-
mal dominant (0), autosomal recessive (1). 12. Paralogs sequence
identity: 40 to 100. The factors 2–10 were extracted from GTEx
[9], factor 11 was extracted from OMIM [1], and factor 12 was
extracted from bioMart.
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