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Abstract: Very preterm infants (VPI, born at or before 32 weeks of gestation) are at risk of adverse
health outcomes, from which they might be partially protected with appropriate postnatal nutrition
and growth. Metabolic processes or biochemical markers associated to extrauterine growth restriction
(EUGR) have not been identified. We applied untargeted metabolomics to plasma samples of VPI with
adequate weight for gestational age at birth and with different growth trajectories (29 well-grown,
22 EUGR) at the time of hospital discharge. A multivariate analysis showed significantly higher
levels of amino-acids in well-grown patients. Other metabolites were also identified as statistically
significant in the comparison between groups. Relevant differences (with corrections for multiple
comparison) were found in levels of glycerophospholipids, sphingolipids and other lipids. Levels of
many of the biochemical species decreased progressively as the level of growth restriction increased
in severity. In conclusion, an untargeted metabolomic approach uncovered previously unknown
differences in the levels of a range of plasma metabolites between well grown and EUGR infants at
the time of discharge. Our findings open speculation about pathways involved in growth failure in
preterm infants and the long-term relevance of this metabolic differences, as well as helping in the
definition of potential biomarkers.

Keywords: growth failure; preterm infants; metabolic fingerprinting; multiplatform untargeted
metabolomics

1. Introduction

Prematurity is the leading cause of childhood morbidity and mortality. In very preterm infants
(VPI), born at or before 32 weeks of gestation, postnatal growth failure is a frequent complication [1]
that can worsen short [2] and long [3–5] term outcomes. Even though this condition can be improved
through the optimization of feeding protocols [6–8] other non-nutritional known or unknown influences
seem to contribute at least as much, as shown by the relatively small impact of nutritional variables in
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predicting growth impairment in VPI [1,9]. Furthermore, there is a lack of well-defined stand-alone
markers for the prospective evaluation of nutrition and growth in the hospitalized preterm infant [10].

Metabolomic techniques aim to assess a whole array of small molecules present in a sample.
This can be performed by selecting a subset of metabolites under a specific hypothesis (targeted
metabolomics) or with a discovery (untargeted) approach, trying to identify most of the present
components [11]. In recent years, these strategies have been used to search for biomarkers or to uncover
underlying pathways in some adult [11], childhood [12], and even perinatal [13,14] conditions, with a
special interest in metabolic diseases [15] and altered body composition [16,17].

Untargeted metabolomics relies on the application of a range of analytical technologies to
simultaneously evaluate a broad spectrum of metabolites in biological matrices and it might be
particularly suited for the neonatal population. It can cope with very small sample volumes,
while producing a vast information which is necessary because metabolic pathways have been
shown to differ from other stages of life [18], and targeted studies might miss the defining changes in
these patients.

The methodology has already offered good insight into the development of biomarkers in
stool in a cohort of VPI, by uncovering differences in the microbiome-associated fecal metabolome
between healthy patients and those at risk of or suffering from late-onset sepsis (LOS) or necrotizing
enterocolitis (NEC) [19,20]. Interestingly, the study of serum in the same individuals [21] did not
identify discriminating compounds, suggesting that the success of these strategies requires careful
selection of samples and a strict definition of the clinical condition under investigation. As a global
process, growth would be expected to impact both serum and urinary profiles and, in fact, a few studies
have indicated that this might be the case. Morniroli et al. [22], described some differences in the
urine metabolome of VPI at term corrected age when compared to term infants and tried to correlate
this to altered body composition. Younge et al. [23] applying mainly a targeted design, reported a
longitudinal divergence in the profile of acylcarnitines between two groups of extremely preterm
infants (EPI) according to their postnatal growth trajectory and suggesting that these may respond to
altered gut microbiome development.

In this context, we aimed to apply a multiplatform untargeted metabolomic design
with three complementary analytical platforms (liquid chromatography–mass spectrometry,
gas chromatography–mass spectrometry and capillary electrophoresis–mass spectrometry) measuring
compounds of different chemical nature in order to ensure maximum coverage for the investigation
of metabolic signatures associated with growth restriction during hospital admission in a
well-characterized cohort of very preterm infants fed predominantly breast milk. This could contribute
to clarify relevant pathways and to identify compounds with potential for the development of
future biomarkers.

2. Materials and Methods

2.1. Study Design

Study of biochemical markers of postnatal growth restriction in a prospective cohort of very
preterm newborns admitted within 24 hours of birth in a level III neonatal unit between February 2013
and April 2016. Exclusion criteria were death before discharge, major malformations, chromosomal
abnormalities or genetic diseases and congenital infection. Only participants with no history of
intrauterine growth restriction (IUGR) were selected for metabolomic analyses. The protocol was
approved by the local ethics committee (PIC-95-13). Families of eligible babies were approached and
signed a written informed consent for participation.

According to their postnatal growth trajectory until discharge, the infants were classified into
normally grown or extrauterine growth restricted (EUGR: under the 10th centile or a z-score of −1.28
of weight-for-gestational age) according to local intrauterine growth curves [24] if under 40 weeks
postmenstrual age (PMA) or the WHO standards [25] if over 40 weeks PMA. EUGR was further
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classified as moderate (between 3rd and 10th centile or z-score −1.88 and −1.28) or severe (under 3rd
centile or z-score −1.88).

2.2. Sample Collection and Processing

On the days leading to discharge, and coinciding with collection for clinical reasons whenever
possible, a volume of 0.5 mL of blood was drawn from a peripheral vein and collected in an EDTA tube.
Efforts were taken to keep extraction times to early morning around 9 am and in a fasted state (2–3 h
after the last feeding). The sample was immediately centrifuged (3000 rpm for 5 min) and plasma
frozen at –80 ◦C until further processing.

2.3. Untargeted Metabolomics Analysis

2.3.1. Chemicals

Organic solvents (MS grade), analytical grade formic acid 99%, standard mix for GC-MS containing
grain fatty acid methyl ester (FAME) mixture (C8:0–C22:1n9) and chemical standards were from
Sigma-Aldrich. Sialylation-grade pyridine was from VWR International BHD Prolabo (Madrid, Spain).
Reference mass solutions for LC-MS and CE-MS were from Agilent Technologies. Ultrapure water
(Milli-Qplus185 system Millipore, Billerica, MA, USA) was used in preparation of all buffers and
standard solutions.

2.3.2. Metabolite Extraction

Metabolite extraction was performed according to standard protocols [26–28]. Briefly, for LC-MS
50 µL of plasma was mixed with 350 µL of the solvents, methanol (175 µL) and MTBE (methyl tert-butyl
ether) (175 µL) followed by centrifugation (4000 g, 15 ◦C, 15 min). For GC-MS analysis, proteins were
precipitated by mixing 1 volume of plasma with 3 volumes of cold acetonitrile (1:3), followed by
methoximation with O-methoxyamine hydrochloride (15 mg/mL) in pyridine, and silylation with N,O
bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS). 10 ppm C18:0
methyl ester in heptane was used as internal standard. For CE-MS, 100 µL of plasma was mixed with
100 µL of 0.2 M formic acid that contained 5% acetonitrile and 0.4 mM methionine sulfone as internal
standard. The sample was transferred to a centrifree ultracentrifugation device (Millipore Ireland Ltd.,
Carrigtohill, Ireland) with a 30 kDa protein cutoff for deproteinization through centrifugation (2000 g,
4 ◦C, 70 min).

Quality control (QC) samples were independently prepared for each technique by pooling equal
volumes of each sample and following the same extraction procedure as applied for experimental
samples. Analyte-free extraction blank samples were also prepared for each analytical run. All samples
were randomized independently for metabolite extraction and for corresponding analytical run [29].

2.3.3. Separation and Detection

In order to assess system suitability, blank samples were analyzed at the beginning/end of each
run. Quality control samples were injected in order to condition each analytical platform, as well
as to check metabolite profile and signal intensity. QC was rerun at the beginning/end, and after
every six experimental samples to provide a measurement of the system’s stability, performance and
reproducibility throughout the entire analysis [29].

2.3.4. Untargeted Metabolomics by LC-TOF-MS

An UHPLC system (Agilent 1290 Infinity LC System, Waldbronn, Germany), equipped with a
degasser, two binary pumps, and a thermostated autosampler coupled with Q-TOF LC/MS (6545)
system (Agilent), was used in the ESI+ (positive electrospray ionization) and ESI− (negative electrospray
ionization) mode to increase the number of detected metabolite ions. Briefly, 0.5 µL of sample was
injected into a thermostated (60 ◦C) Agilent Poroshell 120 EC-C8 column (150 mm × 2.1 mm, 2.7 µm)



Nutrients 2020, 12, 1188 4 of 17

with a guard column Ascentis®Express C8 (5 mm × 2.1 mm, 2.7). The flow rate was 0.5 mL/min
with solvent A (10 mM ammonium formate in Milli-Q water), and solvent B (10 mM ammonium
formate in methanol with 15% of isopropanol) for analysis in positive ionization mode, and solvent
A (Milli-Q water with 0.1% formic acid), and solvent B (methanol with 0.1% formic acid and 15%
of isopropanol) for analysis in negative ionization mode. Initial conditions at time 0 were 75% B,
increasing to 96% B at 23 min. This condition was held until 31 min. The gradient then increased to
100% B by 31.5 min and held until 32.5 min. The system was returned to starting condition by 33 min,
followed by a 7 min re-equilibration time, with a total run time of 40 min. Capillary voltage was set
to 3.5 kV for positive and negative ionization mode; the drying gas flow rate was 11 L/min at 290 ◦C
and gas nebulizer at 40 psi; fragmentor voltage was 175 V; skimmer and octopole radio frequency
voltage (OCT RF Vpp) were set to 65 V and 750 V, respectively. Data were collected in the centroid
mode at a scan rate of 1.0 scan/s. Mass spectrometry detection was performed in both positive and
negative ESI mode in full scan from m/z 50 to 1000. The reference mass ions m/z 121.0509 (C5H4N4)
and m/z 922.0098 (C18H18O6N3P3F24) in positive ionization mode or m/z 112.98568 (C2O2F3(NH4))
and m/z 1033.9881 (C18H18O6N3P3F24) in negative ionization mode were continuously infused by an
automated Calibrant Delivery System (CDS), using a Dual Agilent Jet Stream Electrospray Ionization
(Dual AJS ESI) source that continuously introduces a calibrant solution. The analytical conditions were
applied according to the method developed by Villaseñor et al. with modifications [28].

2.3.5. Untargeted Metabolomics by GC-Q-MS

A GC system (Agilent Technologies 7890A), equipped with an autosampler (Agilent 7693) and
interfaced to an inert mass spectrometer with triple-Axis detector (5975C, Agilent), was used for
analysis. Briefly, 2 µL of the derivatized sample was injected in a GC column DB5-MS (30 m length,
0.25 mm, 0.25 µm film 95% dimethyl/ 5% diphenylpolysiloxane) coupled to a pre-column (10 m J&W
integrated with Agilent 122-5532G). The injector port was held at 250 ◦C, and the helium carrier gas
flow rate was set at 1.0 mL/min. The split ratio was 1:10. The temperature gradient was programmed
for an initial oven temperature of 60 ◦C (held for 1 min), increased to 325 ◦C at a rate of 10 ◦C/min;
the system was allowed to cool down for 10 min before the next injection. The detector transfer line,
the filament source and the quadrupole temperature were set to 280 ◦C, 230 ◦C and 150 ◦C, respectively.
MS detection was performed in electron impact (EI) mode at −70 eV. The mass spectrometer was
operated in scan mode over a mass range of m/z 50–600 at a rate of 2.7 scan/s [26].

2.3.6. Untargeted Metabolomics by CE-TOF-MS

An Agilent 7100 (CE) system, coupled to a TOF Mass Spectrometer (6224 Agilent) with electrospray
ionization source, was used for sample analysis. A 1200 series ISO Pump from Agilent Technologies is
used to supply sheath liquid. In brief, a fused-silica capillary (Agilent Technologies; total length, 96 cm;
i.d., 50 µm) was pre-conditioned with 1 M NaOH for 30 min, followed by MilliQ®(Molsheim, France)
water for 30 min and background electrolyte-BGE (1.0 M formic acid in 10% methanol) for 30 min.
Before each analysis, the capillary was flushed for 5 min (950 mbar pressure) with BGE. Samples were
injected at 50 mbar for 50 s. After each injection, along with the samples, BGE was co-injected for
20 s at 100 mbar pressure to improve reproducibility. Separations were performed at a pressure of
25 mbar and a voltage of 30 kV; current under these conditions was 20 µA. The MS was operated in
positive mode, with a full scan from m/z 60 to 1000 at a rate of 1 scan/s. Drying gas was set to 10 L/min,
nebulizer to 10 psi, voltage to 3.5 kV, fragmentor to 125 V, gas temperature to 200 ◦C and skimmer
to 65 V. The sheath liquid composition was methanol/water (1/1, v/v), containing 1.0 Mmol/L formic
acid with two reference masses (m/z 121.050873—purine (C5H4N4) and m/z 922.009798—HP-921
(C18H18O6N3P3F24)), which allows for mass correction and provides more accurate determination.
Flow rate was 0.6 mL/min and split was set to 1/100 [27].
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2.4. Data Management

2.4.1. Metabolomics Data Processing

LC-MS and CE-MS data were cleaned from background noises and unrelated ions by recursive
analysis in Mass Hunter Profinder (B.08.00, Agilent Technologies, Santa Clara, CA, USA) software.
In the first step, Molecular Feature Extraction (MFE), the algorithm performs chromatographic
deconvolution to find all features in the analyzed samples and align across all the selected sample
files using mass and retention/migration time. In the second step, MFE results are used to perform
recursive feature extraction, where the Find by Ion (FbI) algorithm uses the median mass, median
retention/migration time, and composite spectrum calculated from the aligned features to improve
reliability. Spectral deconvolution with Agilent Unknown Analysis software (Ver. B.08.00. Agilent
Technologies, Santa Clara, CA, USA) was used to extract the data acquired by GC-MS analysis.
Alignment of drift (by retention time and mass) and data filtering were performed with the Mass
Profiler Professional ver. B.12.1 (Agilent Technologies, Santa Clara, CA, USA) software. Assignment of
the target ion and the qualifiers, entire batch pre-processing and manual inspection of the acquired
data including peak area and RT integration was performed with Agilent MassHunter Quantitative
Analysis (Ver. B.08.00, Agilent Technologies, Santa Clara, CA, USA).

2.4.2. Quality Assurance Procedure

Quality control and quality assurance procedures were applied according to published
guidelines [29]. Acquired data were evaluated by examination of reproducibility of sample treatment
procedure and analytical performance by raw data inspection. Principal component analysis (PCA-X),
a projection method was used to check for signal drift, variation in QC samples and outliers.

Tight clustering of QCs was observed for data acquired in all experiments, indicating high
precision of the analytical outcome (Figure S1). Shewhart control charts were used to plot acquired
signals versus the sample acquisition order to overview the analytical precision. Variation within
measurements was calculated for QCs and expressed as relative standard deviation (RSD). Data was
evaluated by Hotelling´s T2 Range Plot on PCA-X model and outlying observations were removed
from further calculations.

2.5. Data Pre-Treatment

Data Filtration and Normalization
Before statistical analysis, filtration and data normalization were performed. Features with mean

blank values higher than 10% of the mean value in samples were considered as non-relevant [29].
Variation of the compound concentrations in QC samples expressed as relative standard deviation
(%RSD) was calculated and cut-off threshold of 20% for LC-MS and CE-MS and 30% for GC-MS was
set for the RSD values of metabolites present in the QC samples. Instrumental variation detected in
LC-MS data and CE-MS was corrected by QC samples applying support vector regression algorithm
(QC-SVRC) [30]. GC-MS data was normalized according to the intensity of IS. IS normalization was
also considered in order to correct for the unwanted variance related to sample preparation in CE-MS.

2.6. Statistical Analysis

Data normality was verified by Kolmogorow−Smirnov−Lillefors test and variance ratio by the
Levene’s test. Clinical characteristics were summarized as number and percentage for categorical
variables and differences between groups were assessed by chi-square tests with Fisher´s exact
correction when appropriate. Continuous variables were represented by their mean and standard
deviation and comparisons performed by Student´s t tests. All statistical analyses were undertaken
with SPSS® (IBM, New York, NY, USA) v25.

For metabolomics data, principal components analysis (PCA-X) and orthogonal projection to latent
structures discriminant analysis (OPLS-DA) as well as other multivariate calculations and plots were



Nutrients 2020, 12, 1188 6 of 17

performed in SIMCA-P + 14.0 (Umetrics, Umea, Sweden) in order to examine the data in multivariate
settings. Combination of VIP-p(corr) (correlation coefficient combined with VIP, Variable Influence on
the Projection) based on selected OPLS-DA model was applied for specified interpretations with the
threshold for variable selection set to VIP > 1.0 and p(corr) > 0.5.

Metabolomic differences among experimental groups were tested by using either the ANOVA
or the Kruskal−Wallis tests according to normality of the variable distribution, with post hoc test for
multiple comparisons. The level of statistical significance was set at 95% (p < 0.05) and false discovery
rate set at 0.05. Univariate statistical analyses were performed with GraphPadPrism® (GraphPad
Software Inc., San Diego, CA, USA) version 7.04.

MetaboAnalyst, a comprehensive web-based tool for metabolomic data analysis, visualization,
and functional interpretation was used to test associations between variables and clinical metadata for
hierarchical heat map clustering [31].

2.7. Metabolite Identification

For metabolite identity assignment, accurate m/z measurements of detected chromatographic
peaks from LC-MS and CE-MS data were first matched to metabolites from online MS databases as Kegg,
Metlin, LipidMaps, and HMDB using advanced CEU Mass Mediator tool [32]. Isotopic distributions for
each metabolite feature (LC-MS and CE-MS) have been studied for the confirmation. For LC-MS data,
AutoMSMS mode was used to obtain MS and MS/MS spectra of the three most abundant precursor
ions per cycle. Final metabolite assignment according to fragmentation pattern was dependent on the
ability to obtain mass spectra with adequate signal. An in-house developed CE-MS standards library
was used to compare relative migration time of selected metabolites and compound identification was
confirmed by using chemical standards, if available. For GC-MS data compound identification was
performed with the target metabolite Fiehn GC-MS Metabolomics RTL (Retention Time Locked) library
(G1676AA, Agilent), the CEMBIO-library and the NIST (National Institute of Standards and Technology)
mass spectra library (Ver. 2014), using the ChemStation software and native PBM (Probability-Based
Matching) algorithm (G1701EA E.02.00.493, Agilent Technologies, Santa Clara, CA, USA).

3. Results

3.1. Clinical Characteristics of the Study Subjects

We selected plasma samples obtained from 51 VPIs previous to discharge. Twenty-nine
corresponded to preterm babies with weight at discharge over the 10th percentile for postmenstrual
age and 22 to EUGR patients.

There were no significant differences in gender or gestational age at birth. Although prevalence of
complications of prematurity were in general higher in EUGR infants, none of these differences were
significant (see Table S1). There was a trend for a higher postmenstrual age at discharge in the EUGR
group (36.9 ± 2.0 vs 38.0 ± 2.1 weeks, p = 0.075).

Growth between the groups was different from birth. Weight and head circumference and their
z-scores for both parameters at birth were lower in infants that went on to develop EUGR (weight: 1223
± 235g vs 1402 ± 294g, p = 0.023 and z-scores –0.34 ± 0.74 vs 0.42±0.68, p = 0.027; head circumference
(HC) 25.9 ± 2.0cm vs 26.9 ± 1.9 cm, p 0.084 and z-scores –0.55 ± 0.74 vs –0.09 ± 0.57, p = 0.023) and
this difference kept increasing during admission, with bigger falls in z-score for both weight and head
circumference from birth to discharge (fall in weight z-score –1.88 ± 0.61 in EUGR vs –1.25 ± 0.61 in
normally grown, p = 0.001; fall in HC z-score –1.07 ± 1.19 in EUGR vs – 0.42 ± 0.67 in normally grown,
p = 0.033).

Global nutrition during the 1st week of life was similar between groups, but supply was mainly
intravenous in the EUGR group and enteral in the non-EUGR group (see Table 1). During the 2nd week
of life energy and protein supply was lower in the EUGR group (109.0 ± 16.0 vs 120.6 ± 14.8 kcal/kg/day,
p = 0.010 and 3.2 ± 0.8 vs 3.6 ± 0.7 g/kg/day, p = 0.069), mostly at the expense of enteral nutrition (see
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Table 1). There were no differences in type of feeding at discharge (69.0% of non-EUGR and 77.3% of
EUGR were only receiving their own mother’s milk, p = 0.510).

3.2. Metabolic Fingerprinting

Applying an untargeted strategy, a significant amount of information was obtained from the
metabolomic study of plasma, resulting in 1040 and 1044 metabolic features from LC-MS operated in
positive and negative ionization mode, respectively, 409 acquired from CE-MS and 96 from GC-MS
analysis. This data matrix was used for further data treatment. Considering the highly dimensional
structure of metabolomics data, with low sample-to-variable ratio, and many uninformative or
redundant variables, strategies for dimensionality reduction were applied. Using orthogonal partial
least squares discriminant analysis (OPLS-DA) fitted models we explored differences in metabolic
phenotypes between non-EUGR and EUGR cases. All generated models (Figure 1) present good
separation between groups (R2), but rather poor predictivity (Q2). However, despite this fact,
the models established for CE-MS, GC-MS and LC-MS/ESI- presented significant values of CV-ANOVA,
which is considered as a measure of significance for the observed group separation. Moreover, as for
the purpose of this global and exploratory analysis and considering that only the first component
holds group separation, we examined which variables differentiated between groups and could be
evaluated in subsequent univariate analysis.
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Table 1. Comparison of nutritional and growth parameters between normally grown and extrauterine
growth restriction (EUGR) patients. Categorical values are represented as number (%) and continuous
variables as mean (SD). Categorical values were compared with chi-square tests and continuous
variables with Student´s t tests.

Normally Grown (n = 29) EUGR (n = 22) p-Value

At birth

Gestational age (weeks) 29.8 (1.8) 29.4 (1.9) 0.390

Birthweight (g)
Z-score

1402 (294)
0.42 (0.68)

1223 (235)
–0.34 (0.74)

0.023
0.027

Length at birth (cm)
Z-score

39.2 (3.0)
0.20 (0.80)

37.9 (2.6)
–0.17 (0.76)

0.091
0.109

Head circumference at birth (cm)
Z-score

26.9 (1.9)
–0.09 (0.57)

25.9 (2.0)
–0.55 (0.74)

0.084
0.023

At discharge

Postmenstrual age (weeks) 36.8 (2.1) 37.8 (2.2) 0.094

Weight at discharge (g)
Z-score

Fall in weight z-score from birth

2399 (353)
–0.83 (0.34)
–1.25 (0.61)

2216 (444)
–1.91 (0.43)
–1.88 (0.61)

0.108
<0.0001

0.001

Length at discharge (cm)
Z-score

Fall in length z-score from birth

45.5 (1.9)
–0.78 (0.69)
–0.97 (0.90)

45.3 (2.5)
–38 (0.95)

–1.14 (0.96)

0.796
0.012
0.535

Head circumference at discharge (cm)
Z-score

Fall in HC z-score from birth

32.2 (1.6)
–0.52 (0.58)
–0.42 (0.67)

32.0 (1.4)
–1.66 (1.08)
–1.07 (1.19)

0.424
<0.0001

0.033

Nutrition

Parenteral nutrition (days) 10.1 (6.9) 12.3 (7.8) 0.293

Age at first full enteral feeds (days) 10.6 (6.7) 11.8 (4.4) 0.461

Average parenteral nutrition 1st week
Energy (kcal/kg/day)

Protein (g/kg/day)
Lipids (g/kg/day)

Protein/energy ratio (g/100kcal)

61.3 (12.2)
2.4 (0.7)
1.7 (0.7)
3.5 (0.5)

71.1 (11.1)
2.8 (0.5)
2.1 (0.5)
3.6 (0.3)

0.014
0.030
0.018
0.100

Average enteral nutrition 1st week
Volume (ml/kg/day)

Calculated energy (kcal/kg/day)
Calculated protein (g/kg/day)

33.3 (21.2)
24.3 (16.0)
0.6 (0.4)

21.3 (14.4)
15.2 (10.2)
0.3 (0.2)

0.021
0.017
0.019

Global nutrition 1st week (PN + enteral)
Energy (kcal/kg/day)

Protein (g/kg/day)
85.6 (8.9)
3.0 (0.5)

86.3 (8.5)
3.2 (0.3)

0.776
0.163

Average parenteral nutrition 2nd week
Energy (kcal/kg/day)

Protein (g/kg/day)
Lipids (g/kg/day)

Protein/energy ratio (g/100kcal)

20.3 (30.4)
0.8 (1.2)
0.5 (0.9)
2.9 (0.5)

31.4 (30.0)
1.1 (1.1)
0.7 (0.9)
2.9 (0.5)

0.203
0.445
0.326
0.678

Average enteral nutrition 2nd week
Volume (mL/kg/day)

Calculated energy (kcal/kg/day)
Calculated protein (g/kg/day)

123.0 (47.4)
100.2 (41.6)

2.7 (1.3)

97.9 (42.7)
77.6 (37.1)
2.1 (1.2)

0.056
0.050
0.083

Global nutrition 2nd week (PN + enteral)
Energy (kcal/kg/day)

Protein (g/kg/day)
120.6 (14.8)

3.6 (0.7)
109.0 (16.0)

3.2 (0.8)
0.010
0.069

Feeding at discharge
Own Mother´s Milk

Mixed feeding
Formula

20 (69.0)
4 (13.8)
5 (17.2)

17 (77.3)
5 (22.7)
0 (0.0)

– *
–
–

Exclusive own´s mother milk at discharge 20 (69.0) 17 (77.3) 0.510

Nutritional intake at discharge
Milk volume (ml/kg/day)
Calculated protein intake
Per kilogram (g/kg/day)

Total (g/day)
Calculated energy intake (kcal/kg/day)

170 (16)

2.3 (1.0)
5.5 (2.2)
127 (18)

163 (23)

1.9 (0.9)
4.3 (2.0)
124 (17)

0.222

0.143
0.049
0.520

* Chi-square p not calculated due to 50% of cells with an expected count of less than 5. Comparisons with a p–value
< 0.05 were considered significant and are highlighted in bold and italic.
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Variable influence on the projection (VIP) scores as a quantitative estimation of the discriminatory
power of each individual metabolite were extracted only for the predictive component of the OPLS-DA
model. Additionally, a complementary p(corr) correlation coefficient combined with VIP (VIP-p(corr)
analysis) allowed the selection of the most relevant metabolites for the separation. For further evaluation
selected metabolic features were subtracted for univariate, either the ANOVA or the Kruskal−Wallis with
post hoc Benjamini-Hochberg (FDR, false discovery rate) correction for multiple comparisons, resulting
in 114 compounds found to be statistically significant. The pie chart presented (Figure 2A) shows
the percentage distribution of the specified metabolite classes illustrating the diversity of metabolites
that were found to be associated with EUGR. Of all reported compounds, 24% were amino acids and
derivatives detected in CE-MS and/or GC-MS and 30% were glycerol- and lysoglycero-phospholipids
(including phosphatidylinositols, lysophosphatidylcholines, and lysophosphatidylethanolamines)
detected in LC-MS positive and/or negative mode. Additionally, sphingolipids, including ceramides
(7%) and sphingomyelins (18%) with different backbone lengths and degree of unsaturation were
identified by LC-MS. Free fatty acids and hydroxyl fatty acid (hydroxypalmitic acid) were another
lipid class detected in negative LC-MS mode and differentially present between groups. Fatty acids,
namely oleic acid, linoleic acid and palmitic acid were also detected in GC-MS and LC-MS negative
mode. Long-chain acyl fatty acid derivative esters of carnitine (linoleylcarnitine, palmitoylcarnitine,
oleoylcarnitine, stearoylcarnitine) were detected in positive LC-MS mode.

A heatmap with hierarchical clustering was constructed to visualize the differences in the average
intensities of statistically significant metabolites (Figure 2B). A clear metabolic pattern discriminating
between non-EUGR and EUGR cases can be observed, with a gradient according to the degree of
EUGR severity (EUGR-mod and EUGR-sev) for many compounds. A heatmap analysis indicates that
most of the reported metabolites were downregulated in EUGR cases. However, in the case of steroids
and steroid derivatives or fatty acids we could observe an increase in the associated relative signal
intensities in samples from EUGR babies.

Metscape, a bioinformatics framework for the exploration of experimental metabolomics and
expression profiling data in the context of human metabolism [33] was used to identify and visualize
enriched pathways from acquired metabolomics data (Figure S2). This allows a deeper insight into
the molecular pathways that might be related to EUGR in preterm infants. The main players were
related to amino acid metabolism and mapped as (1) urea cycle and metabolism of arginine, proline,
glutamate, aspartate and asparagine; (2) tyrosine metabolism; (3) tryptophan metabolism; (4) valine,
leucine and isoleucine metabolism; (5) lysine metabolism; (6) methionine and cysteine metabolism;
and (7) glycine, serine, alanine and threonine metabolism. Additionally, our data point to alterations
in lipid molecular pathways, particularly glycerophospholipid and glycosphingolipid metabolism.
Other pathways involved were those associated with bile acid biosynthesis, fatty acid metabolism,
purine metabolism or glycolysis and gluconeogenesis.

A detailed inter-group comparison of the compounds belonging to the classes of amino acids
and derivatives and lipid-related molecules is presented in Tables S2,S3, respectively. All essential
and non-essential amino acids, except for histidine, aspartic acid and glutamic acid were significantly
different between EUGR and non-EUGR patients, and most showed a progressive decrease along with
the degree of growth restriction (Figure 3).
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Figure 2. (A) Panel A. Pie chart representing the distribution of metabolites identified from
multiplatform metabolomic analysis that were significantly different between EUGR and non EUGR
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and Ward clustering algorithm has been applied for statistically significant metabolites, illustrating
the differences in the metabolite abundance between non-EUGR, EUGR-mod and EUGR-sev cases.
Each colored cell corresponds to an abundance value, where blue indicates the lowest and red the
highest value.
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Interestingly, some biochemical changes seemed to be specifically present in infants with the most
severe degree of growth failure, mainly regarding the levels of steroids and steroid derivatives and bile
acids, particularly taurocholic acid (Table S3).

4. Discussion

4.1. EUGR is Associated With Disrupted Amino Acid Metabolism

The plasmatic levels of most essential and non-essential amino acids (leucine/isoleucine, lysine,
methionine, phenylalanine, threonine, valine, arginine, alanine, tyrosine, glutamine, glycine, proline,
serine, asparagine) were higher in well-grown VPI, and there was a gradient according to the severity
of EUGR (moderate > severe).

An increase in plasma branched-chain amino acids (BCAA) has been described in relation to
obesity and insulin resistance in both adults [34] and prepubertal children [15]. In preterm infants,
better in-hospital growth should result in a higher mass of insulin-sensitive tissue (muscle and adipose
tissue), and in principle, lower peripheral resistance [35]. Actually, it has been shown that a higher
provision of amino acids can induce insulin secretion in VPIs [35] and this does in turn improve levels
of insulin-like growth factor I [36] (IGF-I). IGF-I is higher in healthy adults with lower body size than
in obese insulin-resistant individuals [34], but it correlates with both fetal and postnatal mass [37], so it
makes more sense that its associated metabolic markers will represent a more adequate pattern of
growth in the perinatal context.

Additionally, BCAA, particularly leucine, can be biomarkers of reduced muscle mass and
performance [38,39] in the elderly adult. When compared with healthy newborns, preterm infants
show a deficit in lean mass by the time they reach term-equivalent age [40,41]. The studies in elderly
individuals suggest that lower BCAAs might reflect differences in global protein consumption, arguing
against correction of intake by body weight in cases of low muscle mass [38] and proposing that an
absolute minimum intake, related to the plasma and intramuscular levels of leucine, is required to
activate protein synthesis through the mTOR pathway [38]. Total protein intake was indeed lower in
the EUGR groups in our sample (see Table 1).

Most reports of amino acid levels in prematurity in relation to growth describe global changes
affecting them all in the same direction. In a randomized control trial (RCT) of a nutritional intervention,
higher levels of plasma amino acids in very low birth weight infants at 5 weeks of life were related to
higher growth velocity within the intermediate rate of protein supply (2.9–3.4 g/kg/day) [42]. This was
specially true for BCAA and in the healthier patients (appropriate for gestational age at birth and
without LOS or bronchopulmonary displasia (BPD) [42]. In the same study, preterm infants with LOS or
BPD had higher levels of total amino acids, higher arginine levels and higher levels of aspartic acid [42].
In our study, respiratory morbidity was more prevalent in the growth restricted group (not statistically
significant due to sample size), while the incidence of late onset sepsis LOS was the same, but amino
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acid levels were lower. These differences might be justified by the high prevalence of SGA in the RCT,
while they were excluded in our study, or by the effects of the nutritional intervention. Contrary to our
results, an inverse relationship between plasma amino acids and growth velocity in formula fed infants
of higher gestational age were reported in an older investigation [43]. They speculate that this could be
due to amino acid utilization during tissue accretion [43]. We tried to assess if our EUGR population
was starting to experience some degree of catch up at the moment of discharge, but the data do not
support this hypothesis. In their population, higher nitrogen retention was associated with higher
plasma phenylalanine [43] (PHE). PHE was also higher in our well-grown preterms. A metabolomic
investigation of EUGR in extreme prematures more specifically centered in a targeted analysis of
carnitines found higher concentrations of glutamine/glutamic acid and proline in infants with growth
failure and higher concentrations of methionine and histidine in infants with appropriate growth [23].
The concomitant analysis of the intestinal microbiome uncovered correlations between the amino acid
profile and specific taxa [23]. The differences with our results might reflect differences in microbiota,
in the gestational age of the samples (their study was performed in extremely premature infants, born
under 28 weeks) or in the degree of growth restriction (the average weight percentile of our non-EUGR
group was P20 and P3 for the EUGR, compared to P10 and <1, respectively, in their paper [23]).

4.2. EUGR is Associated With Disrupted Lipid Metabolism

EUGR VPI had lower plasma levels of several phospholipids (glycerophospholipids and
sphingolipids), and for many of these the magnitude of the decrease corresponded with the severity of
the growth failure.

Increased levels of certain sphingolipids (sphingomyelins and ceramides) have been related
to obesity and insulin resistance in adults [34], and a lifestyle intervention in children with obesity
showed a reduction in sphingolipid levels together with, but not mediated by, beneficial effects on
BMI [17]. Although the metabolomic profile of the normally grown preterm infants resembles that
of older patients with overweight or insulin resistance, interpretation must be cautious as they are
in a completely different developmental setting. Patients classified as “non-EUGR” had not had an
excessive weight gain: at discharge, they were still below what would be expected for their PMA and
their z-scores for weight and length had both decreased from birth (−1.25 ± 0.61 and −0.97 ± 0.90,
respectively). Not much is known about lipid metabolism during infancy. The scarce information
seems to highlight relevant differences with the adult age. Healthy breast-fed infants present profiles
(high cholesterol, high LDL, low HDL) that would be considered adverse in adults [44]. Plasma lipids
in infants contain a higher proportion of sphingomyelins [45], which are the predominant phospholipid
in breast milk [46]. Sphingolipids are particularly relevant in brain development and function [47,48],
and their lower availability might mediate the worsening of neurodevelopmental outcome after
EUGR [49].

The lipid profile experiences rapid changes within the first 12 months of life [45], specifically
characterized by an increase in lysophosphatidylcholines. LysoPCs were higher in the non-EUGR group
and lowest in the severe EUGR, with no sizeable difference in their chronological age. This could then
indicate that postnatal growth failure is associated to a delay in metabolic development, as previously
proposed [23]. It has been postulated [44] that higher levels of proinflammatory lysoPCs in breastfed
infants might play a role in protection from infectious disease. A history of LOS is frequently more
prevalent in EUGR preterm infants [1], although this was not the case in our sample, maybe due to
small sample size.

Interestingly, our study replicates the observation that levels of lysoPC (14:0) in the first months of
life are associated with (and predictive of) faster growth [16]. This could be interpreted in the context
of the rapid fat mass acquisition after preterm birth [41], which might be less pronounced in EUGR
babies, and that normalizes to levels of term-born infants by 5 months corrected age [50]. On the
contrary, we could not confirm other lipid species that have been proposed as markers of growth in
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term infants [44], maybe because they were described in the context of the different growth rates of
breast- or formula-feeding and feeding type was homogeneous between groups in our sample.

In agreement with previous reports [23], some long-chain acylcarnitines were higher in the
normally grown VPIs. Although in the adult this has been associated to insulin resistance [51],
in the context of prematurity it may indicate a persistent state of malnutrition and delayed metabolic
maturation that may relate to aberrant gut colonization [23]. At the time of sampling, both groups
were receiving equivalent nutrition (Table 1), but this might have been insufficient to compensate for
earlier lower protein and energy supply, or this early deficit might have had a “programming” effect
on metabolism.

Several bile acid metabolites were increased in plasma of EUGR VPIs, specifically in the severe
cases. Bile acids have been proposed as markers of liver injury [52]. Liver injury in preterm infants is
multifactorial [53], but exposure of both groups to predisposing factors (infection, prolonged parenteral
nutrition, prolonged fasting) was similar. It might be that infants suffering from postnatal growth
restriction had a certain degree of subclinical hepatic dysfunction and contributing somehow to altered
metabolism and growth, but our data are not enough to hypothesize further. Also, bile acid metabolism
is closely related to the function of gut bacteria [54] and these disparity might reflect differences in
intestinal colonization [23].

5. Conclusions

In summary, through a multiplatform untargeted metabolomic approach we have identified a
range of metabolites associated to postnatal growth faltering in very preterm infants. The most relevant
markers relate to amino acid metabolism, particularly regarding BCAA, but there are also striking
global changes in lipid species.

Many of the alterations described in the preterm infants with better growth have been related to
an adverse metabolic profile when studying adult or obese populations. In the context of our study,
we believe that they represent a healthy metabolic profile associated to a physiologic period of rapid
growth and fat deposition, and that they correspond to the comparison with a population presenting
malnutrition and failure to thrive. Nevertheless, it will be interesting to analyze follow up data and see
if this uncovers indeed a higher risk of insulin resistance and adverse cardiovascular outcome in the
preterm infants with a better weight for PMA at discharge.
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S2. Differences in plasma amino acids and derivatives between well-grown and EUGR VPI. Table S3. Differences
in plasma lipid species between well-grown and EUGR VPI.
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