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Among others, expression levels of programmed cell death 1 ligand 1 (PD-L1)

have been explored as biomarkers of the response to immune checkpoint inhi-

bitors in cancer therapy. Here, we present the results of a chemical screen that

interrogated how medically approved drugs influence PD-L1 expression. As

expected, corticosteroids and inhibitors of Janus kinases were among the top

PD-L1 downregulators. In addition, we identified that PD-L1 expression is

induced by antiestrogenic compounds. Transcriptomic analyses indicate that

chronic estrogen receptor alpha (ERa) inhibition triggers a broad immunosup-

pressive program in ER-positive breast cancer cells, which is subsequent to

their growth arrest and involves the activation of multiple immune checkpoints

together with the silencing of the antigen-presenting machinery. Accordingly,

estrogen-deprived MCF7 cells are resistant to T-cell-mediated cell killing, in a

manner that is independent of PD-L1, but which is reverted by estradiol. Our

study reveals that while antiestrogen therapies efficiently limit the growth of

ER-positive breast cancer cells, they concomitantly trigger a transcriptional

program that favors their immune evasion.
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1. Introduction

Breast cancer (BC) is the most frequent cancer in

women worldwide and the second cause of cancer-

related mortality [1]. In around 75% of BC cases,

tumor cells express estrogen receptor alpha (ERa) and
are dependent on its transcriptional activity for sur-

vival and growth [2]. Patients with ERa-positive
tumors (ER+, hereafter) usually receive endocrine ther-

apies such as selective ER modulators (SERM, e.g.,

tamoxifen), selective ER degraders (SERD, e.g., fulves-

trant), or aromatase inhibitors (reviewed in Ref. [3]).

Unfortunately, and while hormone therapy is effective

in arresting the growth of ER+ cancer cells and reduc-

ing tumor burden, a substantial number of patients

relapse into a metastatic stage of poor prognosis [4].

Thus, there is intensive effort in testing the efficacy of

new therapies, to be used alone or in combination with

hormone therapy, to reduce the percentage of recur-

rences and improve overall survival. In this context,

targeting immune checkpoints by blocking pro-

grammed cell death 1 (PD-1) and/or programmed cell

death 1 ligand 1 (PD-L1) is one of the most promising

new cancer therapies and has shown to improve

progression-free survival for triple-negative BC

(TNBC) patients [5]. However, initial evidences indi-

cate that ER+ tumors are not very responsive to

immunotherapy, which among others might be due to

a low mutational burden and low numbers of infiltrat-

ing lymphocytes [6].

Estrogens, most frequently 17b-estradiol (E2), have
widespread effects on transcription that are to a large

extent mediated by binding to two members of the

nuclear receptor family, ERa (ESR1) and ERb
(ESR2). Upon binding to estrogens, these factors

homodimerize and bind to target sequences on chro-

matin where they regulate transcription preferentially

at distal enhancers [7,8]. Besides their well-known roles

in reproductive organs, estrogens have also effects in

other tissues including bone, liver, colon, adipose tis-

sue, kidney, skin, and the cardiovascular and central

nervous systems [9]. In addition, several lines of evi-

dence indicate a particularly important role of estro-

gens in suppressing inflammation, which is thought to

contribute to the gender-related differences found in

diseases such as multiple sclerosis or rheumatoid

arthritis [10,11]. Interestingly, the anti-inflammatory

effects of estrogens might underlie the lower mortality

rates of female patients to COVID-19 [12], which has

led to a clinical trial to explore whether estrogen

patches can reduce the severity of the infection [13].

Importantly, this effect of estrogens is also relevant in

cancers that have been linked to inflammation such as

hepatocellular carcinoma, which is three to five times

more frequent in men than in women [14].

Despite its relevance for human disease, how estro-

gens regulate inflammation is yet not fully understood.

Most studies in this regard have focused on a crosstalk

between ERa and the transcription factor nuclear

factor-kappa B (NF-jB), a key regulatory element of

inflammatory responses associated with the develop-

ment, progression, and therapy resistance in cancer

[15–17]. An example of this crosstalk relates to ERa
preventing the binding of NF-jB to its target sites in

the interleukin-6 (IL-6) promoter, thereby preventing

the expression of this key proinflammatory cytokine

[18]. Surprisingly, and although the link between estro-

gen signaling and inflammation has been known for

decades, the contribution of this phenomenon in the

context of the estrogen deprivation therapy for ER+

BC patients remains largely unexplored. We here

reveal that while hormone therapy efficiently arrests

the growth of epithelial ER+ BC cells, it also triggers a

broad inflammatory and immunosuppressive transcrip-

tional program that limits their clearance by the

immune system.

2. Materials and methods

2.1. Cell culture, transfection, and chemicals

A549, MCF7, T47D, ZR-75-1, HCC1937, and MDA-

MB-231 were a kind gift from T. Helleday laboratory,

and cell line identity was confirmed using short-tandem

repeat profiling analysis by ATCC. Except for ZR-75-1

and HCC1937, which were cultured in RPMI 1640, all

cell lines were cultured in Dulbecco’s modified Eagle’s

medium supplemented with 10% fetal bovine serum

and penicillin/streptomycin (100 U�mL�1) at 37 °C in a

5% CO2 humidified incubator. For experiments requir-

ing hormone depletion, cells were cultured in phenol

red-free DMEM or RPMI 1640 supplemented with

2 mM L-glutamine and 10% charcoal/dextran stripped

fetal bovine serum (Sigma-Aldrich, St. Louis, MO,

USA; F6765), hereafter termed steroid-free media

(SFM). Where indicated, 10 nM 17a-ethinylestradiol
(Sigma-Aldrich, E4876) was added to SFM. For fulves-

trant treatments, cells were cultured in standard

DMEM supplemented with 1 µM fulvestrant (ICI 182,

780, Tocris, Bio-Techne Ltd., Abingdon, UK, 1047) for

the indicated number of days. During all treatments,

the respective media were exchanged every 4 days. For

siRNA transfections, cells were seeded in six-well plates
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and transfected the next day with 30 pmol of ESR1

(Sigma-Aldrich, SASI_Hs01_00078592), ESR2 (Dhar-

macon, Horizon Discovery, Cambridge, UK, L-003402-

00-0005), or Ctrl (Dharmacon, D-001810-10-20) siRNA

using RNAiMAX according to the manufacturer’s

instructions. Transfection was repeated 3 days later,

and cells were harvested for analysis at day 6.

2.2. High-throughput screening (HTS)

The chemical compound library was provided by the

Chemical Biology Consortium Sweden (CBCS) and

contained 4126 pharmacologically active compounds

from the following libraries: Prestwick, Tocris mini,

Selleck tool compounds, Selleck known kinase inhibi-

tors, and ENZO tool compounds, as well as 115 cova-

lent drugs synthesized by Henriksson M. (Karolinska

Institutet, Sweden). Plate handling and liquid handling

were performed using Echo 550 (Labcyte, Beckman

Coulter Life Sciences, Indianapolis, IN, USA), Viaflo

384 (Integra Bioscience, Hudson, NH, USA), and

MultiFlo FX Multi-Mode Dispenser (BioTek,

Winooski, VT, USA). Images were acquired by IN

Cell Analyzer 2200 (GE Healthcare, Milwaukee, WI,

USA) with a 109 objective, and quantitative image

analyses were run in CellProfiler (https://cellprofiler.

org) [19]. Statistical analyses were carried out with

Microsoft Excel and GRAPHPAD PRISM software (Graph-

Pad Software Inc., San Diego, CA, USA). For the pri-

mary HT screening, A549 cells were trypsinized,

resuspended in culture medium containing

100 ng�mL�1 human interferon gamma (IFN-c;
Sigma-Aldrich), dispensed into 384-well plates (BD

Falcon, Corning, Glendale, AZ, USA, 353962), and

incubated for 24 h at 37 °C in a 5% CO2 atmosphere.

The next day, compounds were added to cells achiev-

ing a final concentration of 10 lM and a DMSO vol-

ume concentration of 0.1%. Cells were incubated for

24 h before staining with PE-labeled anti-human

CD274 (Clone MIH1; BD Biosciences, Stockholm,

Sweden) antibody. Cells were fixed and stained with

2% formaldehyde and 2 mM Hoechst 33342, respec-

tively. For the validation screening, MCF7 cells were

hormone-stripped by preculturing in SFM for 15 days

with several medium changes. Cells were subsequently

exposed to DMSO or ethinylestradiol (EE) for 3 days,

seeded in 384-well plates, and incubated overnight at

37 °C in a 5% CO2 atmosphere. The next day, the

chemical library, comprising 163 compounds, including

estrogens and antiestrogens, was added to the cells

reaching a final concentration of 0.1, 1.0, and 10 µM.

After 72 h of incubation, cells were stained and fixed

as described above.

2.3. Immunoblotting

Cells were lysed in RIPA buffer (Thermo Fisher Scien-

tific) supplemented with protease and phosphatase inhi-

bitor cocktail (Roche, Sigma-Aldrich, Stockholm,

Sweden), sonicated for 5 min, and centrifuged at 4 °C,
at 16 900 g for 15 min. 50 lg whole-cell extracts were

separated by SDS/PAGE and transferred onto Nitrocel-

lulose membrane (Bio-Rad). After blocking in 5% milk

in TBST, immunodetection was done overnight at 4 °C
with antibodies against PD-L1 (CST, 13684), ERa
(CST, 8644), C-terminal SRC kinase (CSK; CST, 4980),

Stat1 (CST, 14994), phospho-Stat1Tyr701 (CST, 9167),

p65 (CST, 8242), phospho-p65Ser536 (CST, 3033), p21

(CST, 2947), H3K9me3 (Merck, Darmstadt, Germany,

07-442), b-actin (Abcam, Cambridge, UK, ab6276), vin-

culin (Abcam, ab129002), and GAPDH (Millipore

Sigma, Sigma-Aldrich, ab2302). Appropriate HRP-

coupled secondary antibodies diluted in blocking solu-

tion were incubated for 1 h at room temperature. Sig-

nals were visualized by chemiluminescence

(SuperSignalTM West Dura; Thermo Scientific, 34076)

and acquired by an Amersham Imager 600 (GE Health-

care).

2.4. Flow cytometry

Cells were cultured as indicated and harvested using

Accutase (BD Biosciences, 561527). After centrifuga-

tion, cells were stained with fluorescently labeled PE

anti-human PD-L1 antibody (Clone MIH1; BD Bio-

sciences), PE anti-human PD-L2, PerCP/Cy5.5 anti-

human b2-microglobulin, and PerCP/Cy5.5 anti-

human human leukocyte antigen (HLA)-A, HLA-B,

and HLA-C (all from BioLegend, San Diego, CA,

USA) diluted in 2% FBS-PBS blocking solution for

45 min at 4 °C. Samples were washed and immediately

measured on a Guava easyCyte flow cytometer (EMD

Millipore, Darmstadt, Germany). Data were analyzed

with Guava InCyte and GRAPHPAD PRISM software

(GraphPad Software Inc.).

2.5. Quantitative RT-PCR

Total RNA was isolated using the PureLink RNA Mini

Kit (Invitrogen) according to the manufacturer’s

instructions. Reverse transcription and PCR amplifica-

tion were performed using TaqMan RNA-to-CT 1-Step

Kit and the StepOnePlusTM Real-Time PCR Instrument

(Applied Biosystems, Fisher Scientific, G€oteborg,

Sweden). The following probes were used in this study:

Hs01125301_m1 for CD274, Hs99999901_s1 for 18S,

Hs03929097_g1 for GAPDH, Hs01046817_m1 for
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ESR1, Hs01100353_m1 for ESR2, Hs00174128_m1 for

TNFA, Hs00989291_m1 for IFNG, Hs00174131_m1 for

IL-6, and Hs01058806_g1 for HLA-A.

2.6. Cytokine analysis

MCF7 cells were cultured in different media for indi-

cated number of days, and supernatant culture media

were collected every 4 days, centrifuged, and stored at

�80 °C until analysis. IL-6 levels of culture super-

natants were determined using the LEGENDplexTM

Human Inflammation Panel I (BioLegend, 740809),

according to the manufacturer’s instructions. Briefly,

supernatants (50 lL per sample) were incubated with

capture beads for 2 h at room temperature on an orbi-

tal shaker. Next, detection antibody was added and

beads were incubated for 1 h at room temperature.

After washing the beads, samples were measured using

a BD LSRFortessaTM flow cytometer (BD Biosciences).

Cytokine concentration was calculated based on a

standard curve using BioLegend’s LEGENDplexTM

data analysis software.

2.7. Generation of knockout cell lines

For CRISPR/Cas9-mediated generation of PD-L1

knockout clones, hybridized oligos (CACCGGCTG-

CACTAATTGTCTATT) targeting the human CD274

locus were ligated into the pSpCas9(BB)-2A-GFP plas-

mid (a gift from F. Zhang, Addgene #48138, Tedding-

ton, UK) according to standard procedures and

transfected into MCF7 cells [20]. GFP-positive cells

were FACS-sorted, and individual PD-L1 knockout

clones were confirmed by western blotting (WB). For

the generation of CSK-deficient MCF7 cells, the

pSpCas9(BB)-2A-GFP plasmid was cotransfected with

crRNA (target sequence: TACCTTGGTGACGGC-

CACAA, CM-003110-02; Horizon Discovery) accord-

ing to the manufacturer’s protocol. Two days after

transfection, GFP-positive cells were FACS-sorted into

a 96-well plate and single clones were analyzed for

CSK deficiency by WB.

2.8. RNA sequencing and data analyses

Next-generation RNA sequencing was performed to

determine changes in gene expression between DMEM

(normal)-, SFM (Treatment 1)-, fulvestrant (Treatment

2)-, or SFM+EE (Treatment 3)-cultured MCF7 cells.

Cells were cultured during 20 days in DMEM, SFM,

or fulvestrant, and 20 days in SFM with the addition

of EE in the last 4 days. The cells were subsequently

harvested and frozen at �80 °C, and the samples were

processed by Eurofins (Ebersberg, Germany) Geno-

mics Sweden AB, where the RNA was isolated and

assessed for QC, and finally, cDNA library prepara-

tion was performed. Illumina single-read sequencing

with a read length of 19 50 bp and 30 million reads

per sample was performed.

For gene set enrichment analysis (GSEA), genes in

each condition were ranked based on the log2 (fold

change) value between DMEM (normal) and SFM

(Treatment 1) or fulvestrant (Treatment 2). Each treat-

ment was done in triplicate. Genes enriched in each

treatment were positive, and genes enriched in normal

conditions (DMEM) were negative. The ranked gene

lists were loaded into GSEA software and tested against

the gene sets of the Hallmark collection (MSigDB).

RNA sequencing and subsequent analyses comparing

two different CSK knockout clones with MCF7 WT

cells were performed by the Bioinformatics and Expres-

sion Analysis core facility of Karolinska Institutet.

RNA sequencing data associated with this work are

accessible at the GEO repository, under accession

numbers GSE134938 and GSE181909.

2.9. T-cell-mediated tumor cell killing assay

MCF7 cells were transfected with mCherry-Nucleus-7, a

gift from Michael Davidson (Addgene plasmid #55110),

and a clone was selected. This MCF7 clone was then sub-

jected to SFM, SFM with 10 nM EE, and fulvestrant

treatments, as described above. T cells were isolated

5 days prior to addition of MCF7 cells and were acti-

vated with Dynabeads� Human T-Activator CD3/CD28

(Thermo Fisher, 11131D) and 2.5 ng�mL�1 of recombi-

nant human IL-2 (Thermo Fisher, PHC0027). T cells

were cocultured with the mCherry-Nucleus-7 MCF7 cells

in the presence of CellEventTM Caspase-3/7 Green Detec-

tion Reagent (Thermo Fisher, C10423) in 96-well plates.

Images were captured every 2 hours on a MetaXpress

Microscope (Molecular Devices, San Jose, CA, USA).

Total MCF7 nuclear count and caspase intensity was

analyzed using CELLPROFILER software.

2.10. METABRIC data set analysis

mRNA expression levels of the indicated genes from

the BC data set [21,22] were retrieved from cBioPortal.

Only patients with tumor mRNA data were taken into

consideration (n = 1904). The samples were then classi-

fied as ERa+ or ERa�, and ERa+ samples were further

subdivided in hormone therapy-treated or not (� or +
HT) using the annotation included in the dataset.

The expression levels present in cBioPortal are auto-

matically transformed into Z-scores for comparison
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purposes. Two-tailed Student’s t-test was used to

assess the statistically significant differences in mRNA

expression levels of the specified genes between ERa+

or ERa� and �HT or +HT patients.

2.11. Mouse study

Polyoma middle tumor antigen (PyMT) [FVB/N-Tg

(MMTV-PyVT)634Mul/J] transgenic animals harboring

breast tumors were treated with 4-hydroxytamoxifen

(Sigma-Aldrich; 1.2 mg�kg�1�daily�1) in 10% ethanol in

sunflower oil by oral gavage. Animals were killed in CO2

chamber when tumors reached the humane end point,

and the tumors were fixed in 10% formalin solution and

embedded in paraffin. For purification of total RNA

from formalin-fixed tumor sections, RNeasy FFPE Kit

(Qiagen) was used following the manufacturer’s instruc-

tions. Reverse transcription was done using Super-

ScriptTM IV VILOTM Master Mix (Thermo Fisher

Scientific), and the real-time PCR was performed using

Fast SYBRTM Green Master Mix (Applied Biosystems)

in a 7500 Fast Real-Time PCR System (Applied

Biosystems). The following primers were used for Cd274

(FW: 50 TGCGGACTACAAGCGAATCA and REV:

50 GCTGGATCCACGGAAATTC) and b-actin detec-

tion (FW: 50 GGCTCCTAGCACCATGAAGA and

REV: 50 CCACCGATCCACACAGAGTA).

2.12. Human study and tissue

Selection of human ER+ BC tissue samples has been

described previously [23]. Briefly, women with a histo-

logical diagnosis of hormone receptor positive BC, for

whom tissue from a distant metastasis and full medical

records were available, were eligible. Patients with syn-

chronous metastases were excluded. The study protocol

was approved by the Institutional Review Board of

Hospital 12 de Octubre (‘Comit�e �Etico de Investigaci�on

Cl�ınica—Hospital 12 de Octubre’, Madrid, Spain; Study

code: 11/137) and conducted according to the principles

expressed in the Declaration of Helsinki. This review

board waived the need for consent since all the samples

belonged to patients diagnosed of cancer before 2007.

According to the Royal Act in Biomedical Research in

force in Spain since 2007 (Royal Act 14/2007, July 3),

the retrospective collection of archival samples belong-

ing to patients diagnosed before 2007 does not require

individual signed informed consent.

2.13. Immunohistochemistry

For histological analyses, tissues were fixed in 10%

buffered formalin (Sigma-Aldrich) and embedded in

paraffin. Immunohistochemical staining with anti-PD-

L1 antibody (rabbit monoclonal antibody (E1L3N);

Cell Signaling #13684) was performed on 2.5-lm tissue

sections. Immunohistochemistry was performed using

an automated protocol developed for the Autostainer

Link automated slide staining system (DAKO, Agilent,

Santa Clara, CA, USA). All steps were performed on

this staining platform using validated reagents, includ-

ing deparaffinization, antigen retrieval (cell condition-

ing), and antibody incubation and detection.

Corresponding stainings were acquired and digitalized

using the AxioScan.Z1 system (Zeiss). Digitalized

images were automatically analyzed with the AXIOVI-

SION version 4.6.2 software (Zeiss). The percentage of

PD-L1 positivity was considered as ratio of PD-L1-

positive cells to total number of cells.

2.14. SA-b galactosidase assay

Senescence was induced in MCF7 cells by treatment

with 5 lM Nutlin-3 (Selleckchem, M300F-500) for

indicated number of days. Senescent cells were stained

for b-galactosidase activity at pH 6 (CST, 9860).

2.15. Statistics

Statistical parameters and tests are reported in the fig-

ures and corresponding figure legends. Statistical anal-

ysis was done using GRAPHPAD PRISM version 8.0

(GraphPad Software Inc.). One-way-ANOVA was per-

formed for all the datasets that required comparison

among multiple data points within a given experimen-

tal condition.

3. Results

3.1. Modulation of PD-L1 expression by

medically approved drugs

PD-L1 levels in tumor biopsies are one of the

biomarkers that have been shown to predict the

response to cancer immunotherapy using anti-PD-L1

inhibitors [24]. In this context, we seek to determine

how all medically approved drugs influence the surface

expression of PD-L1. To do so, we conducted a High-

Throughput screen using a library of 4216 compounds

including 1200 FDA-approved drugs and other chemi-

cals at various stages of clinical development (Fig. 1A;

see Materials and methods for details). The screening

was conducted in the human lung cancer cell line

A549, which was previously shown to express PD-L1

upon IFN-c stimulation [25]. Since we were primarily
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Fig. 1. Evaluating the effect of medically approved drugs on IFN-c-induced PD-L1 expression. (A) Overview of the phenotypic screen

workflow. Briefly, A549 cells were seeded in 100 ng�mL�1 IFN-c 24 h before addition of 4216 compounds at 10 lM. After 24 h of

compound exposure, cells were stained with an anti-PD-L1 antibody conjugated to phycoerythrin and fixed with formaldehyde. Nuclei were

stained with Hoechst, and the immunofluorescences were analyzed by HTM. (B) Hit distribution of the screen described in (A) illustrating

the enrichment of JAK inhibitors and corticosteroids among the compounds reducing PD-L1 signal in HTM. PD-L1 levels in wells with only

IFN-c and negative controls (DMSO) are also shown to illustrate the window of the assay. (C) Western blot illustrating the levels of PD-L1 in

A549 cells grown in the presence of DMSO as control or 100 ng�mL�1 IFN-c 24 h before addition of hydrocortisone (10 lM), prednisolone

(10 lM), or dexamethasone (10 lM), for 24 h. b-Tubulin levels are shown for loading control. (D) Quantification of flow cytometry-mediated

assessment of surface PD-L1 levels in A549 cells after 24 h of control or compound exposure (treated as in (C)). Mean Fluorescence

Intensity (MFI) values are relative to those observed in the control. One-way ANOVA (n = 3) was used for statistical analysis ***P < 0.001,

error bars indicate � SD. (E) Representative immunofluorescence images of PD-L1 (red) in A549 cells cultured in the presence or absence

of IFN-c and the indicated compounds (treated as in (C)), nuclei are shown in blue. Scale bar (white), 5 lm. (F) HTM-based quantification of

PD-L1 levels in A549 cells treated as in (C). One-way ANOVA test (n = 3) was used to calculate statistical significance of the differences

between groups, ***P < 0.001. All datapoints represent single-cell measurements, with the horizontal red line indicating the median.
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focused on identifying downregulators of PD-L1

expression, which could limit the efficacy of anti-PD-1/

PD-L1 therapies, the screening was conducted on

A549 cells that were previously treated with

100 ng�mL�1 of IFN-c for 24 h and then subsequently

with the compounds from the library for another 24 h.

At this point, cells were stained with anti-PD-L1 anti-

bodies, fixed, and processed for high-throughput

microscopy (HTM). As expected, wells treated with

only IFN-c (positive control) showed a significant

increase in PD-L1 expression when compared to

DMSO-treated wells.

After analyzing the results from the screen, corticos-

teroids were the most enriched compound class among

those lowering PD-L1 expression (Fig. 1B and

Table S1). Subsequent validation experiments using

WB, flow cytometry, and high-content microscopy con-

firmed that three independent corticosteroids (dexam-

ethasone, hydrocortisone, and prednisolone)

significantly reduced surface levels of PD-L1 in IFN-c-
treated A549 cells (Fig. 1C–F). Besides corticosteroids,

inhibitors of the Janus kinases (JAK1/2) were also

found among the top downregulators, which is in agree-

ment with their known role in the IFN-c-dependent
induction of PD-L1 [26]. In addition to validating the

usefulness of our approach, our findings help to under-

stand why JAK1/2 mutations [27] or a baseline corticos-

teroid treatment [28,29] confer resistance to anti-PD-L1

therapy.

3.2. ERa signaling suppresses PD-L1 expression

in ER+ BC cells

In contrast to molecules lowering PD-L1 expression,

there were very few chemicals capable of substantially

inducing PD-L1 beyond the levels observed upon IFN-

c treatment, which failed to be confirmed in subse-

quent validation experiments (many of the hits were

related to autofluorescence of the compounds). We

were nevertheless intrigued by the presence of the

SERD fulvestrant among the top compounds from this

list (Table S1). Of note, even if the chemical screening

was done in A549 cells, these cells express ERa and

fulvestrant reduces the growth of A549 xenografts [30].

In any case, and to further investigate the potential

effect of antiestrogen therapies on increasing PD-L1

expression we switched to MCF7, which is a widely

used ER+ BC cell line.

First, and in order to evaluate the effect of hormone

deprivation on PD-L1 expression, we grew MCF7 cells

in SFM for two weeks. This led to a clear upregula-

tion of PD-L1, which was present on the cell mem-

brane (Fig. 2A). Using this experimental setup, we

conducted a focused chemical screen, where we tested

the effects of 25 ER agonists and 11 ER antagonists in

a dose–response (Fig. 2B, Table S2). Despite variabil-

ity on the effects observed with individual compounds,

there was a clear overall trend in that ER agonists

reduced and antagonists increased PD-L1 expression

in SFM-grown MCF7 cells (Fig. 2B,C). Flow cytome-

try data confirmed that either growing MCF7 cells on

SFM or treating them with fulvestrant for two weeks

led to a clear upregulation of surface PD-L1 levels

(Fig. 2D–G). Similar results were observed by WB

(Fig. 2H). It is noteworthy that while a treatment with

the synthetic estrogen ethinylestradiol (EE) downregu-

lated PD-L1 in SFM-grown cells, it failed to do so in

those treated with fulvestrant, which is explained by

the fact that these cells lack ERa expression (Fig. 2H).

Likewise, even if SFM or fulvestrant induced PD-L1

expression in several ERa+ cell lines, this effect was

not seen in ERa� ones (Fig. S1). Quantitative reverse

transcription–polymerase chain reaction (qRT-PCR)

analyses revealed that the upregulation of PD-L1

(CD274) levels in SFM- or fulvestrant-treated MCF7

cells occurred at the level of transcription (Fig. 2I,J).

Finally, RNA interference-mediated downregulation of

ERa (ESR1) but not ERb (ESR2) also led to the

upregulation of transcription and surface PD-L1 levels

in MCF7 cells (Fig. S2). Collectively, these experi-

ments reveal that estrogens suppress PD-L1 expression

in ER+ BC cells through the stimulation of ERa sig-

naling.

3.3. ERa inversely correlates with PD-L1

expression in breast cancer

Recent analyses of The Cancer Genome Atlas project

have indicated higher levels of PD-L1 in triple-

negative BC (TNBC) when compared to non-TNBC

subtypes [31]. Based on our findings, we explored

whether this correlation could be linked to the expres-

sion of ERa. Indeed, gene expression analysis of 1904

BCs (ERa+: 1459; ERa�:445) from the METABRIC

cohort of the European Genome-Phenome Archive

(EGA) dataset [21] revealed significantly higher levels

of PD-L1 mRNA expression (CD274) in the ERa�

cohort (Fig. S3A). Similar results could be observed at

the protein level when comparing PD-L1 expression

between 5 ERa+ cell lines (MCF7, T47D, CAMA-1,

ZR-75-1 and BT-474) and 3 ERa� ones (MDA-MB-

231, HCC1937 and BT-549; Fig. S3B).

Next, to determine whether PD-L1 expression was

also induced in vivo in response to an antiestrogen

treatment, we used a transgenic mouse model of ER+

BC based on the expression of the Polyoma Virus
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middle T Antigen downstream of the mouse mammary

tumor virus long terminal repeat (MMTV-PyMT) [32].

In agreement with our in vitro findings, treatment of

MMTV-PyMT transgenic mice harboring BC with the

SERM tamoxifen led to a significant increase in PD-

L1 expression in the tumors (Fig. S3C,D). Finally, we
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Fig. 2. Estrogen-dependent suppression of PD-L1 expression in ER+ BC cells. (A) Immunofluorescence of PD-L1 (red) in MCF7 cells

cultured in normal or steroid-free medium (SFM) for 15 days. DAPI (blue) was used to stain DNA. Representative images are shown. Scale

bar (white), 5 lm. (B) Scatterplot of PD-L1 intensity levels in SFM-grown MCF7 cells treated with ERa agonists or antagonists, screened at

three concentrations, 0.1, 1.0, and 10 µM. (C) Grouped comparison of PD-L1 levels in response to ERa agonists and ERa antagonists from

the experiment shown in (B) using a two-tailed Student t-test. (D, E) Flow cytometry-mediated assessment of surface PD-L1 levels in MCF7

cells grown in DMEM, SFM (D), or DMEM containing 1 lM fulvestrant (Fulv) (E) for 14 days. Where indicated, EE (10 nM) was added for

the final 3 days. (F,G) Quantification of 4 independent flow cytometric experiments as shown in (D, E). Mean fluorescent intensity (MFI)

values are relative to those observed in the control. Data represent the mean � SD, ***P < 0.001 calculated by one-way ANOVA. (H)

Western blot illustrating the levels of PD-L1 and ERa of MCF7 cells cultured as in (D, E). GAPDH levels are shown for loading control. (I, J)

qRT-PCR analysis of PD-L1 (CD274) expression in MCF7 cells cultured in DMEM and SFM (n = 3 in I) or 1 lM fulvestrant (n = 2 in J) for

18 days. Where indicated, media were supplemented with EE (10 nM) for the last 3 days. 18S RNA served as an internal control. Data

represent the mean � SD, statistical significance was determined by one-way ANOVA. *P < 0.05; **P < 0.01; ***P < 0.001.
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evaluated PD-L1 expression in tissue from a small

cohort of human patients of ER+ BC (clinical and

demographic characteristics detailed in Table S3) for

which we obtained paired biopsies from the primary

tumor and the metastases that emerged during or after

adjuvant hormonal therapy. While PD-L1 expression

was virtually absent in the primary tumors, areas of

PD-L1-expressing cells could be detected in half of the

metastatic samples (Fig. S3E,F).

3.4. Estrogen deprivation activates a broad

immune-suppressive transcriptional program in

MCF7 cells

To determine the mechanism by which estrogen depri-

vation induces PD-L1, we first analyzed how it impacts

on the activity of JAK-signal transducer and activator

of transcription proteins (JAK-STAT) and NF-jB sig-

naling pathways, both of which are key regulators of

PD-L1 expression [27,33–35]. In fact, a time course of

MCF7 cells grown in SFM revealed that both pathways

were activated, as evidenced by the phosphorylation of

STAT1 at Tyr 701 (p-STAT1Tyr701) and RelA (p65) at

Ser 536 (p-p65Ser536), concomitantly to the upregulation

of PD-L1 (Fig. 3A). Moreover, treatment with a JAK2

inhibitor (CEP-33779) or the NF-jB inhibitor [caffeic

acid phenethyl ester 9 (CAPE)] reduced the upregula-

tion of PD-L1 induced by SFM in MCF7 cells

(Fig. 3B). Addition of EE after 16 days in SFM for

4 days reverted STAT1 but not p65 phosphorylation,

arguing that activation of the JAK/STAT pathway

rather than NF-jB is the primary mediator of upregu-

lating PD-L1 in response to estrogen deprivation

(Fig. 3A).

As to how JAK/STAT and NF-jB signaling are acti-

vated upon estrogen deprivation, we found increased

mRNA levels of IFN-c and tumor necrosis factor alpha

(TNF-a) in SFM-grown MCF7 cells, which are the pri-

mary cytokines involved in the activation of each path-

way, respectively (Fig. 3C,D). Interestingly, and besides

IFN-c, estrogen deprivation also induced the secretion

of IL-6, which is a central inflammatory cytokine that

stimulates JAK/STAT signaling and that is known to

decrease the effectiveness of cancer immunotherapy

(Fig. 3E) [36]. Consistent with these in vitro findings,

analysis of the METABRIC dataset containing tran-

scriptomic analyses of 1904 BC patients revealed signifi-

cantly higher levels of TNF, RELA, RELB, IFNG,

IRF1, and IL6 mRNA expression in ERa� tumors

when compared to ERa+ ones (Fig. 3F).

To obtain a general view of the transcriptional

changes induced by estrogen deprivation in ER+ BC

cells, we conducted RNA sequencing (RNAseq) in

MCF7 cells grown in SFM or with fulvestrant for

3 weeks. We should note that while previous works

have analyzed the effect of estrogen signaling on the

transcriptome, these studies were focused on short-

term treatments aiming to the discovery of direct tar-

gets of ERa, days before we observe the induction of

PD-L1 expression or the activation of JAK/STAT and

NF-kB pathways [37,38]. Analysis of GSEA hallmarks

showed a good correlation between the transcriptional

changes induced by both conditions (Fig. 4A). One of

the common hallmarks was the epithelial–mesenchy-

mal transition (EMT), which is consistent with the

change in morphology that is observed with these

treatments. Moreover, and in support to the previous

data, ‘TNF-a signaling via NF-jB’, ‘IFN-c response’,

or ‘inflammatory response’ was among the most signif-

icantly induced hallmarks (Fig. 4B and Fig. S4).

Interestingly, a specific analysis of immune-related

genes revealed that prolonged estrogen deprivation

triggered the expression of multiple immune check-

points besides PD-L1 such as CEACAM1, MICA, or

LGALS2, which was concomitant to a generalized sup-

pression of the antigen-presenting machinery, including

reduced expression of HLA-A, HLA-C, B2M, and

TAP2 (Fig. 4C). Flow cytometry confirmed the upreg-

ulation of additional immune checkpoints such as PD-

L2 and reduced levels of beta-2-microglobulin (B2M)

and HLA-A in MCF7 cells treated with fulvestrant

(Fig. 4D–F). Equivalent results were obtained in

another ER+ BC cell line, T47D, both by FACS and

by qRT-PCR (Fig. S5A–G). Furthermore, analysis of

transcriptomic data from the METABRIC cohort

revealed a generalized increase in expression of multi-

ple immune checkpoints in ER+ BC patients undergo-

ing hormone therapy (Fig. S5H) [22,23]. Collectively,

these analyses reveal that persistent inhibition of estro-

gen signaling triggers a broad immunosuppressive

transcriptional program in MCF7 cells.

3.5. Estrogen deprivation-induced growth arrest

is necessary but not sufficient for the activation

of the inflammatory program in ER+ BC cells

Given our observation that estrogen-deprived MCF7

cells express IL-6, which is an important component of

the senescence-associated secretory phenotype (SASP)

[39], we wondered whether the activation of an inflam-

matory transcriptional program was part of a SASP

response in these cells, which are indeed growth-

arrested. Consistent with this view, MCF7 cells grown

in SFM showed several features of senescence such as

increased levels of p21Cip1 and histone H3 lysine 9

trimethylation (H3K9me3) or an increased activity of
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the senescence-associated beta galactosidase (SA-bgal;
Fig. S6A,B). However, MCF7 cells induced to

undergo senescence upon treatment with the p53 acti-

vator Nutlin-3 failed to upregulate PD-L1, indicating

that simply arresting the growth of ER+ BC cells is

not sufficient to trigger the same transcriptional

response as that induced by estrogen deprivation

(Fig. S6C).

Nevertheless, and to further address whether the

fulvestrant-induced growth arrest contributes to the

activation of inflammatory signaling, we deleted the

CSK kinase in MCF7 cells using CRISPR, as this

mutation has been shown to confer estrogen signaling-

independent growth on ER+ BC cells [40,41]. As

reported, CSK knockout (CSKko) MCF7 cells contin-

ued to proliferate even in the presence of fulvestrant

(Fig. 5A,B). We then conducted RNAseq on WT and

CSKko MCF7 cells grown with or without fulvestrant

for 3 weeks. Principal component analyses revealed

that while the transcriptome of WT and CSKko MCF7
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Fig. 3. Estrogen signaling suppresses an inflammatory phenotype in MCF7 cells. (A) Whole-cell lysates from MCF7 cells cultured in SFM

for the specified days were analyzed by WB using the indicated antibodies. Where indicated, 10 nM EE was added at 16 days for the final

4 days. Total p65 and b-Actin served as loading controls. (B) Flow cytometry-mediated evaluation of PD-L1 membrane levels in MCF7 cells
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for the last 3 days. Representative data from 3 experiments are shown. (C, D) qRT-PCR analysis (n = 3) of IFN-c (IFNG) (C) or TNF-a (TNFA)

(D) mRNA levels in MCF7 cells cultured as in (A). 18S rRNA was used as an internal control. (E) Levels of IL-6 in the supernatant of MCF7
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Where indicated, EE (10 nM) was added at day 17 for the last 4 days. (F) TNF, RELA, RELB, IFNG, IRF1, and IL6 mRNA expression levels in

ERa+ (n = 1459) and ERa� (n = 445) patient samples. Normalized Z-scores were extracted from the METABRIC dataset [22]. Data are

presented as mean � SEM, and two-tailed Student’s t-test was used to calculate the statistical significance. **P < 0.01 and ***P < 0.001.
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cells was similar in control conditions, the changes

induced by fulvestrant were significantly attenuated in

two independent clones of CSK-deficient cells

(Fig. 5C). A similar conclusion could be drawn from a

heatmap illustrating the clustering of genes that were

significantly regulated in this experiment (Fig. 5D).

GSEAs identified biological pathways related to cell

growth such as ‘E2F targets’, ‘G2M checkpoint’, or

‘MYC targets’ as those that were more significantly

different between fulvestrant-treated WT and CSKko

MCF7 (Fig. 5E and Table S4). In contrast, the ‘ep-

ithelial–mesenchymal transition’ pathway, which, con-

sistent with our previous analysis, was induced by

fulvestrant in WT cells, was less so in CSKko MCF7

cells. Most importantly, the fulvestrant-dependent

induction of pathways such as ‘TNFA signaling via

NF-KB’, ‘inflammatory response’, ‘IL-6 JAK/STAT3

signaling’, and ‘IFN-c response’ was reduced in CSKko

cells. Together, these results indicate that the growth

arrest triggered by estrogen deprivation is a necessary

step for the subsequent activation of the immunosup-

pressive transcriptional program in ER+ BC cells.

However, just arresting the growth of MCF7 cells is

not sufficient to trigger this phenotypic change and the

concomitant inhibition of estrogen signaling is neces-

sary.

3.6. Estrogen deprivation limits T-cell-mediated

cell killing of MCF7 cells independently of PD-L1

Finally, we evaluated how estrogen deprivation in BC

cells affected their sensitivity to being killed by

immune cells, through a T-cell-mediated cell killing

assay in MCF7 cells [42]. To do so, MCF7 cells stably

expressing mCherry fused to a nuclear localization

sequence were cocultured in the presence of activated

primary T cells and followed by live cell imaging for

3 days. Remarkably, MCF7 cells that were previously

grown in SFM or with fulvestrant were significantly

resistant to their killing by T cells (Fig. 6A). In addi-

tion, EE was able to alleviate the effects of the SFM

treatment and potentiated the elimination of MCF7

cells by T cells. Equivalent results were obtained by

measuring apoptosis through the use of a fluorescent

caspase-3/7 target (Fig. 6B). Consistent with the tran-

scriptomic data indicating that estrogen deprivation

triggered multiple mechanisms of immunosuppression

(including the upregulation of several immune check-

points and downregulation of the antigen-presenting

machinery), PD-L1 deficiency did not protect MCF7

cells from T-cell killing, nor it modified the protection

provided by fulvestrant (Fig. 6C,D). In summary, the

experiments presented above revealed that, in addition

to suppressing their growth, prolonged estrogen depri-

vation of ER+ BC cells promoted a phenotype switch

that rendered them resistant to being killed by T cells

through multiple independent immunosuppressive

mechanisms (Fig. 6E).

4. Discussion

Our work started with the aim to identify how medi-

cally approved medicines influence the expression of

PD-L1, as PD-L1 levels were previously shown to be

potential biomarkers of efficacy of cancer immunother-

apies using antibodies against PD-1 or PD-L1 [24]. We

decided to conduct our screen in the presence of IFN-

c, as this is the situation which we believe most repre-

sents the context in which PD-L1 is actually expressed

within tumors [43]. As expected, we were not able to

find drugs that substantially increase PD-L1 expression

beyond what is induced by IFN-c, and our screen was

mainly useful to identify drugs that can counteract this

induction. Consistent with current knowledge, corti-

costeroids and JAK inhibitors were found to suppress

PD-L1 expression, which helps to understand their

links to resistance to immunotherapy [27–29]. Besides
these two classes of compounds, our manuscript pro-

vides a useful resource where investigators can evalu-

ate how a given medicine affects PD-L1 expression

and could thus potentially affect the efficacy of cancer

immunotherapies. As an example of this approach,

and given its relevance for ER+ BC, we here explored

in depth how the inhibition of estrogen signaling could

be inducing PD-L1 expression in cancer cells.

Estrogen was one of the first hormones to be

described, and for decades, it was thought to only act

in the female reproductive system [9]. Later studies

revealed that estrogen receptors were widely expressed

in many organs and that estrogens played pleotropic

physiological roles beyond reproduction. Among these,

several studies have indicated that estrogen levels influ-

ence the severity of diseases linked to inflammation,

including cancer [11,14,44]. However, somewhat sur-

prisingly, the link between estrogen signaling and

inflammation has not been sufficiently addressed in the

context of ER+ BC, which is the prototype tumor that

is driven by estrogen signaling. Here, we show that

estrogen deprivation triggers a broad immunosuppres-

sive transcriptional program in ER+ BC cells, which

includes the secretion of cytokines that activate NF-jB
signaling such as TNF-a, but also additional cytokines

such as IFN-c and IL-6 that trigger the activation of

the JAK/STAT pathway. As to how ER suppresses

this inflammatory program, our work reveals that this

is secondary to the persistent growth arrest that
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Fig. 6. Estrogen signaling inhibition limits T-cell-mediated killing of MCF7 cells. (A) Live cell imaging of nuclei count from MCF7 cells after

addition of activated primary T lymphocytes isolated from human peripheral blood. Nuclei counts were normalized to the value at time = 0 h

for each condition, and then, each timepoint was subsequently normalized to the value of the control to which no T cells were added. (B)

Time-lapse microscopy of the intensity of a fluorescently labeled caspase-3/7 substrate in MCF7 cells exposed to activated primary T cells.

(C) Time-lapse microscopy of the intensity of a fluorescently labeled caspase-3/7 substrate in wild-type (WT) or PD-L1-deficient (PD-L1 KO)

MCF7 cells exposed to activated primary T cells. (A–C) For these experiments, indicated cells were grown in normal media, SFM or

fulvestrant (1 lM) for 2 weeks, prior to the addition of the activated T cells. Where indicated, EE (10 nM) was added for the last 3 days.

One-way ANOVA for (A, B) and two-way ANOVA for (C) analyses were used to calculate the statistical significance of the differences

between groups. All datapoints indicate mean values (n = 3) � SEM (colored boundary). *P < 0.05 and ***P < 0.001. (D) Western blot

illustrating the levels of PD-L1 in WT and PD-L1-deficient MCF7 cells used in (C). Cells were treated with IFN-c to stimulate PD-L1

expression. Vinculin and GAPDH levels are shown as loading controls. (E) Graphical summary of our work depicting that under prolonged

hormone therapy, ER+ BC cells activate an inflammatory transcriptional program, which includes a generalized upregulation of immune

checkpoint mediators together with the downregulation of the antigen-presenting machinery. Hence, while hormone therapies efficiently

arrest the growth of ER+ BC cells, they also promote a phenotype switch that favors their immune evasion.
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follows chronic inhibition of estrogen signaling in a

manner that resembles the SASP secretory program

that is observed in senescent cells. In this regard, to

what extent senolytic compounds could help to elimi-

nate the residual growth-arrested BC cells that resist

to the initial hormone therapy emerges as an interest-

ing possibility to explore. Interestingly, a recent manu-

script has revealed that acquired resistance to mitogen-

activated protein kinase inhibitors in melanoma also

involves an EMT and the activation of an immunosup-

pressive transcriptional program that limits the efficacy

of cancer immunotherapy, suggesting that this might

be a recurrent phenomenon in cancer cells chronically

treated with strategies that limit their growth [45].

Among the specific factors that are induced by

chronic estrogen signaling deprivation, we found PD-

L1, which is consistent with a previous study that

identified ERa as a direct transcriptional repressor of

PD-L1 [46]. Our study indicates that, while a direct

regulation of the PD-L1 promoter by ERa might exist,

the main source of PD-L1 expression upon estrogen

deprivation is linked to the activation of JAK/STAT

and NF-jB signaling that occurs only after a pro-

longed treatment, more reminiscent of the clinical situ-

ation. Moreover, our study further demonstrates that

the immunosuppressive phenotype of estrogen-

deprived ER+ BC cells is not just restricted to an

upregulation of PD-L1, but it includes the expression

of multiple immune checkpoints together with a con-

comitant silencing of the antigen-presenting machinery.

Of note, and in addition to the activation of the

inflammatory signals, sustained estrogen deprivation

also triggers an EMT in MCF7 cells, which suggests

that while the cancer cells might be growth-arrested,

their invasive properties might be unwantedly

enhanced by endocrine therapy. BC has classically

been considered as poorly responsive to immunother-

apy due to initial failures in vaccination or cytokine

treatments in the 1980s and 90s [47,48], and since ER+

BC has a low mutational burden and is therefore

immunologically ‘cold’. Our work here reveals yet

another reason that could help to understand the lim-

ited efficacy of immunotherapies in BC, as while hor-

mone therapy effectively arrests the growth of ER+ BC

cells, it also triggers a broad immunosuppressive tran-

scriptional program that limits their clearance by the

immune system.

5. Conclusion

Hormone therapy is the current treatment for ER+

BC, the most frequent type of cancer in women world-

wide. Unfortunately, immunotherapy has shown

limited efficacy for the treatment of BC, even less so

for ER+ tumors. We here report that chronic inhibi-

tion of ERa signaling triggers an immunosuppressive

transcriptional program in ER+ BC cells, which

includes the activation of multiple immune checkpoints

such as PD-L1 and PD-L2, together with a reduced

expression of the antigen-presenting machinery. These

findings indicate that, while hormone therapy succeeds

in limiting the growth of ER+ tumors, treatment-

resistant cells acquire an immunosuppressive pheno-

type that hampers their elimination by the immune

system.
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