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Simple Summary: Most patients with pancreatic cancer are diagnosed at an advanced stage due to
the lack of tools with high sensitivity and specificity for early detection. Aberrant gene expression
occurs in pancreatic cancer, which can be packaged into nanoparticles (also known as exosomes or
nano-sized extracellular vesicles) and then released into blood. In this study, we aimed to evaluate
the diagnostic value of a circulating exosome RNA signature in pancreatic cancer. Our findings
indicate that the circulating exosome RNA signature is a potential marker for the early detection or
diagnosis of pancreatic cancer.

Abstract: Several exosome proteins, miRNAs and KRAS mutations have been investigated in the
hope of carrying out the early detection of pancreatic cancer with high sensitivity and specificity, but
they have proven to be insufficient. Exosome RNAs, however, have not been extensively evaluated
in the diagnosis of pancreatic cancer. The purpose of this study was to investigate the potential of
circulating exosome RNAs in pancreatic cancer detection. By retrieving RNA-seq data from publicly
accessed databases, differential expression and random-effects meta-analyses were performed. The
results showed that pancreatic cancer had a distinct circulating exosome RNA signature in healthy
individuals, and that the top 10 candidate exosome RNAs could distinguish patients from healthy
individuals with an area under the curve (AUC) of 1.0. Three (HIST2H2AA3, LUZP6 and HLA-DRA)
of the 10 genes in exosomes had similar differential patterns to those in tumor tissues based on
RNA-seq data. In the validation dataset, the levels of these three genes in exosomes displayed good
performance in distinguishing cancer from both chronic pancreatitis (AUC = 0.815) and healthy
controls (AUC = 0.8558), whereas a slight difference existed between chronic pancreatitis and healthy
controls (AUC = 0.586). Of the three genes, the level of HIST2H2AA3 was positively associated
with KRAS status. However, there was no significant difference in the levels of the three genes
across the disease stages (stages I–IV). These findings indicate that circulating exosome RNAs have a
potential early detection value in pancreatic cancer, and that a distinct exosome RNA signature exists
in distinguishing pancreatic cancer from healthy individuals.
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1. Introduction

Live cell-secreted bilayer membranous extracellular nano-sized vesicles (also known
as exosomes) carry bioactive macromolecules of proteins, DNA, RNA, lipids and metabo-
lites that are exported out of and mirror their cells of origin. The exosome process was
initially thought to be a mechanism utilized by cells for getting rid of ‘wastes’ that are
toxic to them, favoring growth, malignant phenotypes or the avoidance of immune surveil-
lance [1]. Accumulating evidence shows that exosomes play important roles in cell-to-cell
communications through the transfer of bioactive donor-cell molecules to recipient cells,
leading to physiological changes in the recipients and promoting tumor growth [2,3], and
by which the donor cells may increase the number of their partners to orchestrate together
against “unfavorable” environments [4]. Exosomes are secreted by living cells, and are
frequently found in various body fluids, e.g., blood, saliva and urine [5,6]. These proper-
ties facilitate exosome collection, enabling the monitoring of disease progression and the
response to treatment through minimally or non-invasive liquid biopsies. Furthermore,
abnormal alterations in cells of origin can be found earlier by analyzing exosomes than by
analyzing necrotic cell-derived products, such as circulating cell-free DNA/RNAs, which
usually occurs at later disease stages. In addition, larger numbers of exosomes are secreted
by tumor cells than by normal cells [7,8], increasing the abundance of tumor-derived exo-
somes and making tumor information more detectable. Accumulating studies have shown
the potential for the utilization of exosomes in the diagnosis/early detection, prognosis
and monitoring of the treatment of human cancer, as well as for the engineering of vehicles
to treat human cancer [9,10].

Pancreatic ductal adenocarcinoma (PDAC) and closely-related variants comprise the
major type (>90%) of pancreatic cancer with a continuously rising incidence in the United
States [11,12]. PDAC affects more than 45,000 individuals and leads to over 38,000 deaths
each year in the United States [12]. In 2020, the incident cases of pancreatic cancer were
495,773 worldwide, and the number of deaths was increased approximately 2.38-fold
compared to year 1990 (466,003 vs. 196,000) [13]. Patients diagnosed at early stages with
pancreatic cancer show considerable progress in treatment. Unfortunately, most patients
still present with advanced disease, and less than 20% have resectable tumors [14–16],
suggesting that no tools are available for early detection or diagnosis with sufficient
sensitivity and specificity.

Pancreatic malignancy is a comprehensive consequence of genetic and epigenetic
events. Hundreds of somatic mutations occur in PDAC with the highest frequency of
90% found in KRAS [17,18]. Animal models show that mutant KRASG12D or KRASG12V

is sufficient to initiate the development of PanINs, which progress to invasive metastatic
PDAC after sufficient latency [19,20]. The presence of mutated KRAS DNA in both cell-free
DNA and exosomes from PDAC suggests the potential of KRAS in the early detection of
PDAC [21,22]. Recently, Yang et al. reported exosome KRAS DNA mutation in about 40%
of pancreatic cancer patients [23]. Allenson et al. reported 66% KRAS DNA mutations in
pancreatic cancer patients vs. 7.4% healthy controls [24]. Although some exosome proteins
(CD44v6, Tspan8, EpCAM and CD104) in combination with several circulating exosome
miRNA candidates have also shed light on the diagnosis of PDAC [22,25], these panels do
not have enough sensitivity and specificity for the early detection of PDAC. More efforts are
needed in order to explore novel markers for the detection of PDAC. Thus, the purpose of
this study was to investigate circulating exosome RNAs as a potential marker of pancreatic
cancer detection.
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2. Results
2.1. Differential Expression of Circulating Exosome RNAs between Pancreatic Cancer Patients and
Healthy Controls

A large number of differentially expressed circulating exosome RNAs were identified
in pancreatic cancer patients from the Shanghai study, and the fold-changes for the genes
with significant differential expression are shown in Figure 1A.
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Figure 1. Differential expression of circulating exosome RNAs in pancreatic cancer patients and healthy individuals.
(A) Volcano plot of differential circulating exosome RNAs. The red dots represent significant genes with baseMean ≥20, the
absolute value of log2FoldChange ≥5 and FDR <0.01, and the gray dots represent non-significant results. (B) PCA plot of
circulating exosome RNAs showing the distance between the individuals. Light-coral dots represent healthy individuals and
turquoise dots represent patients with pancreatic cancer. (C) Heatmap of significantly differential circulating exosome RNAs
for patients with pancreatic cancer (light-coral bar) and healthy individuals (turquoise bar). The columns of the heatmap
represent individuals, and the rows represent circulating exosome RNA genes. (D) Receiving operating characteristic (ROC)
curve with the exosome RNAs of 10 candidate genes. AUC is the area under the curve.

Figure 1B is the PCA plot of RNA-seq data for circulating exosome RNAs. Pancreatic
cancer patients showed a distinct circulating exosome RNA signature obtained from healthy
individuals. The two groups were completely separated, particularly with regard to the
first component, with a 63% variance, and each of the groups was clustered exclusively.
The heatmap again shows that pancreatic cancer patients had a distinct circulating exosome
RNA pattern in comparison to healthy individuals (Figure 1C).

To evaluate the performance of differential circulating exosome RNAs in distinguish-
ing the health status of either pancreatic cancer patients or healthy controls, we used a
random forest model and constructed an ROC curve with the normalized counts of the
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top 10 among the significantly differentially expressed genes (Figure 1D). The 10 circu-
lating exosome RNAs showed a large area under the curve (AUC), with a value of 1.0 in
distinguishing the patients from healthy controls.

To better understand the biological relevance of the differentially expressed RNAs in
circulating exosomes derived from pancreatic cancer patients, we further performed IPA
analysis based on the database released on 21 November 2018. The main results of IPA are
shown in Table 1.

The top five canonical pathways were enriched, which included oxidative phos-
phorylation, mitochondrial dysfunction, the sirtuin signaling pathway, estrogen receptor
signaling and the protein ubiquitination pathway. The top diseases and disorders were
listed as cancer, organismal injury and abnormalities, infectious diseases, endocrine system
disorders and gastrointestinal disease. The differentially expressed circulating exosome
RNAs were statistically significantly enriched in five major characteristics of molecular
and cellular functions, which included gene expression, cell death and survival, RNA
post-transcriptional modification, protein synthesis and the cell cycle. Network analyses
demonstrated several downregulated gene expression-related molecules of nuclear factors,
zinc finger and RNA polymerases, an upregulated oncogene, PVT1, and dysregulated cell
cycle-dependent kinases (Figure 2).
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Figure 2. Illustration of the top network of differentially expressed transcripts, related to “gene
expression”, “RNA post-transcriptional modification” and “neurological diseases” in circulating
exosome RNAs, compared between pancreatic cancer patients and healthy individuals. Red and
green shading indicate the up- and downregulation of transcripts in circulating exosomes derived
from patients with pancreatic cancer relative to healthy controls, respectively, with the color intensity
corresponding to the degree of fold-change. Solid and dotted lines indicate direct and indirect
relationships, respectively.
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Table 1. Summary of ingenuity pathway analysis (IPA) results.

Name p-Value Overlap Genes

Top Canonical Pathways
Oxidative Phosphorylation 4.11 × 10−18 51/109
Mitochondrial Dysfunction 6.04 × 10−17 65/171
Sirtuin Signaling Pathway 4.20 × 10−15 88/292

Estrogen Receptor Signaling 1.25 × 10−13 51/134
Protein Ubiquitination Pathway 4.39 × 10−11 75/271

Top Diseases and Disorders
Cancer 3.73 × 10−6–1.06 × 10−62 2644

Organismal Injury and Abnormalities 3.73 × 10−6–1.06 × 10−62 2681
Infectious Diseases 3.61 × 10−7–1.47 × 10−29 487

Endocrine System Disorders 3.09 × 10−6–2.55 × 10−27 2081
Gastrointestinal Disease 3.09 × 10−6–5.50 × 10−23 2243

Top Molecular and Cellular Functions
Gene Expression 1.12 × 10−7–1.97 × 10−27 701

Cell Death and Survival 4.29 × 10−6–1.40 × 10−22 961
RNA Post-Transcriptional Modification 6.14 × 10−9–9.99 × 10−19 143

Protein Synthesis 3.93 × 10−7–9.13 × 10−18 389
Cell Cycle 3.75 × 10−6–1.83 × 10−17 523

2.2. Differential Expression of Candidate Genes in Pancreas Tumors vs. Normal Tissues and Their
Associations with Disease Stage

To further investigate whether the differential expression pattern found in circulating
exosomes would be reproducible in pancreatic tumors vs. normal tissues, we searched
two databases for the 10 candidate genes. First, we compared the expression levels of
these genes based on the RNA-seq data in TCGA pancreatic adenocarcinoma (n = 179) and
matched normal tissue plus the genotype-tissue expression in pancreas tissues (n = 171)
using GEPIA (Figure 3). We found that there were statistically significant differences
in the three genes HIST2H2AA3, LUZP6 and HLA-DRA comparing between pancreatic
tumors and normal tissues (p < 0.01), with higher levels in tumors vs. normal tissues. The
differences in the other seven genes were not statistically significant, although RN7SL1,
MIR663AHG, GPM6A and FAM184B, for example, were higher in tumors vs. normal tissues
(p > 0.01). Then, we retrieved gene expression array data from Oncomine® for the three
coding genes HIST2H2AA3, LUZP6 and HLA-DRA. Random-effects meta-analysis results
showed that the levels of HIST2H2AA3 showed a significant difference between pancreatic
cancer and normal pancreas tissues, but those of LUZP6 and HLA-DRA did not (Figure 4).
The fold change in log2 was 0.86-fold (95% CI: 0.14–1.58, p = 0.019) for HIST2H2AA3,
−0.17-fold (95% CI: −0.75–0.41, p = 0.57) for LUZP6 and 0.84-fold (95% CI: −0.60–2.29,
p = 0.25) for HLA-DRA, respectively.

Finally, we further examined whether or not the three differential genes in tumors vs.
normal tissues were associated with disease stages. Figure 5 shows the levels of the three
genes HIST2H2AA3, LUZP6 and HLA-DRA across the disease stages. None of the three
was significantly associated with the disease stage in pancreatic cancer (p > 0.05).
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2.3. Association of Candidate Gene Expressions with KRAS Mutation Status in Pancreas Tumors

Activating KRAS mutations are present in over 90% of PDAC cases and are found
in increasing frequency in developing PanIN lesions [19,26]. Thus, we wanted to further
explore whether or not the levels of the three genes were KRAS mutation status-dependent.
Using TCGA pancreatic cancer data, we found that between KRAS wild-type and mutants,
there was a significant difference in the HIST2H2AA3 expression level (p = 0.001), but not
in that of LUZP6 (p = 0.5) or HLA-DRA (p = 0.06) (Figure 6). Patients with KRAS mutation
had a higher HIST2H2AA3 expression level than those with the wild-type gene (2.7 ± 0.38
vs. 2.5 ± 0.42, log10 (FKPM)).
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2.4. Performance Validation of the HIST2H2AA3, LUZP6 and HLA-DRA Signature

Given that HIST2H2AA3, LUZP6 and HLA-DRA expression levels were found to be
independent of the disease stage, and that they were found to be statistically different
between patients and healthy controls in both exosomes and tissues, we chose these three
genes for performance validation in an independent study dataset. The ROC curves were
constructed by creating logistic models, and the results are illustrated in Figure 7. The
AUCs were 0.8558 (95% CI: 0.82–0.89) for pancreatic cancer vs. healthy controls, 0.815
(0.77–0.86) for pancreatic cancer vs. chronic pancreatitis, and 0.586 (0.51–0.66), respectively.
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3. Discussion

In this study, we evaluated the potential of circulating exosome RNAs as detection
biomarkers in pancreatic cancer using publicly accessed datasets. We found that patients
with pancreatic cancer had a distinct circulating exosome RNA signature in comparison to
healthy controls. Ten of the top differentially expressed genes (five upregulated and five
downregulated RNAs) were capable of distinguishing patients from healthy controls with
an excellent performance (AUC = 1.0). We also found that three (HIST2H2AA3, LUZP6 and
HLA-DRA) of these 10 differential circulating exosome RNAs had a significantly higher
level in tumors vs. normal tissues based on the RNA-seq data, suggesting that the pattern
of these three genes in circulating exosomes was reproducible in tumor tissues. Using the
levels of the three genes (HIST2H2AA3, LUZP6 and HLA-DRA) in exosomes as a signature,
we obtained a high sensitivity and specificity (accuracy) in distinguishing patients with
pancreatic cancer from healthy controls and from those with chronic pancreatitis in an
independent study.

Exosomes are bilayer membrane nanosized vesicles (sized from 30–100 nm in diameter)
that are actively secreted by live cells, which carry the contents of RNAs, DNAs, proteins
and lipids from the cells of origin. Several studies have shown the discrepancies in
RNA contents between the cells of origin and exosomes [27–31], suggesting that the
bioactive molecular contents of exosomes are enriched. During exosome production, both
microenvironment factors (such as stimuli and cell state) and RNA motifs may affect
the compositions of RNAs in exosomes [32–37]. In addition to the relative abundance
of small RNAs in exosomes, long non-coding RNAs (lncRNAs) and mRNAs are also
enriched. Of the 10 candidate differential exosome RNAs, RN7SL1 and miR663AHG are
lncRNAs. The potential of exosome lncRNAs as biomarkers and gene regulators has
been demonstrated [38,39], which even at a low number of copies in the cells are more
prone to be enriched in exosomes [27,40]. Thus, it is not surprising that the genes had
differential expression in exosomes but not in cells. Similarly, Perez-Boza and colleagues
also reported that mRNAs were enriched with more unique or exclusively mRNA genes
in exosomes than in cells [27]. The coding mRNAs in exosomes could remain active, and
once they are taken, could promote chemotherapy resistance in recipient cells [41]. Taken
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together, the uneven distribution of RNA species and fragments in exosomes derived
from cells suggests that the delivery of RNAs into exosomes is selective. RNAs with some
structural motifs (e.g., ACCAGCCU, CAGUGAGC and UAAUCCCA) are preferentially
recognized by RNA-binding protein YB-1 and RNA methyltransferase NSUN2, which likely
act as mediators, sorting specific mRNAs into exosomes [32]. However, the mechanism(s)
underlying the selective packaging of RNAs in exosomes remains a challenge in the study
of extracellular vesicles.

Interestingly, the top five enriched pathways for the differentially expressed RNAs in
circulating exosomes were consistent with the findings of previous studies, which reported
that these pathways were abnormal in pancreatic cancer. Metabolic reprogramming and
mitochondrial dysfunction have been reported in pancreatic cancer, and by enhancing the
nucleotide biosynthesis, the frequently mutated KRAS gene stimulates cancer cell prolif-
eration [42–45]. Targeting metabolic reprogramming pathways is a potential therapeutic
strategy in the management of pancreatic cancer [42,44,46,47]. As a lysine deacetylase,
sirtuin 1 is involved in the regulation of gene expression, such as that of TP53, and promotes
the development of pancreatic cancer in cooperation with KRAS mutations [48]. Previous
studies have demonstrated that reproductive factors and hormone usage increased the risk
of pancreatic cancer, and that a high level of estrogen receptors elevates the mortality risk
of the disease [49–53]. However, we found that on average, male PDAC patients survived
3.5 months longer than female patients (median: 21.4 (95% CI: 19.4–37.1) for men vs. 17.9
(15.8–24.1) months for women, respectively), although the difference did not reach statisti-
cal significance (log-rank p-value = 0.37) in this study (Supplementary Materials, Figure S1).
A multivariate Cox model also excluded a significant association between sex and mortality
in our previous study [54]. This was most likely because the sample size in this study
was too small to replicate the general report that a higher mortality rate is observed in
males than females [13]. An estrogen signaling system also exists in men, which plays an
important role in the regulation of biological and pathological processes in both men and
women [55,56]. Seeliger and colleagues reported no significant association between sex
and estrogen signaling in PDAC [53]. However, they demonstrated significantly higher
survival in patients with a low level of estrogen receptors in PDAC than those with a high
level of estrogen receptors [53]. In addition, a recent study reported that ubiquitination
signaling could activate KRAS and promote macropinocytosis in pancreatic cancer [57].
Moreover, H. pylori infection is a risk factor for pancreatic cancer [58–61], which is also in
agreement with the finding of infectious disease in the top diseases and disorders.

It has been reported that RN7SL1 inhibited the translation of TP53 by competing with
HuR for binding to the 3′-UTR of TP53, consequently leading to cell cycle progression
and suppressing cellular senescence and autophagy [62]. When unshielded RN7SL1 in
circulating exosomes was taken up by the immune cells, it incited an inflammatory re-
sponse by activating the PRR RIG-I and promoted tumor growth, metastasis and therapy
resistance [63]. miR663AHG is a host gene of miR-663, which has been shown to be sig-
nificantly downregulated in pancreatic cancer [64]. The overexpression of miR-663 led to
attenuated proliferation and invasion by directly targeting eEF1A2 [64]. HIST2H2AA3 and
HIST1H4K are histone gene variants, and have been shown to be dysregulated in human
cancer [65]. HIST2H2AA3 was downregulated in N-nitrosodienthylamine-induced hepato-
cellular carcinoma [66], whereas it was upregulated in pancreatic cancer [67], suggesting
that the aberrant HIST2H2AA3 expression in tumors was tissue-specific. In agreement with
previous observations, we found that the level of HIST2H2AA3 in both exosome and cell
compartments was higher in patients with pancreatic cancer than in healthy controls.

Immune escape is a hallmark of human cancer, including pancreatic cancer, and is
a process in which many mechanisms are involved, such as the loss or downregulation
of antigen presentation, immune checkpoint-induced CD8+ T cell exhaustion and the
loss of tumor infiltration lymphocytes (“cold” tumors). Pandha and colleagues reported
that the downregulation of MHC-I molecules was observed in pancreatic cancer, whereas



Cancers 2021, 13, 2565 10 of 15

HLA-DRA in MHC-II molecules was upregulated [68]. The findings in this study support
the previous results beyond the trafficking of MHC-II HLA-DR molecules in exosomes [69].

Little is known about the biological relevance of leucine zipper protein 6 (LUZP6). The
LUZP6 gene is located at chromosome 7, and its encoded protein is a putative tumor-self
antigen. It may elicit an immune response in individuals with myeloproliferative disease
who have received interferon alpha [70]. Another study showed that the LUZP6 protein
was positive in the majority of glioblastoma [71], suggesting that it may also be related to
tumorigenesis. Interestingly, LUZP6 RNA is enriched in salivary exosomes and, together
with another three genes (IL1R2, VPS4B and CAP1) comprising an RNA signature, could
distinguish high from low insulin resistance as an extracellular RNA marker [72].

Although the level of HIST2H2AA3, rather than that of LUZP6 and HLA-DRA, in
tumor tissues was positively associated with KRAS mutation, there was no significant
difference in the level of HIST2H2AA3, LUZP6 or HLA-DRA expression across the disease
stages. This finding suggests that these markers may be more reliable than the frequency
of KRAS mutations in the early detection of pancreatic cancer, given that the frequency of
KRAS mutations increases with the disease stages. Moreover, in three independent gene
expression array studies with a relatively small sample size, the differential expression of
HIST2H2AA3 was reproducible in the tumors vs. normal pancreas tissues, but those of
LUZP6 and HLA-DRA were not.

There are some limitations in this study. One is that the plasma samples were collected
from patients who presented clinical manifestations of the disease in the Shanghai study.
Another is the fact that no disease stage information or other demographic information was
available for the patients and healthy controls in the circulating exosome RNA analyses
in the Shanghai study. In addition, smoking status was also unavailable in the Shanghai
study, which is considered to be an established risk factor for pancreatic cancer [73]; thus,
we cannot evaluate how smoking status affects the RNA molecules in circulating exosomes.
However, the findings of this study emphasize the value of further investigating circulating
exosome RNAs as potential markers in pancreatic cancer detection. Longitudinal studies
should be conducted to further evaluate this method’s sensitivity and specificity, as well as
its positive and negative predictive values (PPV, NPV) for disease screening, particularly
in individuals at high risk [74,75].

4. Materials and Methods
4.1. Data Sources

Two Gene Expression Omnibus (GEO) datasets (GSE100232 and GSE100206) for the
discovery of exosome RNA signatures and one GSE133684 dataset for validation were
retrieved from the National Center for Biotechnology Information (NCBI) (https://www.
ncbi.nlm.nih.gov) (11 March 2019 for GSE100232 and GSE100206 and 12 March 2021 for
GSE133684). The methods used for exosome isolation from plasma biospecimens, exosome
identification and RNA sequencing for these three GEO datasets have been described as
elsewhere [76–78]. Briefly, using an ultracentrifuge, exosomes were isolated from plasma
samples, followed by size and morphology characterization using transmission electron
microscopy and exosome surface marker CD63 detection using Western blotting. Total
RNAs from each isolated exosome sample were purified using Trizol reagent (Invitrogen,
Waltham, MA, USA). After DNase I treatment, RNA-seq libraries were prepared and RNA
sequencing was performed using an Illumina sequencing platform. GSE100232 contains
RNA-seq data from 14 patients with pancreatic cancer, and GSE100206 contains data from
32 healthy individuals [76,77]. GSE133684 consisted of data from 284 pancreatic cancer
patients, 100 chronic pancreatitis patients and 117 healthy controls [78].

The Cancer Genome Altas (TCGA) and Genotype-Tissue Expression (GTEx) RNA-seq
data were also used to compare the expression of genes in pancreatic cancer vs. normal
tissues using Gene Expression Profiling Interactive Analysis (GEPIA2) (http://gepia2
.cancer-pku.cn) (27 March 2019). The demographic information on the patients in TCGA
data has been described elsewhere previously [54]. The differential expressions of candidate

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
http://gepia2.cancer-pku.cn
http://gepia2.cancer-pku.cn
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genes, which were determined by whole genome expression arrays, were retrieved from
the gene expression dataset OncomineTM (https://www.oncomine.org) (28 March 2019)
(ThermoFisher Scientific Inc., Waltham, MA, USA) using the parameters of differential
analysis (cancer vs. normal), cancer type (pancreatic ductal adenocarcinoma), sample type
(clinical specimen), data type (mRNA) and gene (e.g., HIST2H2AA3) and total subjects ≥20.

4.2. Statistical and Bioinformatics Analyses

Statistical analyses were performed using R package 3.5 (https://www.r-project.org)
(21 March 2020). The differential expression of circulating exosome RNAs, compared be-
tween pancreatic cancer patients and healthy individuals, was analyzed using the DESeq2
package, in which the negative binomial distribution was applied. Principal component
analysis (PCA) was performed to obtain the top 2 components with the largest variances,
after data transformation and batch effect removal, for PCA plot visualization. Heatmaps
were constructed based on the significant differential expression genes with adjusted p-
values greater than 0.01, and the means of normalized counts of all samples (baseMean)≥20
FPKM (fragments per kilobase of transcript per million mapped reads), and the absolute
value of log2FoldChange ≥5. The top 10 candidate genes (5 upregulated genes, consisting
of HIST2H2AA3, HIST1H4K, HLD-DRA, RN7SL1 and LUZP6, and 5 downregulated genes
consisting of FAM184B, FGF23, NEUROD2, miR663AHG and GPM6A in the circulating
exosome RNAs of pancreatic cancer patients) with significant differential expression were
selected for receiving operating characteristic (ROC) curve analysis using the random forest
algorithm, in which the sensitivity and specificity were calculated. In the validation stage,
a logistic model was used for the construction of ROC curves, using HIST2H2AA3, LUZP6
and HLA-DRA mRNA levels in exosomes. Ingenuity pathway analysis (IPA) (Qiagen
Bioinformatics, Redwood City, CA, USA) was performed for the differentially expressed
genes with adjusted p-values < 0.01, and baseMean ≥ 20 FPKM, and the absolute value of
log2FoldChange ≥2 (to include more genes in the IPA analysis).

A random-effects model in the meta-analysis was performed to determine the fold
change in gene expression array-based differential gene expression compared between
pancreatic cancer and normal tissues, following a methodology that has been previously de-
scribed elsewhere [79,80]. A p-value of less than 0.05 was considered statistically significant
if not specified.

5. Conclusions

This study revealed a distinct exosome RNA signature in plasma, which was capable
of distinguishing pancreatic cancer patients from healthy individuals. The top 10 candi-
date exosome RNAs showed a high performance in the diagnosis of pancreatic cancer.
Of these, three upregulated genes (HIST2H2AA3, LUZP6 and HLA-DRA) in exosomes
also showed the same pattern in pancreatic tumors vs. normal pancreas tissue. There
were no significant differences in the levels of these three genes across the disease stages,
although HIST2H2AA3 expression was associated with KRAS mutation status. These
findings suggest that circulating exosome RNAs are potential markers in the detection of
pancreatic cancer. Further independent studies with a relatively large sample size and the
inclusion of individuals with non-cancer diseases (e.g., chronic pancreatitis), or conducted
in populations at high risk of pancreatic cancer, are warranted.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13112565/s1, Figure S1: Kaplan–Meier overall survival curves stratified by sex
in pancreatic cancer. Male patients showed superior overall survival in comparison with female
patients. The median survival values were 21.4 (95% CI: 19.4–37.1) months for men and 17.9 (95%
CI: 15.8–24.1) months for women, respectively. On average, male patients survived approximately
3.5 months longer than female patients. However, the difference was not statistically significant
(log-rank p-value = 0.37).

https://www.oncomine.org
https://www.r-project.org
https://www.mdpi.com/article/10.3390/cancers13112565/s1
https://www.mdpi.com/article/10.3390/cancers13112565/s1
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