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Abstract 

Pharmacogenomics holds promise as a critical component of precision medicine. Yet, the use of pharmacogenomics 

in routine clinical care is minimal, partly due to the lack of efficient and effective use of existing evidence. This 

paper describes the design, development, implementation and evaluation of a knowledge-based system that fulfills 

three critical features: a) providing clinically relevant evidence, b) applying an evidence-based approach, and c) 

using semantically computable formalism, to facilitate efficient evidence assessment to support timely decisions on 

adoption of pharmacogenomics in clinical care. To illustrate functionality, the system was piloted in the context of 

clopidogrel and warfarin pharmacogenomics. In contrast to existing pharmacogenomics knowledge bases, the 

developed system is the first to exploit the expressivity and reasoning power of logic-based representation formalism 

to enable unambiguous expression and automatic retrieval of pharmacogenomics evidence to support systematic 

review with meta-analysis. 

 

Introduction 

Pharmacogenomics is the study of how genetic variants affect a person’s response to a drug. The rapid advances 

in pharmacogenomics research have made pharmacogenomics one of the genomics-based innovations that has great 

potential to contribute to improving people’s health and reducing health care costs by increasing drug efficacy and 

safety1. Yet, the adoption of pharmacogenomics in routine clinical care is relatively low2, partly due to the 

perception that there is insufficient evidence to determine the value of pharmacogenomics and the lack of effective 

and efficient use of already existing evidence3,4. 

Systematic review with meta-analysis is a well-established methodology used in evidence-based medicine that 

assesses the findings of a collection of studies that address a similar research question of interest in order to provide 

a more precise estimate of the effect of interventions or risk factors on patients’ outcomes5. Generally, the review 

process is time-consuming and labor-intensive and involves the following generally manual steps6,7: a) conducting a 

comprehensive literature search, b) screening articles to identify relevant studies, c) extracting quantitative data and 

other essential elements from included studies, d) synthesizing the extracted data when they are acquired from 

sufficiently similar clinical context, e) rating the quality and strength of evidence, and f) interpreting the synthesized 

results. Informatics approaches such as natural language processing, machine learning and text mining have been 

applied to improve the efficiency of conducting a systematic review by reducing the burden of manual efforts in 

tasks of literature screening and data extraction8-10. However, there remains considerable room for further 

improvement, particularly in the area of representing the extracted primary evidence in a semantically computable 

formalism to enable intelligent support in initial and ongoing updating of evidence retrieval, synthesis and 

interpretation. In particular a system that leverages semantically computable formalisms would greatly facilitate the 

addition of new evidence and the reassessment of the conclusions factoring in the new evidence. 

Knowledge representation and reasoning is a sub-domain of artificial intelligence that is concerned with 

encoding knowledge into semantically computable formalisms that can be efficiently manipulated by reasoning 

programs so that computers can demonstrate human-like abilities. During the past decade, Web Ontology Language 

(OWL) has been developed by combining the Semantic Web technologies and logic-based representation 

formalisms to advance computer interpretability of Web content11. OWL-encoded ontologies provide shared 

conceptualizations and controlled vocabularies of a domain of interest which allow for formal representation and 

automatic reasoning. Because of its expressivity and reasoning ability, research efforts are encouraged to exploit the 

advanced features of OWL in developing more intelligent systems that assist human decision making. 

Considering the time-consuming and knowledge-intensive nature of pharmacogenomics evidence assessment, 
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the idea of developing a knowledge-based system for intelligent initial and ongoing support in evidence assessment 

emerges intuitively from the perspective of biomedical informatics. We hypothesized that a knowledge-based system 

with the following three critical features can assist effective and efficient evidence assessment, and therefore 

facilitate timely decisions on adoption of pharmacogenomics in clinical practice. First, the information provided by 

the knowledge-based system should be clinically relevant evidence, which means that evidence related to clinical 

validity and clinical utility of pharmacogenomics should be accumulated in the system. Second, the information 

provided by the knowledge-based system should be acquired through an evidence-based approach, which means that 

primary evidence acquired from empirical research should be collected and synthesized through methodologies 

established in comprehensive systematic reviews. Third, the information provided by the knowledge-based system 

should be semantically computable, which means that a knowledge-based system should take full advantage of the 

expressivity and reasoning power of logic-based knowledge representation formalisms such as OWL 2 DL11 so that 

pharmacogenomics knowledge is unambiguously represented and accumulated in a knowledge base which allows 

for automatic reasoning. 

Upon reviewing existing pharmacogenomics knowledge bases including the Pharmacogenomics 

Knowledgebase (PharmGKB)12, the PharmacoGenomics Mutation Database (PGMD)13 and the DrugBank 

database14, we discerned that none of them fully meets the critical features of our envisioned pharmacogenomics 

knowledge-based system (Table 1). This gap motivated us to design and develop the knowledge-based system 

described in this paper de novo, aiming to provide intelligent assistance for pharmacogenomics evidence assessment. 

 
Table 1: Overview of identified gaps in current pharmacogenomics knowledge bases 
Features of the envisioned pharmacogenomics knowledge-based system PharmGKB PGMD DrugBank 

Clinically relevant 
evidence 

Clinical validity Y Y Y 

Clinical utility Y N N 

Evidence-based approach Primary evidence Y Y Y 

Sufficient information for meta-analysis N Y N 

Risk of bias assessment N N N 

Synthesized evidence Y N N 

Explicit inclusion criteria N N N 

Semantically computable 

formalism 

Logic-based formalized ontology N N N 

Ontology-committed knowledge base N N N 

Question answering by automatic reasoning N N N 

PharmGKB: the Pharmacogenomics Knowledgebase; PGMD: the PharmacoGenomics Mutation Database; DrugBank: the DrugBank database. 

Y: abbreviation of “yes”, indicating that the knowledge base meets the specified features, N: abbreviation of “no”, indicating that the knowledge 

base does not meet the specified features. 

Methods 

Conceptual modeling of the domain of pharmacogenomics evidence assessment 

To address the aforementioned features of clinically relevant evidence and an evidence-based approach, we 

proposed a basic information structure for developing the conceptual model of the domain of pharmacogenomics 

evidence assessment using a faceted analysis approach15. This information structure is composed of five building 

blocks, namely, information entities, information components, concepts, relations and terms. Figure 1 illustrates that 

in the domain of pharmacogenomics evidence assessment, an information entity is composed of information 

components, an information component is expressed by relation-concept pairs, and relations and concepts are 

substantiated by terms to express the intended meaning. Based on the information needs in conducting systematic 

reviews with meta-analyses6,7, the information entities in the conceptual model include publication, study, and 

evidence, and the minimal set of information components to describe these intended information entities include 

study population, drug therapy, comparison, outcome, genetic variation, study design, effect estimation, risk of bias 

assessment and bibliographical information of publication. 

 

 
Figure 1: Basic structure of the conceptual model and its building blocks for conceptualization of the domain of pharmacogenomics 

evidence assessment 
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We created operational definitions of evidence of clinical validity and utility and deployed a fine-grained 

characterization of these two types of pharmacogenomics evidence acquired from empirical pharmacogenomics 

studies in clopidogrel and warfarin therapies to identify concepts, relations and terms that are essential for modeling 

the domain of pharmacogenomics evidence assessment. References cited by the Clinical Pharmacogenetics 

Implementation Consortium (CPIC) guidelines for clopidogrel and warfarin therapies16,17 were used as the major 

sources from which we selected original research articles for manual extraction of concepts, relations and terms. 

Review articles cited in the two CPIC guidelines were used for backward citation tracking to identify relevant 

articles that did not directly cited in the guidelines’ reference list. Articles recently published after the release of the 

CPIC guidelines were also sought. 

 

Implementation of a pharmacogenomics knowledge-based system 

Our knowledge-based system for pharmacogenomics evidence assessment consists of three core components, 

i.e., an ontology, a knowledge base and a reasoner (Figure 2). The primary aim of the knowledge-based system is to 

enable formal representation and automatic retrieval of pharmacogenomics evidence to assist in meta-analysis, 

which lays the foundation for further applications in systematic review such as classification of homogeneous 

evidence and interpretation of clinical significance of evidence. We adopted OWL 2 DL11 as our formal 

representation language, used Protégé18 as an ontology editor, and leveraged HermiT19 as a reasoner to implement 

the knowledge-based system. 

 

 
Figure 2: Fundamental architecture and intended application scenarios of the developed pharmacogenomics knowledge-based system. 

The two applications highlighted by grey blocks are proposed for future research. 

 

The aforementioned conceptual model of pharmacogenomics evidence assessment served as the blueprint for 

constructing the ontology. Based on a commonly cited guide for constructing an OWL 2 ontology11, we derived 

mapping principles to convert the varieties of building blocks of the conceptual model into the constructs of an 

OWL ontology, i.e., classes, properties and individuals. The individual information entities extracted for deriving the 

conceptual model served as the test materials to construct the knowledge base. Using the constructs encoded in the 

OWL ontology, and constructors (i.e., restrictions and operators) supported by OWL 2 DL, we derived 

representation patterns for asserting individual information entities with heterogeneous information content. Our 

major considerations while deriving the representation patterns were to avoid computational inefficiency caused by 

over-representation and irrelevant retrieval of individuals caused by under-representation. 

 

Evaluation of the implemented knowledge-based system on ontology-driven pharmacogenomics evidence 

retrieval 

In order to provide a proof-of-concept that the developed knowledge-based system is capable of providing 

intelligent support in retrieving relevant pieces of pharmacogenomics evidence for systematic review with 
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meta-analysis, a convenience sample of 9 systematic reviews20-28 that investigated the association between genetic 

variations and responses to clopidogrel was obtained from the reference list of the CPIC clopidogrel guideline16. A 

collection of 33 meta-analyses were selected from these reviews and used as test cases to evaluate the precision and 

efficiency of the ontology-driven approach to evidence retrieval. 

The reported criteria for including individual pieces of evidence into each test case of meta-analyses were 

extracted from the respective review articles. Ontology-driven evidence retrieval was implemented first by formally 

representing these inclusion criteria as the necessary and sufficient conditions of defined classes using the 

constructed OWL ontology. Then the HermiT reasoner embedded in Protégé was manually triggered to perform 

instance checking over the implemented knowledge base to retrieve those individual pieces of evidence that match 

the definition of each defined class. The results of ontology-driven evidence retrieval were evaluated in terms of 

precision and efficiency. Precision was calculated as the percentage of retrieved individual pieces of evidence that 

are relevant to the inclusion criteria specified for each respective meta-analysis. The relevance was judged by BD, 

one of the authors of this paper. Efficiency was measured by the computing time taken by HermiT reasoner to 

perform the reasoning tasks, which was captured from Protégé Command Prompt. 

Results 

Table 2 provides an overview of basic statistics on evidence source, conceptual model, ontology metrics and 

asserted individual information entities of the developed knowledge-based system. A total of 73 empirical research 

articles were selected as evidence source, from which three types of intended information entities were identified, 

including 73 pieces of publications, 82 pieces of studies and 445 pieces of evidence. 

 

Table 2: Overview of statistics of data source, conceptual model, ontology and asserted individual information 

entities of the developed knowledge-based system 
Evidence Source Building Blocks of Conceptual 

Model 

Metrics of Ontology and Asserted 

Individual IE 

Ontology Asserted 

Individual IEs 

Publication 73 Information entity (IE) 3 DL expressivity ALCRF(D) ALCRQ(D) 

-clopidogrel 51 Information component 9 Class 306 - 

-warfarin 22 Concept 30 Object property 69 - 

Study 82 Relation 49 Datatype property 12 - 

- clopidogrel 57 Term 282 Individual 9 667 

- warfarin 25   SubClassOf axioms 289 - 

Evidence 445   EquivalentClasses axioms 9 - 

- clopidogrel 285   SubObjectPropertyOf axioms 27 - 

- warfarin 160   SubPropertyChainOf axioms 11 - 

    SubDatatypePropertyOf axioms 5 - 

    FunctionalDatatypeProperty axioms 7 - 

    DatatypePropertyRange axioms 7 - 

    ClassAssertion axioms 9 2670 

    ObjectPropertyAssertion axioms - 1187 

    DatatypePropertyAssertion axioms - 1522 

 

Conceptual model 

Fine-grained characterization of this collection of individual information entities yielded 30 concepts, 49 

relations, and 282 terms to describe the 9 intended information components. By organizing these extracted building 

blocks, we derived a conceptual model for representing the domain of pharmacogenomics evidence assessment 

(Figure 3). Three types of information entities are independent yet inter-related. Specifically, Evidence is related to 

Study via the relation of “is acquired from”, and Study is in turn related to Publication via “is reported 

in”. Each type of information entity is described by specific information component modules, with Publication 

described by publication module, Study described by modules of study population, study design, drug therapy, and 

risk of bias assessment, and Evidence described by modules of comparison, genetic variation, outcome, and effect 

estimation. Each information component module is expressed in a layered structure that is composed of multiple 

relation-concept pairs. When the conceptual model is used to express concrete information entities, concepts and 

relations are directly substantiated by terms commonly used in a variety of clinical, pharmacological or genomic 

domains. Thus the meaning of each individual real-world information entity could be explicitly and precisely 

expressed. For example, to describe a study population of “patients who were treated with clopidogrel for acute 

coronary syndrome”, the concept of Person is substantiated by the term of Patient, the concept of Drug by the 

term of Clopidogrel, and the concept of Disease by the term of Acute Coronary Syndrome. The developed 

conceptual model was validated by fitting two original articles29,30 and two systematic reviews20,31. The preliminary 
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verification results showed that our model is adequate for annotating primary pharmacogenomics evidence and 

inclusion criteria for meta-analysis. 

Figure 3: Conceptual Model of Pharmacogenomics Evidence Assessment. Double-lined squares: information entities, single-lined squares: 

concepts, arrows: relations. Dotted lines divide the entire model into 9 modules, each corresponding to one information component. 
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Ontology 

The constructed ontology contains 396 constructs, including 306 classes, 69 object properties, 12 data 

properties, and 9 individuals (Table 2). By following the information structure illustrated in Figure 3, these 

constructs could be used to formally represent publications, studies and evidence that were involved in assessing the 

evidence of clinical validity and utility in the domain of clopidogrel and warfarin pharmacogenomics. 

As shown in Table 2, the ontology features the use of several axioms, including SubClassOf, EquivalentClass, 

SubObjectPropertyOf, and SubPropertyChainOf axioms, to facilitate reasoning for evidence retrieval. For example, 

we used SubClassOf axioms to construct the class of Disease with 6-level depth of class hierarchy, where the 

bottom-level classes are more specific than the top-level classes. Thus a piece of evidence annotated with 

specialized disease terms could be retrieved by inclusion criteria defined with broad disease terms. We used 

EquivalentClasses axioms to define acute coronary syndrome (ACS) as equivalent to the union of ST-segment 

elevation myocardial infarction (STE_MI), non-ST-segment elevation myocardial infarction (NSTE_MI) or unstable 

angina (UA). Thus inclusion criteria that are specified with ACS as disease characteristics of patients will retrieve 

not only evidence that is exactly annotated with ACS but also those annotated with STE_MI, NSTE_MI or UA. We 

used SubObjectPropertyOf axioms to represent more specific relations. For example, the object property 

hasDrugTherapy represents a general relation between a study and a drug therapy under investigation. Subproperties 

such as hasDrugTherapyObserved, hasDrugTherapyOI and hasDrugTherapyRef were created to specify a drug 

therapy that was investigated under an observational study, or given to the experimental arm, or given to the control 

arm respectively. Thus inclusion criteria that are specified with hasDrugTherapyObserved will retrieve exactly those 

evidence acquired from observational studies. We used SubPropertyChainOf axioms to connect individuals by a 

chain of properties. For example, an individual of evidence Ie is linked to an individual of study Is via object 

property isAcquiredFrom, and Is is linked to a risk-of-bias-assessment (ROBA) value low on random sequence 

generation via object property hasROBA_Cochrane_RandomSequenceGeneration, by linking these two properties to 

form a property chain, Ie will be automatically inferred the ROBA value of low. 

 

Knowledge base 

The constructed knowledge base contains 73, 82 and 445 individual pieces of asserted publications, studies and 

evidence respectively. These information entities were formally represented via class assertion axioms, object 

property assertion axioms, and datatype property assertion axioms (Table 2). Figures 4, 5 and 6 illustrate 

respectively the formal representation of individual pieces of publication, study and evidence that were extracted 

from the article [Kimmel et al., 2013]30. 

Figure 4 illustrates the formal representation of an individual publication labeled as pub_24251361, expressing 

that it is a full-text refereed journal article that was published in 2013 and its PubMed identifier is 24251361. 

  

 
Figure 4: Example of assertion of an individual piece of publication. Screenshot extracted from Protégé. 

 

 
Figure 5: Example of assertion of an individual piece of study. Screenshot extracted from Protégé. 
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Figure 5 illustrates the formal representation of an individual study labeled as stu_1_pub_24251361, which was 

reported in the publication pub_24251361 that has been asserted in Figure 4. This study is expressed as a 

randomized and paralleled controlled clinical trial that aimed to investigate a genotype-guided warfarin therapy 

considering three genetic variants (CYP2C19*2 and CYP2C19*3 and VKORC1-1639G/A) versus clinically guided 

warfarin dosing in patients with atrial fibrillation or deep vein thrombosis or pulmonary embolism or deep vein 

thrombosis & pulmonary embolism. In addition, the risk of bias in this particular study was assessed using Cochrane 

assessment tool, with low risk of bias in each of the six criteria. 

Figure 6 illustrates the formal representation of an individual piece of evidence labeled as evi_01_ 

pub_24251361_stu_1, which was acquired from the study stu_1_pub_24251361 that has been asserted in Figure 5. 

This evidence is expressed as comparison between two drug therapies (which could be known by its link to 

stu_1_pub_24251361). The outcome measure was the percentage of time of international normalized ratio in the 

therapeutic range up to the follow-up of 28 days. The effect was measured as absolute difference between two group 

means and was estimated as -0.2% with 95% confidence interval -3.4% to 3.1% and P-value of 0.91. In addition, 

some information was inferred for this evidence (as shown in the highlighted blocks) through its linkage with 

stu_1_pub_24251361, e.g., the publication pub_24251361 from which it was extracted, and the risk of bias 

assessment values of the study stu_1_pub_24251361 from which the evidence was acquired. 

 

 
Figure 6: Example of assertion of an individual piece of evidence. Screenshot extracted from Protégé. 

 

The construction of our knowledge base features the design of representation patterns to enable representation 

of heterogeneous information content of complicated information components. For example, the representation 

patterns for describing 6 types of information content in the drug therapy module are summarized in Table 3. Each 

type of information content is represented by an anonymous class expression, which is described by object 

properties, property restrictions, classes used as property values, and operators that link multiple property values, as 

appropriate. The exemplary drug therapies illustrated in Figure 5 were asserted based on these representation 

patterns. It is worth mentioning that these representation patterns are capable of describing the highly heterogeneous 

drug therapies investigated in clinical pharmacogenomics studies. In the pilot implementation of 82 individual 

studies, the representation patterns were successfully used to represent a total of 35 different types of drug therapies. 

 

Table 3: Representation patterns for describing information content of drug therapy 
Information content Object property Property restriction Class used as property value 

(possible number of values) 

Operator used to link 

multiple values 

Drug therapy hasDrugTherapy with 

subproperties 

Existential restriction DrugTherapy 

(single or multiple) 

or 

Drug therapy strategy hasDrugTherapyStrategy Existential restriction DrugTherapyStrategy 

(single) 

Not applicable 

Genetic variant considered in 

genotype-guided strategy 

considersGeneticVariant Qualified cardinality 

restriction 

GeneticVariant 

(single or multiple) 

and 

Alternative drug therapy in 

genotype-guided drug selection 

hasAlternativeDrugTherapy Existential restriction DrugTherapy 

(single or multiple) 

or 

Pharmacodynamic parameter 

monitored 

monitorsPharmacodynamics 

Parameter 

Existential restriction PharmacodynamicsParameter 

(single) 

Not applicable 

Drug regimen hasDrugRegimen Existential restriction DrugRegimen 

(single or multiple) 

and/or 
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Performance of ontology-driven evidence retrieval 

Table 4 illustrates the implementation and result of ontology-driven evidence retrieval, using one test case 

meta-analysis selected from the review article of [Singh et al., 2012]27 as an example. The inclusion criteria 

extracted from the review article are summarized in the upper left part. Ontology-based formal representation of the 

extracted inclusion criteria is presented in the lower left part. Implementation of 9 defined classes to represent the 

inclusion criteria of 9 meta-analyses is presented in the middle part (marked by brackets). After triggering the 

HermiT reasoner, the retrieved relevant evidence could be viewed by clicking each specific defined class. As shown 

in the right part, 22 pieces of relevant evidence were retrieved for the defined class named as 

MACE_CYP2C19star2_CADandPCI_Singh. 

 

Table 4: Example of ontology-driven evidence retrieval 
Inclusion criteria extracted from review article [Singh et al., 2012] Implementation and result of ontology-driven evidence retrieval* 

Publication year < 2011 

 

Publication type Refereed journal article or conference abstract 

Study population Patient with coronary artery disease and percutaneous coronary 

intervention 

Study design Randomized parallel-controlled trial or prospective cohort study 

Drug therapy Clopidogrel therapy with standard dose regimen 

Genetic contrast Carrier of at least one CYP2C19*2 allele versus noncarrier 

Outcome Incidence of major adverse cardiovascular events 

Formal representation of inclusion criteria as a defined class named as 

MACE_CYP2C19star2_CADandPCI_Singh 

Evidence and (((hasComparison some 

ComparisonBetweenGenotypeWithinDrugTherapyOI) and (isAcquiredFrom some (Study 

and (hasDrugTherapyOI some ClopidogrelTherapy)))) or ((hasComparison some 

ComparisonBetweenGenotypeWithinDrugTherapyObserved) and (isAcquiredFrom some 

(Study and (hasDrugTherapyObserved some ClopidogrelTherapy)))) or ((hasComparison 

some ComparisonBetweenGenotypeWithinDrugTherapyRef) and (isAcquiredFrom some 

(Study and (hasDrugTherapyRef some ClopidogrelTherapy))))) and (hasGeneticContrast 

some (CarrierOfAtLeast1VsNoncarrier and (hasGeneticVariant some CYP2C19star2))) 

and (hasOutcomeMeasure some (ClinicalEfficacyMeasure and (hasMultipleComponent 

some (AdverseEvent or Disease or Procedure)) and (isMeasuredAs some 

IncidenceOfEvent))) and (isAcquiredFrom some (Study and (hasStudyPopulation some 

(Patient and (hasDisease some CoronaryArteryDisease) and (hasProcedure some PCI))) 

and (hasStudyType some ((InterventionalStudy and (hasStudyDesign some (ParallelGroup 

and (hasAllocationScheme some Randomization)))) or (ObservationalStudy and 

(hasStudyDesign some (Cohort and (hasTimePerspective some Prospective)))))))) and 

(isExtractedFrom some (Publication and (hasPublicationType some (ConferenceAbstract 

or RefereedJournalArticle)) and (hasPubYear some integer[< 2011]))) 

* Screenshots extracted from Protégé. The 9 defined classes marked by the brackets represent the inclusion criteria of 9 meta-analyses. 

 

The evaluation of ontology-driven evidence retrieval in terms of precision and efficiency is encouraging. 

Overall, 33 test cases of ontology-based evidence retrieval achieved a precision rate of 100%. The computing time 

taken to retrieve relevant evidence for each systematic review approximately ranged from 9 to 23 seconds (Table 5). 

 

Table 5: Evaluation of efficiency of ontology-driven evidence retrieval 

Systematic review 
Singh 

201227 

Jang 

201226 

Bauer 

201123 

Zabalza 

201225 
Jin 201122 

Hulot 

201020 

Sofi 

201121 

Holmes 

201124 

Yamaguchi 

201328 

Number of meta-analysis 

included 
9 6 4 4 3 3 2 1 1 

Total number of evidence 

retrieved for all included 

meta-analyses 

57 58 44 31 19 22 23 31 16 

Approximated computing 

time (seconds) 
23 21 21 16 18 17 18 11 9 

Note: The retrievals were tested on a personal laptop (Intel Corei7-4700MQ 2.4GHz Processor, 16 GB DDR3 Ram and a 64-bit version of 

Windows 8.1). 

 

Discussion 

This paper presents a knowledge-based system that adopts OWL 2 DL as the representation language to enable 

ontology-based representation of primary evidence and ontology-driven retrieval of relevant pieces of evidence for 

conducting systematic review with meta-analysis. The unique features of this system are elaborated as follows. 

First, the system was developed based on a conceptual model of pharmacogenomics evidence assessment that 

considers different dimensions of information needs and thus accommodates different types of information in a 

unified model. Considering that both clinical validity and clinical utility evidence are essential to integrate 

pharmacogenomics into clinical practice, the conceptual model was designed to enable annotation of evidence 

related to association between genetic variant and drug response as well as evidence related to effectiveness of 

genotype-guided drug therapies. Moreover, to address the information needs for conducting systematic reviews with 

meta-analyses, the conceptual model was designed to enable annotation of primary evidence along with its study 

Click on the class to 

view the 22 pieces 

of individual 

evidence retrieved as 

shown in the right 
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context and provenance as well as to allow annotation of inclusion criteria for retrieving relevant evidence. To our 

best knowledge, none of the existing pharmacogenomics knowledge bases is capable of annotating all of these types 

of information in a single information model. 

Second, the system exploited the expressivity and reasoning ability of OWL 2 DL to deliver an ontology and a 

number of representation patterns, which collectively allow complex and heterogeneous pharmacogenomics 

evidence to be unambiguously represented. Thereby, the formally represented primary evidence could be classified 

at different levels of specificity as defined by different research questions. Nevertheless, it was challenging to derive 

representation patterns that avoid computational inefficiency caused by over-representation and irrelevant retrieval 

caused by under-representation. We also identified some cases in that the meaning of our intended retrieval criteria 

were not expressible in the representation patterns we designed. 

Third, the system could represent inclusion criteria as defined classes and embed them into the ontology, which 

allows the users of the system to acquire the most updated profile of evidence of their interests each time newly 

extracted pieces of evidence are added in the knowledge base. This is achieved via the OWL 2 DL reasoner’s 

capability of automatic reasoning. This feature is most beneficial in view of the evolving nature of the development 

of pharmacogenomics and the recurrent needs to assess the change of evidence over time. 

Our preliminary work has several limitations. The scope of knowledge base was limited to clinical validity and 

utility of clopidogrel and warfarin pharmacogenomics. Some useful information was missing in the conceptual 

model, such as age and ethnicity of study population. The evidence asserted in the knowledge base is not exhaustive, 

but to serve as representative examples to provide a proof-of-concept of the design, development, implementation, 

and evaluation of the envisioned knowledge-based system. No informatics tool has been developed to automatically 

export retrieval results from Protégé to existing statistical software that supports meta-analysis. 

Through evaluation of its performance using real-world test cases, the preliminary pharmacogenomics 

knowledge-based system has proven to be an effective and efficient approach to retrieve relevant primary evidence 

for conducting systematic review with meta-analysis. Future research to enhance its applicability is proposed as 

follows. The scope that limited to clopidogrel and warfarin pharmacogenomics should be expanded to include other 

domains, particularly cancer pharmacogenomics. The information component modules should be refined to express 

more useful information. Moreover, the application scenarios should be extended to address the subsequent steps in 

the process of a comprehensive evidence assessment, such as formal representation of synthesized evidence to 

enable semantic computation of the clinical significance of genetic variants in predicting drug response and 

improving patient outcome. With the enhanced applicability, the knowledge-based system might greatly improve the 

efficiency of pharmacogenomics evidence assessment, and ultimately increase the adoption of pharmacogenomics in 

routine clinical care. 
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