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We improve data extrapolation for truncated computed tomography (CT) projections by using Helgason-Ludwig (HL) consistency
conditions that mathematically describe the overlap of information between projections. First, we theoretically derive a 2D Fourier
representation of the HL consistency conditions from their original formulation (projection moment theorem), for both parallel-
beam and fan-beam imaging geometry. The derivation result indicates that there is a zero energy region forming a double-wedge
shape in 2D Fourier domain. This observation is also referred to as the Fourier property of a sinogram in the previous literature.
Themajor benefit of this representation is that the consistency conditions can be efficiently evaluated via 2D fast Fourier transform
(FFT). Then, we suggest a method that extrapolates the truncated projections with data from a uniform ellipse of which the
parameters are determined by optimizing these consistency conditions. The forward projection of the optimized ellipse can be
used to complete the truncation data. The proposed algorithm is evaluated using simulated data and reprojections of clinical data.
Results show that the rootmean square error (RMSE) is reduced substantially, compared to a state-of-the-art extrapolationmethod.

1. Introduction

It is known that traditional computed tomography (CT)
reconstruction algorithms, for example, filtered backpro-
jection methods, are not compatible to laterally truncated
projection data, which appears often in the case of either (1)
when the object extends outside of the field of view (FOV) or
(2)X-ray beam collimation for the purpose of dose reduction.
If data truncation is not effectively compensated for, it
will result in cupping-like artifacts and incorrect gray-value
levels in the reconstruction. A typical approach to reduce
truncation artifacts is to perform extrapolation, for example,
with the symmetric mirroring method [1], water cylinder
extrapolation method [2], optimization-based extrapolation
scheme [3], or implicit extrapolation method performed
in the second-order derivative domain [4]. However, these
heuristic extrapolation methods typically rely on techniques

that complete the truncated data by means of a continuity
assumption and thus appear to be ad hoc.

It has been demonstrated that any physically consistent
sinogram has a strong restriction in its functional form [5].
This restriction is expressed by Helgason-Ludwig (HL) con-
sistency conditions [6, 7], which are a mathematical expres-
sion to precisely describe the overlap of information between
different projections. The HL consistency conditions play
an important role in image reconstruction from imperfect
projection data (e.g., due to noise, motion, and truncation)
since these projections no longer satisfy the HL conditions.
Related work uses HL conditions to estimate motion param-
eters directly from sinograms [8–10] or to solve the problem
of limited angle tomography using a variational formulation
that incorporates HL conditions [11]. In PET/SPECT, the
HL consistency conditions were also used for attenuation
correction if no transmission data is available [12].
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This work addresses consistency-based sinogram com-
pletion. The methods proposed in [2, 13] implicitly used the
zeroth-order HL consistency condition; that is, the DC term
is the same for all projections, as a constraint for data extrap-
olation. The first-order condition, which corresponds to the
first moment of the projections and describes the so-called
“center of mass,” was also used to guide the extrapolation
procedure [14]. Later, the elliptical extrapolation suggested
in [15] explicitly used a small subset of the consistency con-
ditions in the original HL formulation (projection moment
theorem) so that large numerical instability can be avoided
when computing the moment terms. The approach in [16]
modified this original formulation by expanding the Radon
transform in terms of its basis functions and incorporated not
only one or two HL consistency conditions, but theoretically
an infinite number of such constraints. However, the HL con-
sistency conditions proposed in [16] were represented in the
Chebyshev-Fourier domain, which increased computational
complexity for practical applications. To simplify the com-
putation, the method in [17] refined the Chebyshev-Fourier
representation ofHL conditions using an FFTwith additional
cosine transform along the detector channel. Furthermore,
fan-beam to parallel-beam rebinning is required since the
consistency conditions were only derived for parallel-beam
geometry.

In this paper, we first derive the HL consistency con-
ditions in the 2D Fourier domain from their original for-
mulation. The Fourier representation shows that there is a
zero energy region appearing in the Fourier transform of a
sinogram (symmetric for parallel-beam and asymmetric for
fan-beam geometry). This property was also demonstrated
in [18, 19], which is referred to as the Fourier property of a
sinogram and which was approximately arrived at using the
parallel-/fan-beam sinogram of a delta point object. If the
projection data is imperfect or incomplete, the zero energy
double-wedge region contains nonnegligible values that indi-
cate the corresponding inconsistent components. Several
applications using this Fourier property of a sinogram can be
found in [8, 20–23]. In this work, we theoretically prove the
equivalence between the HL consistency conditions and the
Fourier property of a sinogram and show the advantages of
applying these Fourier-based consistency conditions: first, an
infinite number of conditions are considered; and second, 2D
Fourier transform via FFT is computationally more efficient
than the Chebyshev-Fourier transform [16] or Lagrange-
Fourier transform [11]. These features allow us to develop
an efficient data extrapolation method by optimization of a
cost function based on the Fourier-basedHL conditions. First
investigation on the method was also reported in [24].

The organization of the paper is as follows. In Section 2,
we review the HL consistency conditions in its original
formulation and the modified Chebyshev-Fourier represen-
tation. Then, we derive 2D Fourier-based HL consistency
conditions and extend the conditions from parallel-beam to
fan-beam geometry for centered objects. In Section 3, we
design a cost function based on HL consistency conditions,
which we use in a constrained optimization over a uniform
ellipse that describes the object outline. In Section 4, we
present experimental results from both a simulated phantom

and reprojections of clinical data. In Sections 5 and 6, we
discuss the relevant issues and draw conclusion.

2. Consistency Conditions

2.1. Helgason-Ludwig (HL) Consistency Conditions. In this
section, we review the original formulation ofHL consistency
conditions, which is also referred to as the projectionmoment
theorem in the literature [16]. Suppose the object is supported
on the unit disk centered at the origin. Let 𝑎𝑛(𝜃) be the 𝑛th
moment of the sinogram 𝑔(𝜃, 𝑠) with respect to the detector
bin 𝑠, which is defined as

𝑎𝑛 (𝜃) = ∫1
−1

𝑠𝑛𝑔 (𝜃, 𝑠) 𝑑𝑠. (1)

Then, the function 𝑎𝑛(𝜃) does not change arbitrarily when
the rotation angle 𝜃 varies. The Fourier series expansion of
𝑎𝑛(𝜃) can be written as follows:

𝑎𝑛 (𝜃) =
∞

∑
𝑘=0

𝑎𝑛𝑘 exp (𝑗𝑘𝜃) , (2)

with Fourier coefficients 𝑎𝑛𝑘 given by

𝑎𝑛𝑘 = 1
2𝜋 ∫2𝜋
0

𝑎𝑛 (𝜃) exp (−𝑗𝑘𝜃) 𝑑𝜃. (3)

Then, it is readily proven [25] that all 𝑎𝑛𝑘 necessarily satisfy
𝑎𝑛𝑘 = 0, for |𝑘| > 𝑛. (4)

2.2. Chebyshev-Fourier Representation of HL Conditions. The
derivation of the Chebyshev-Fourier version of HL con-
ditions is similar to the one in [16]. But here we use
the Chebyshev polynomial of the first kind to replace the
monomial term 𝑠𝑛, instead of the Chebyshev polynomial of
the second kind as shown in [16].

Inserting (1) into (3) yields

𝑎𝑛𝑘 = 1
2𝜋 ∫2𝜋
0

∫1
−1

𝑔 (𝜃, 𝑠) 𝑠𝑛 exp (−𝑗𝑘𝜃) 𝑑𝑠 𝑑𝜃. (5)

Note that the functions 𝑠𝑛 exp(−𝑗𝑘𝜃) do not form a set of
orthogonal basis functions on 𝐿2(𝑍, (1− 𝑠2)−1/2) (the Radon
transform maps the Hilbert space 𝐿2(Ω2) consisting of finite
norm objects 𝑓(𝑥, 𝑦) to the Hilbert space 𝐿2(𝑍, (1 − 𝑠2)−1/2)
consisting of finite norm sinograms 𝑝(𝜃, 𝑠)), where −1 ≤
𝑠 < 1. In the following we show that the monomial 𝑠𝑛 can
be replaced by the 𝑛th-order orthogonal polynomial, such
that the HL consistency conditions are tractable to use in
reconstruction.

The sinogram 𝑔(𝜃, 𝑠) can be expanded in a series as
follows:

𝑔 (𝜃, 𝑠) = 1
𝜋
∞

∑
𝑛=−∞

∞

∑
𝑘=0

𝑏𝑛𝑘 (1 − 𝑠2)−1/2 𝑇𝑛 (𝑠) exp (𝑗𝑘𝜃) , (6)
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where 𝑏𝑛𝑘 denote the expansion coefficients and𝑇𝑛(⋅) denotes
the 𝑛th-order Chebyshev polynomial of the first kind, which
is defined by

𝑇𝑛 (𝑠) = 𝑛
2
[𝑛/2]

∑
𝑖=0

𝑐𝑖 (2𝑠)𝑛−2𝑖 = cos (𝑛 arccos (𝑠)) , (7)

with

𝑐𝑖 = (−1)𝑖 (𝑛 − 𝑖 − 1)!
𝑖! (𝑛 − 2𝑖)! . (8)

Let 𝑔1, 𝑔2 ∈ 𝐿2(𝑍, (1 − 𝑠2)−1/2); we define the inner
product of 𝑔1 and 𝑔2 as follows:

⟨𝑔1, 𝑔2⟩ = ∫2𝜋
0

∫1
−1

𝑔1 (𝜃, 𝑠) 𝑔2 (𝜃, 𝑠) √(1 − 𝑠2) 𝑑𝑠 𝑑𝜃. (9)

FromAppendix Awewill prove that𝑇𝑛(𝑠)(1−𝑠2)−1/2exp(𝑗𝑘𝜃)
form an orthogonal basis of 𝐿2(𝑍, (1 − 𝑠2)−1/2).

Then, we can obtain an expression of the expansion
coefficients 𝑏𝑛𝑘 as a scalar product

𝑏𝑛𝑘 = ⟨𝑔, 1𝜋𝑇𝑛 (𝑠) (1 − 𝑠2)−1/2 exp (−𝑗𝑘𝜃)⟩

= 1
𝜋 ∫2𝜋
0

∫1
−1

𝑔 (𝜃, 𝑠) 𝑇𝑛 (𝑠) exp (−𝑗𝑘𝜃) 𝑑𝑠 𝑑𝜃.
(10)

By comparing (5) and (10), it is noted that the coefficients
𝑏𝑛𝑘 are related to 𝑎𝑛𝑘 by the following combination:

𝑏𝑛𝑘 = 𝑛
2
[𝑛/2]

∑
𝑖=0

𝑐𝑖2𝑛−2𝑖𝑎𝑛−2𝑖,𝑘. (11)

Then, we will have the HL conditions as

|𝑘| > 𝑛 ⇒
|𝑘| > 𝑛 − 2𝑖 (𝑖 = 0, 1, . . . , 𝑛2) ⇒

𝑎𝑛−2𝑖,𝑘 = 0 (see Eq. (4)) ⇒
𝑏𝑛𝑘 = 0.

(12)

In sum,

𝑏𝑛𝑘 = 0, if |𝑘| > 𝑛. (13)

2.3. 2D Fourier-Based HL Consistency Conditions. We per-
form the 2D Fourier transform to both sides of (6)

𝐺 (𝜂, 𝜉) = 1
𝜋 ∫2𝜋
0

∫1
−1

∞

∑
𝑛=−∞

∞

∑
𝑘=0

𝑏𝑛𝑘 (1 − 𝑠2)−1/2 𝑇𝑛 (𝑠)

× exp (𝑗𝑘𝜃) exp (−𝑗 (𝜂𝜃 + 𝜉𝑠)) 𝑑𝑠 𝑑𝜃.
(14)

Because the term
∞

∑
𝑛=−∞

∞

∑
𝑘=0

𝑏𝑛𝑘𝑇𝑛 (𝑠) exp (𝑗𝑘𝜃) exp (−𝑗 (𝜂𝜃 + 𝜉𝑠)) (15)

is uniformly convergent, the order of the integral operator
and the sum operator can be changed:

𝐺 (𝜂, 𝜉)

= 1
𝜋
∞

∑
𝑛=−∞

∞

∑
𝑘=0

𝑏𝑛𝑘 ∫
2𝜋

0
∫1
−1

(1 − 𝑠2)−1/2 𝑇𝑛 (𝑠)

× exp (𝑗𝑘𝜃) exp (−𝑗 (𝜂𝜃 + 𝜉𝑠)) 𝑑𝑠 𝑑𝜃

= 1
𝜋
∞

∑
𝑛=−∞

∞

∑
𝑘=0

𝑏𝑛𝑘 ∫
1

−1
(1 − 𝑠2)−1/2 𝑇𝑛 (𝑠) exp (−𝑗𝜉𝑠) 𝑑𝑠

× ∫2𝜋
0

exp (−𝑗 (𝜂 − 𝑘) 𝜃) 𝑑𝜃.

(16)

Because of the orthogonality of complex exponentials, we
know that

∫2𝜋
0

exp (−𝑗 (𝜂 − 𝑘) 𝜃) 𝑑𝜃 = {
{
{
0, 𝜂 ̸= 𝑘,
2𝜋, 𝜂 = 𝑘. (17)

Then, we have

𝐺 (𝜂, 𝜉)

= 2
∞

∑
𝑛=−∞

𝑏𝑛𝜂 ∫
1

−1
(1 − 𝑠2)−1/2 𝑇𝑛 (𝑠) exp (−𝑗𝜉𝑠) 𝑑𝑠

= 2
∞

∑
𝑛=−∞

𝑏𝑛𝜂 𝐽𝑛 (−𝜉)2 (−𝑗)𝑛 (see Appendix B) ,

(18)

where 𝐽𝑛 is the first kind Bessel function of order 𝑛.
According to Debye’s relation [25], we know that 𝐽𝑛(𝜉)

decays exponentially when |𝑛| > |𝜉|. From (13) we also know
that 𝑏𝑛𝜂 = 0 when |𝜂| > 𝑛. Thus, we will have 2D Fourier
representation of the HL condition as follows:

𝐺 (𝜂, 𝜉) ≈ 0, for 𝜂 > 𝜉. (19)

So far, we only assume that the object is supported on the
unit disk. If the object is supported by a disk with a radius 𝑟,
then we replace 𝑠 by 𝑠 = 𝑠/𝑟 (where |𝑠| ≤ 1) in (14) and (18)
such that we can obtain the following conditions:

𝐺 (𝜂, 𝜉) ≈ 0, for 𝜂 > 𝑟𝜉, (20)

where 𝑟 is the largest object support. Note that this property
was also found in [18] by investigating the parallel-beam
sinogram of a point object.

Figure 1 illustrates a double-wedge region of zero coef-
ficients in the 2D Fourier transform of a sinogram, when
|𝜂| > 𝑟𝜉.
2.4. HL Conditions in Fan-Beam Geometry. With variable
substitution, that is, 𝜃 = 𝛽 + 𝛼, 𝑠 = 𝑅 sin𝛼 (𝛽 is the rotation
angle in fan-beam geometry, 𝛼 is the opening fan angle, and
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Figure 1: Illustration of zero coefficients in the 2D Fourier transform of a sinogram. (a) Shepp-Logan phantom, (b) the corresponding
sinogram, and (c) the 2D Fourier transform of the sinogram.

𝑅 is the source-to-isocenter distance), the projectionmoment
theorem (i.e., (5)) in fan-beam notation can be expressed as

𝑎𝑛𝑘 = 1
2𝜋 ∫2𝜋
0

∫𝜋/2
−𝜋/2

𝑔Fan (𝛽, 𝛼) (𝑅 sin𝛼)𝑛

⋅ exp (𝑖𝑘 (𝛽 + 𝛼)) 𝑑𝛽 𝑑 (𝑅 sin𝛼) ,
(21)

where

𝑎𝑛𝑘 = 0, for |𝑘| > 𝑛. (22)

Similar to the parallel-beam case, we consider the object
support is 𝑟 and expand 𝑔Fan(𝛽, 𝛼) in the Chebyshev-Fourier
space as

𝑔Fan (𝛽, 𝛼)

= 1
𝜋
∞

∑
𝑛=−∞

∞

∑
𝑘=0

𝑏𝑛𝑘 𝑇𝑛 (𝑅 sin𝛼/𝑟)
√1 − (𝑅 sin𝛼/𝑟)2

exp (𝑗𝑘 (𝛽 + 𝛼)) . (23)

Also, we readily obtain the relation 𝑏𝑛𝑘 = 0, for |𝑘| >
𝑛. Then, 2D Fourier transform of both sides of (23) and
simplification according to (17) yield

𝐺Fan (𝜂,𝑚)

= 1
𝜋 ∫2𝜋
0

∫𝜋/2
−𝜋/2

∞

∑
𝑛=−∞

∞

∑
𝑘=0

𝑏𝑛𝜂 𝑇𝑛 (𝑅 sin𝛼/𝑟)
√1 − (𝑅 sin𝛼/𝑟)2

× exp (𝑗𝑘 (𝛽 + 𝛼)) exp (−𝑗 (𝜂𝛽 + 𝑚𝛼)) 𝑑𝛼 𝑑𝛽

= 1
𝜋
∞

∑
𝑛=−∞

𝑏𝑛𝜂 ∫
𝜋/2

−𝜋/2

𝑇𝑛 (𝑅 sin𝛼/𝑟)
√1 − (𝑅 sin𝛼/𝑟)2

× exp (𝑗 (𝜂 − 𝑚) 𝛼) 𝑑𝛼.

(24)

According to (B.2) in Appendix B, the innermost integral
with respect to 𝛼 becomes

∫𝜋/2
−𝜋/2

𝑇𝑛 (𝑅 sin𝛼/𝑟)
√1 − (𝑅 sin𝛼/𝑟)2

exp (𝑗 (𝜂 − 𝑚) 𝛼) 𝑑𝛼

= 1
2 (−𝑗)𝑛

⋅ ∫𝜋/2
−𝜋/2

[∫∞
−∞

exp (−𝑗𝜉𝑅 sin𝛼) 𝐽𝑛 (𝑟𝜉) 𝑑 (𝑟𝜉)]

⋅ exp (𝑗 (𝜂 − 𝑚) 𝛼) 𝑑𝛼 = 𝑟
2 (−𝑗)𝑛 ∫

∞

−∞
𝐽𝑛 (𝑟𝜉)

⋅ ∫𝜋/2
−𝜋/2

exp (−𝑗𝜉𝑅 sin𝛼 + 𝑗 (𝜂 − 𝑚) 𝛼) 𝑑𝛼 𝑑𝜉

= 𝑟
2 (−𝑗)𝑛 ∫

∞

−∞
𝐽𝑛 (𝑟𝜉) 𝐽𝜂−𝑚 (𝑅𝜉) 𝑑𝜉.

(25)

It is known that the Weber-Schafheitlin’s integral
𝐽𝑛(𝑟𝜉)𝐽𝜂−𝑚(𝑅𝜉) decays very fast for 𝑅|𝑛| > 𝑟|𝜂 − 𝑚| [25].
Together with the relation 𝑏𝑛𝜂 = 0, for |𝜂| > 𝑛, we finally
arrive at

𝐺Fan (𝜂,𝑚) ≈ 0, for 𝑅 𝜂 > 𝑟 𝜂 − 𝑚 . (26)

For an equally spaced fan-beam geometry, we apply the
2D Fourier transform to (23) with respect to 𝛽 and 𝑢:

𝐺Fan (𝜂, 𝑙) = 1
𝜋 ∫2𝜋
0

∫∞
−∞

∞

∑
𝑛=−∞

∞

∑
𝑘=0

𝑏𝑛𝑘 𝑇𝑛 (𝑅 sin𝛼/𝑟)
√1 − (𝑅 sin𝛼/𝑟)2

⋅ 𝑒𝑖𝑘(𝛽+𝛼)𝑒−𝑗(𝜂𝛽+𝑙𝑢)𝑑𝑢 𝑑𝛽,
(27)

where 𝑢 = 𝐷 tan𝛼 and𝐷 denotes the source-detector distance.
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Figure 2: Flowchart of the proposed sinogram completion scheme: Set up an ellipse model for sinogram completion and optimize the model
parameters (here the two ellipse radii) by enforcing the Fourier constraints.

Since𝐷 is large compared to 𝑢 (for a small fan angle), we
can make an approximation 𝑢 = 𝐷𝛼. Then, we will have a
similar derivation as for (25):

∫𝜋/2
−𝜋/2

𝑇𝑛 (𝑅 sin𝛼/𝑟)
√1 − (𝑅 sin𝛼/𝑟)2

exp (𝑗 (𝜂 − 𝑙𝐷) 𝛼) 𝑑 (𝐷𝛼)

= 𝑟𝐷
2 (−𝑗)𝑛 ∫

∞

−∞
𝐽𝑛 (𝑟𝜉) 𝐽𝜂−𝑙𝐷 (𝑅𝜉) 𝑑𝜉.

(28)

Finally, we will obtain the HL conditions for an equally
spaced fan-beam geometry:

𝐺Fan (𝜂, 𝑙) ≈ 0, for 𝑅 𝜂 > 𝑟 𝜂 − 𝑙𝐷 . (29)

Note that both (26) and (29) were approximately arrived
at in [19] when investigating the fan-beam sinogram of a delta
function point.

3. Data Extrapolation Using HL
Consistency Conditions

The HL consistency conditions play an important role in
image reconstruction as they can be used as a measure to
restore consistency of the imperfect projection data (e.g.,
due to noise, motion, or truncation). In this work, we take
advantage of the theory derived before for data extrapolation
with truncated projection data. A flowchart of our proposed
projection completion algorithm can be described as follows
(also see Figure 2 for illustration).

Step 1. Segment the double-wedge region in the 2D Fourier
transform of the sinogram as shown in Figure 1(c). Then,
compute the slope of double wedge, that is, 𝜂/𝜉 at double-
wedge’s edge. The object support 𝑟 can be computed using
(20); that is, 𝑟 = |𝜂|/𝜉, for instance, for a parallel-beam
sinogram.

Step 2. Set up a shape model for sinogram completion
(detruncation) and fit the model to the measured (trun-
cated) data with a detruncation optimization algorithm that
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enforces the constraint that the values within the double-
wedge region of the Fourier transformed sinogram are zero.

(a) Set up a uniform ellipse model 𝑓(𝜇, 𝑎, 𝑏, 𝑥0, 𝑦0, 𝜙)
and initialize the model with two radii (𝑎, 𝑏). For
reasons of simplicity, assume a uniform density of the
measured object. The density 𝜇 can be determined by
twoways: (1) heuristic preset, for example, water den-
sity; (2) extrapolating the sinogram up to the object
support, reconstructing it using an FBP framework,
and using the mean of the reconstructed object as
the density value. Additionally, current consistency
conditions are only derived for a centered object; we
assume the ellipse center (𝑥0, 𝑦0) = (0, 0).

(b) Complete the truncated/measured sinogram 𝑔(𝜃, 𝑠)
using forward projections of the ellipse model. Here
the forward projections only need to be computed for
the regions outside of the scan’s field of view.

𝑔combined (𝜃, 𝑠) = 𝑔 (𝜃, 𝑠) + 𝑅𝑓 (𝜇, 𝑎, 𝑏, 𝑥0, 𝑦0, 𝜙, 𝜃, 𝑠) , (30)

where 𝑅 indicates the Radon Transform.
(c) Optimize (adapt/smooth) the transition region of the

completed sinogram by adding/subtracting an offset
𝑑𝑛(𝜃) to each row of the forward-projected sinogram.
The offset values 𝑑𝑛(𝜃) are computed by comparing
two neighboring pixels from the forward-projected
and the measured sinogram as follows:

𝑑𝑛 (𝜃) = 𝑔 (𝜃, 𝑛) − 𝑅𝑓 (𝜇, 𝑎, 𝑏, 𝑥0, 𝑦0, 𝜙, 𝜃, 𝑛) , (31)

where 𝑛 indicates the index of neighboring pixels
between the extrapolated and the measured sino-
gram. Note that this rescaling/intensity adjustment
of the forward-projected sinogram also weakens the
impact of the ellipse density such that it is notmanda-
tory to set the density as an additional optimization
parameter.

(d) Perform 2D fast Fourier transform (FFT) of the
combined sinogram 𝐺(𝜂, 𝜉) = 𝐹[𝑔combined(𝜃, 𝑠)].

(e) Sum up the energies in the double-wedge region
𝐸(𝜇, 𝑎, 𝑏, 𝑥0, 𝑦0, 𝜙)

𝐸 (𝜇, 𝑎, 𝑏, 𝑥0, 𝑦0, 𝜙) = ∑
(𝜂,𝜉)∈ΩDW

𝐺 (𝜂, 𝜉) , (32)

whereΩDW denotes the double-wedge region.
(f) Minimize the energy in the double-wedge region by

optimizing the ellipse parameters p = (𝜇, 𝑎, 𝑏, 𝑥0, 𝑦0,𝜙)
p = argmin

p (𝐸 (p)) . (33)

(g) Based on the estimated ellipse parameters p, per-
form the sinogram completion and apply transition
smoothing, as already described in (c).

(h) Perform2DFFT, set the residual energy in the double-
wedge region to zero (hard constraint), and perform
an inverse 2D FFT. To improve the reconstruction
result, this step can be performed in an iterative
manner.

𝑔optimized (𝜃, 𝑠) = 𝐹−1 {𝐺 (𝜂, 𝜉) = 0 | (𝜂, 𝜉) ∈ ΩDW} . (34)

Step 3. The resulting completed (detruncated) sinogram
(being optimized in the Fourier domain) is reconstructed
using any reconstruction algorithm that can be applied on
nontruncated projection data, for example, the standard FBP
framework.

The detection to the wedge region in Step 1 can be
performed using edge-based segmentationwith knownprop-
erties such as line-symmetric for parallel-beam sinogram and
point-symmetric for fan-beam case. For proof of concept,
in current work we assume that object support 𝑟 is known
and thus the wedge region can be directly computed using
(29).Then, in (e) we set up a binary double-wedge mask with
zero entries outside the double-wedge region and one within
the double-wedge region. After applying the mask (element-
wise multiplication) on the Fourier transformed completed
sinogram from (d), we can sumup the energies in the double-
wedge region.

For the task of minimization in (f), we use a Differential
Evolution (DE) optimization [26] to search large spaces
of candidate solutions and avoid the local minima. It is
a stochastic, population-based global optimization method
that appears fairly fast and robust for nondifferentiable and
nonlinear objective functions. It uses a fixed number 𝑁 of
parameter vectors as a population for each iteration (also
referred to as a generation). Firstly, the trial parameter vectors
(parent) are initialized on an interval which defines upper and
lower bounds of parameters. At each iteration/generation,
every parent is combined one by one with a set of new vectors
which results in a set of trial vectors (children). These newly
generated children vectors are mixed with a predetermined
target vector with probability CR, generating the new trial
vector. Finally, the new trial vector replaces the “least useful”
parent that yields the largest cost function value if and only
if its cost function value is lower than that of this parent. The
steps above continue until some stopping criterion is reached.
In this work, we choose Scheme DE 1 proposed in [26] with
parametrization as𝑁 = 20, 𝐹 = 0.8, and CR = 0.7. We finish
the optimization procedure if a preset maximum iteration
number is reached.

4. Experiments and Results

The proposed method was validated and evaluated on the
Shepp-Logan phantom and reprojected clinical data (data
courtesy of CHI St. Luke’s Health-Baylor St. Luke’s Medical
Center, Houston, TX, USA). All datasets were virtually
collimated (by setting the area outside of the region of interest
to zero) to a medium FOV and a small FOV. An equally
spaced fan-beam imaging geometry is used. The sinogram of
the Shepp-Logan phantom consists of 720 channels and 360
views over 360∘ rotation angle (full scan).Then, the phantom
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Figure 3: Reconstruction results of Shepp-Logan phantom (radius of ROI: 60 pixels). From left to right: reference from nontruncated data,
proposed correction method, water cylinder extrapolation (cf. Hsieh et al. [2]), and no correction. The grayscale window is [0, 1].
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Figure 4: Reconstruction results of Shepp-Logan phantom (radius of ROI: 30 pixels). From left to right: reference from nontruncated data,
proposed correction method, water cylinder extrapolation (cf. Berger et al. [8]), and no correction. The grayscale window is [0, 1].

was reconstructed in a 256×256matrix with the radius of the
medium ROI being 60 pixels and the radius of the small ROI
being 30 pixels. The clinical data was forward-projected to a
sinogram consisting of 1500 channels and 720 views over 360∘
rotation angle (full scan). The forward-projected sinogram
was reconstructed in a 512 × 512 matrix. The radius of the
medium ROI is 95 pixels and the radius of the small ROI is
60 pixels. We also investigate the performance of the state-of-
the-art water cylinder extrapolationmethod [2] and compare
it with our proposed method.

Shown in Figures 3 and 4 are the reconstruction results
from the Shepp-Logan phantom with different degrees of
truncation (medium/small FOV). Difference images with
respect to a reference FBP reconstruction from the original
nontruncated data are also presented. The grayscale values
are normalized into an arrangement of [0, 1]. As expected,
reconstruction without any correction will generate typical
cupping-like truncation artifacts and a substantial offset

compared to the reference. These artifacts, on the other
hand, are effectively compensated by using water cylinder
extrapolation as well as the proposed method, yielding only
a small error spreading over the difference images. Note
that, for the Shepp-Logan phantom with a rather simple
structure, the proposed method is able to accurately estimate
the outline of the object, in contrast to inferior shape
estimation from the water cylinder extrapolation scheme, in
which extrapolation is performed by fulfilling the continuity
assumptions. Figure 4 shows the case of severe truncation,
where in general the reconstruction bias becomes larger as
less data can be used for robust extrapolation and thus is
more challenging for truncation correction algorithms. In
this case, the reconstruction from the proposed method
obviously shows less bias and truncation artifacts than that
of the water cylinder extrapolation, while still retaining an
accurate shape estimation. We also show the reconstruction
images in a compressed window [0.1, 0.25] (see Figure 5) to
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Table 1: Summary of quantitative evaluation of truncation correction methods for medium truncation (ROI: radius of 95 pixels) and severe
truncation (ROI: radius of 60 pixels).

Algorithms Head scan 1 Head scan 2
Medium Severe Medium Severe

RMSE Water cylinder extrapolation 123.0 271.6 29.7 114.2
Proposed method 20.1 43.4 29.3 53.3

CC Water cylinder extrapolation 0.987 0.985 0.996 0.984
Proposed method 0.996 0.995 0.997 0.990

Figure 5: Reconstruction results of Shepp-Logan phantom using the proposed extrapolation method. From left to right: reference from
nontruncated data, proposed correction method with medium truncation, and proposed correction method with severe truncation. The
grayscale window is [0.1, 0.2]. The yellow circles indicate the ROI.

demonstrate the robustness of the proposed method to both
medium truncation and severe truncation case.

The results for reprojected clinical data are shown in
Figures 6 and 7, also using two different degrees of truncation.
The same reconstructions but with a compressed display
window are shown in Figure 8. We can see that, for medium
truncation (Figures 6(a) and 7(a)), both water cylinder
extrapolation and the proposed method are able to recon-
struct the image with high quality within the ROI: no typical
cupping artifact and obvious bias are observed. However,
when it comes to severe truncation, thewater cylinder extrap-
olation performance degrades more than the performance of
the proposed method. Figure 9 shows reconstructions of a
reprojection from a slice of body scan, which basically have
a similar observation to that of head scan. The line profiles
in Figures 10 and 11 show that a bias always appears in water
cylinder extrapolation results compared to the reference
but is less observed in the proposed method. Quantitative
results in Table 1 confirm that the performance of the water
cylinder extrapolation appears to be ad hoc. It yields a root
mean square error (RMSE) gray value of 271.6 while for the
proposed method the error is always lower than 60 gray
values.The proposedmethod is also able to nicely recover the
structural information of the object and reduces the cupping
artifacts. Thus, it yields a high correlation coefficient (CC)
with respect to the reference, that is, 0.99, compared to a CC
of 0.98 for the water cylinder extrapolation scheme.

5. Discussion

The Fourier-based Helgason-Ludwig consistency conditions
are derived for both parallel-beam and fan-beam geometry,

as described in (20), (26), and (29). The derivation outcomes
indicate the Fourier property of a physically consistent
sinogram: there are zero coefficients forming a double-wedge
region (symmetric for parallel-beam and point-symmetric
for fan-beam geometry) in its 2D Fourier transform. Interest-
ingly, the same property was also observed previously in the
literature by investigating the parallel-/fan-beam sinogram of
a delta point object [18, 19]. In [19], the authors clarify that the
approximation to a Bessel function (see Eq. (8) in [19]) was
arrived at intuitively and is validated empirically.

Motivated by these previous practical observations, we
generate theoretical derivation. Our derivation stems directly
from the original formulation of HL consistency condi-
tions and is theoretically exact for parallel-beam geometry
as well as equal-angle fan-beam geometry. In case of an
equally spaced fan-beam case, such a derivation is not
straightforward. To derive a similar property, we made an
approximation that 𝑢 = 𝐷𝛼 under the assumption that the
opening fan angle is small. Therefore, there could potentially
be a misestimation of zero-energy region for large fan angles,
as also observed in [19].

The benefits of Fourier-based consistency conditions are
as follows: First, rather than using a small subset of the
consistency conditions as proposed in [2, 13–15], an infinite
number of conditions are implicitly considered in the Fourier
representation. Second, the 2D Fourier transform via FFT is
computationally more efficient than other transforms (e.g.,
the Chebyshev-Fourier transform [16] or Lagrange-Fourier
transform [11]). This allows us to develop more efficient
sinogram recovery schemes, as demonstrated in this paper.

The sinogram-based extrapolation scheme we proposed
in this work incorporates the Fourier-based consistency
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Figure 6: Reconstruction results of the reprojected clinical dataset 1 with both medium truncation (a) and severe truncation (c). (b) and (d)
show the corresponding difference images with respect to the reference (only computed in the ROI region). From left to right: reference from
nontruncated data, proposed correction method, and water cylinder extrapolation (cf. Berger et al. [8]). The grayscale window: 𝐶 = 0HU,𝑊
= 2000HU.

conditions as a constraint for optimizing the ellipse param-
eters so that the missing data can be more accurately fitted.
Experiments on both phantom and clinical data yielded
promising results. There are some limitations to this Fourier
constrained extrapolation method applied to ROI recon-
struction. First, the current derivation only involves the
sinogram of a centered object. It is not clear how the zero
energy region will change for off-center cases. Second, for
evaluation we used a full scan fan-beam geometry. We

observed that, for a short scan acquisition where projection
data is acquired only over a range of 𝜋 plus the fan angle,
some nonzero values also appear in zero energy region, which
may affect the optimization procedure. Thus, corresponding
consistency conditions that also account for an off-centered
object and short scan acquisition would be interesting for
future work. Also, in this work we used a uniform ellipse
model to generate the sinogram outside measured region.
Such an assumption is well suited for the imaged objects that
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Figure 7: Reconstruction results of the reprojected clinical dataset 2 with both medium truncation (a) and severe truncation (c). (b) and (d)
show the corresponding difference images with respect to the reference (only computed in the ROI region). From left to right: reference from
nontruncated data, proposed correction method, and water cylinder extrapolation (cf. Berger et al. [8]). The grayscale window: 𝐶 = 0HU,𝑊
= 2000HU.

can be approximated by a single ellipse, for example, head
scan. For complicated objects such as knee scan, multiple
ellipses may be superposed and optimized.

6. Conclusion
In this paper, we theoretically derived the 2D Fourier-
based Helgason-Ludwig consistency conditions that can
be evaluated very efficiently via FFT. Then, we suggested
a sinogram-based extrapolation scheme that incorporates

these consistency conditions as a constraint for optimizing
the ellipse parameters. Then, the forward projection of the
optimized ellipse can be used to complete the truncation
data. Experiments on both phantom and clinical data yielded
promising results of the proposed approach. The reconstruc-
tion results indicate that the proposed approach substantially
outperforms a conventional water cylinder extrapolation
approach [2], particularly for severe truncation, regarding
both image quality and residual artifacts.



International Journal of Biomedical Imaging 11

(a) (b) (c)

Figure 8: Reconstruction results of the reprojected clinical datasets 1 and 2 with both medium truncation (b) and severe truncation (c).
Yellow circle indicates the ROI. The grayscale window: 𝐶 = 0HU,𝑊 = 400HU.

Appendix

A. Proving That 𝑇𝑛(𝑠)(1−𝑠2)−1/2exp(𝑗𝑘𝜃) Form
an Orthogonal Basis of 𝐿2(𝑍,(1−𝑠2)−1/2)
⟨𝑇𝑛 (𝑠) (1 − 𝑠2)−1/2 exp (𝑗𝑘𝜃) , 𝑇𝑛∗ (𝑠) (1 − 𝑠2)−1/2

⋅ exp (𝑗𝑘∗𝜃)⟩
= ∫2𝜋
0

∫1
−1

𝑇𝑛 (𝑠) (1 − 𝑠2)−1/2 exp (𝑗𝑘𝜃) × 𝑇𝑛∗ (𝑠)
⋅ (1 − 𝑠2)−1/2 exp (𝑗𝑘∗𝜃)
⋅ (1 − 𝑠2)1/2 𝑑𝑠 𝑑𝜃 = ∫1

−1
𝑇𝑛 (𝑠) 𝑇𝑛∗ (𝑠) (1 − 𝑠2)−1/2

⋅ ∫2𝜋
0

exp (𝑗𝑘𝜃) exp (𝑗𝑘∗𝜃) = 𝛿𝑛𝑛∗𝛿𝑘𝑘∗ .

(A.1)

B. Relationship between Bessel Function and
Chebyshev Polynomial

The Fourier transform of the Bessel function can be com-
puted as

∫∞
−∞

exp (−𝑗𝜉𝑠) 𝐽𝑛 (𝑠) 𝑑𝑠 = 2 (−𝑗)𝑛
(1 − 𝜉2)1/2𝑇𝑛 (𝜉) , (B.1)

for 𝜉2 < 1. We can swap the variables 𝑠 and 𝜉 and move the
term 2(−𝑗)𝑛 to the left side:

∫∞
−∞

exp (−𝑗𝜉𝑠) 𝐽𝑛 (𝜉) 1
2 (−𝑗)𝑛 𝑑𝜉

= (1 − 𝑠2)−1/2 𝑇𝑛 (𝑠) ,
(B.2)

where 𝑠2 < 1.
Then, substituting 𝜉 by −𝜉 and computing the Fourier

transform of both sides give

𝐽𝑛 (−𝜉)
2 (−𝑗)𝑛 = ∫∞

−∞
(1 − 𝑠2)−1/2 𝑇𝑛 (𝑠) exp (−𝑗𝜉𝑠) 𝑑𝑠. (B.3)
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Figure 9: Reconstruction results of the reprojected body scan with both medium truncation and severe truncation. From left to right: the
reference from nontruncated data, the proposed correction method with medium truncation, and the proposed correction method with
severe truncation. The grayscale window: 𝐶 = 0HU,𝑊 = 400HU.The yellow circles indicate the ROI.

Reference
Water cylinder extrap.
Proposed method

50 1501000
Distance (pixels)

6030 900
Distance (pixels)

Reference
Water cylinder extrap.
Proposed method

0

200

400

600

800

1000

1200

1400

G
ra

y 
va

lu
es

0

200

400

600

800

1000

1200

1400

G
ra

y 
va

lu
es

Figure 10: Plots of line profiles for each algorithm in the medium truncation case and in the severe truncation case for clinical dataset 1. The
yellow dashed line in the corresponding right image indicates the position of the line profile.
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Figure 11: Plots of line profiles for each algorithm in the medium truncation case and in the severe truncation case for dataset 2. The yellow
dashed line in the corresponding right image indicates the position of the line profile.
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