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Abstract

Motivation: Recent attempts to assemble extra-long tandem repeats (such as centromeres) faced the challenge of
translating long error-prone reads from the nucleotide alphabet into the alphabet of repeat units. Human centro-
meres represent a particularly complex type of high-order repeats (HORs) formed by chromosome-specific mono-
mers. Given a set of all human monomers, translating a read from a centromere into the monomer alphabet is
modeled as the String Decomposition Problem. The accurate translation of reads into the monomer alphabet turns
the notoriously difficult problem of assembling centromeres from reads (in the nucleotide alphabet) into a more
tractable problem of assembling centromeres from translated reads.

Results: We describe a StringDecomposer (SD) algorithm for solving this problem, benchmark it on the set of long
error-prone Oxford Nanopore reads generated by the Telomere-to-Telomere consortium and identify a novel (rare)
monomer that extends the set of known X-chromosome specific monomers. Our identification of a novel monomer
emphasizes the importance of identification of all (even rare) monomers for future centromere assembly efforts and
evolutionary studies. To further analyze novel monomers, we applied SD to the set of recently generated long accur-
ate Pacific Biosciences HiFi reads. This analysis revealed that the set of known human monomers and HORs remains
incomplete. SD opens a possibility to generate a complete set of human monomers and HORs for using in the on-
going efforts to generate the complete assembly of the human genome.

Availability and implementation: StringDecomposer is publicly available on https://github.com/ablab/
stringdecomposer.

Contact: t.dvorkina@spbu.ru

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advancements in long-read sequencing technologies, such as
Pacific Biosciences (PB) and Oxford Nanopore Technologies
(ONT), led to a substantial increase in the contiguity of genome
assemblies (Koren et al., 2017; Kolmogorov et al., 2019; Ruan and
Li, 2020; Shafin et al., 2019) and opened a possibility to resolve
extra-long tandem repeats (ETRs), the problem that was viewed as
intractable until recently. Assembling ETRs is important since varia-
tions in ETR have been linked to cancer and infertility (Barra and
Fachinetti, 2018; Black and Giunta, 2018; Ferreira et al., 2015;
Giunta and Funabiki, 2017; Miga et al., 2019; Smurova and De
Wulf, 2018; Zhu et al., 2018). ETR sequencing is also important for
addressing open problems about centromere evolution (Alkan et al.,
2007; Henikoff et al., 2015; Lower et al., 2018; Shepelev et al.,
2009; Suzuki et al., 2019).

Recent attempts to assemble ETRs (Bzikadze and Pevzner, 2019;
Jain et al., 2018; Miga et al., 2019), and recent evolutionary studies
of centromeres (Suzuki et al., 2019; Uralsky et al., 2019) revealed
the importance of partitioning an ETR (or an error-prone long read

sampled from an ETR) into repetitive units forming these repeats.
We refer to this problem as the String Decomposition Problem.
Although no existing tool explicitly addresses the String
Decomposition Problem, Tandem Repeats Finder (TRF) (Benson,
1999), PERCON (Kazakov et al., 2003), Alpha-CENTAURI (Sevim
et al., 2016) and the Noise-Cancelling Repeat Finder (NCRF)
(Harris et al., 2019) address related problems. Even though these
tools can be adapted for string decomposition, they often result in
limited accuracy in the case of nested tandem repeats, such as cen-
tromeres and rDNA arrays.

Centromeres are the longest tandem repeats in the human gen-
ome that are formed by units repeating hundreds or even thousands
of times with extensive variations in copy numbers in the human
population and limited nucleotide-level variations. Each such unit
[referred to as high-order repeat (HOR)] represents a tandem repeat
formed by smaller building blocks (referred to as alpha satellites or
monomers), thus forming a nested tandem repeat (Fig. 1).

The alpha satellite repeat family occupies �3% of the human
genome (Hayden et al., 2013). Each monomer is of length 171 bp
and each HOR is formed by multiple monomers. For example, the
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vast majority of HORs on the human X centromere (referred to as
cenX) consists of 12 monomers. Although different HOR units on
cenX are highly similar (95–100% sequence identity), the 12 mono-
mers forming each HOR are rather diverged (50–90% sequence
identity). In addition to standard 12-monomer HORs, some units
on cenX have non-canonical monomer structure: 35 out of 1510
units are formed by a smaller or larger number of monomers than
the canonical 12-monomer unit (Bzikadze and Pevzner, 2019;
Suzuki et al., 2019). The tandem repeat structure of human centro-
meres may be interrupted by retrotransposon insertions (e.g. cenX
has a single insertion of a LINE element).

Partitioning of long error-prone reads into units and monomers
is critically important for centromere assembly (Bzikadze and
Pevzner, 2019; Miga et al., 2019) and evolutionary studies of cen-
tromeres (Suzuki et al., 2019). For example, centroFlye (Bzikadze
and Pevzner, 2019) requires a translation of each read into a mono-
read in the monomer alphabet. Unless these monoreads are extreme-
ly accurate (e.g. <0.5% error rate), the centroFlye assembly fails.
However, the existing tools for analyzing tandem repeats (Benson,
1999; Harris et al., 2019; Sevim et al., 2016) generate monoreads
with higher error rates and thus do not provide an adequate solution
of the String Decomposition Problem.

Here, we present a simple StringDecomposer (SD) algorithm that
takes the set of monomers and a long error-prone read (or a genomic
segment) and partitions this read into monomers. The accurate trans-
lation of each read into a monomer alphabet opens a possibility to as-
semble the reads in the monomer alphabet, a more tractable problem
than the notoriously difficult problem of assembling ETRs in the nu-
cleotide alphabet. It also opens a possibility to generate the complete
set of human HORs, the problem that remains unsolved despite mul-
tiple studies in the last four decades (Waye and Willard, 1985).
Section 3 demonstrates that SD improves on other tools and describes
its applications, such as identification of novel monomers.

2 Materials and methods

String Decomposition Problem. Given a string R (corresponding to a
read or an assembly of a centromere) and a set of strings Blocks
(each block from Blocks corresponds to an monomer), the goal of

the String Decomposition Problem (SD Problem) is to represent R in
the alphabet of blocks. We define a chain as an arbitrary concaten-
ation of blocks and an optimal chain for R as a chain that has the
highest-scoring global alignment against R among all possible
chains. The String Decomposition Problem is to find an optimal
chain for R.

Existing approaches to solving the String Decomposition
Problem. Although no existing tool explicitly addresses the String
Decomposition Problem, Minimap2 (Li, 2018), PERCON (Kazakov
et al., 2003), TRF (Benson, 1999), Alpha-CENTAURI (Sevim et al.,
2016) and NCRF (Harris et al., 2019) tools address related prob-
lems. Suzuki et al. (2019) also developed a custom script implement-
ing a blastn-based string decomposition approach.

Harris et al. (2019) and Mikheenko et al. (2020) demonstrated
that the performance of general-purpose sequence aligners such as
Minimap2 (Li, 2018) deteriorates in highly repetitive regions, mak-
ing them not suitable for solving the String Decomposition Problem.

PERCON (Kazakov et al., 2003) is a fast heuristic algorithm for
solving a problem similar to the String Decomposition Problem that
compares the octanucleotide content of a potential monomer se-
quence with all known monomers. Unfortunately, PERCON is diffi-
cult to benchmark since it was implemented only for Windows OS.

TRF is a de novo tandem repeat finder that does not require
specifying either the monomer or its size as an input (Benson, 1999).
Given a string containing a tandem repeat formed by unknown
monomers, it reports a consensus of these monomers and the loca-
tion of each monomer in the repeat. Although TRF is able to identify
monomers, its output cannot be directly converted into a chain be-
cause TRF does not attempt to identify different monomer classes
from the input string (and does not accept monomer classes as in-
put). A drawback of this approach is that it often reports a cyclic
shift of a consensus monomer and locations of this cyclic shift in the
repeat, making it difficult to benchmark TRF against other string de-
composition tools (see Supplementary Appendix ‘Benchmarking
string decomposition tools’).

The NCRF takes a consensus HOR as an input and partitions an
error-prone read into HORs (Harris et al., 2019). It performs well if
the entire read is formed by canonical HORs (formed by the same
order of monomers as the consensus HOR). However, it generates a
suboptimal and somewhat arbitrary partitioning into HORs when a
read contains non-canonical HORs or retrotransposons. Since
NCRF was not designed for decomposing reads into distinct mono-
mers, it is difficult to benchmark it against monomer-finding tools
(see Supplementary Appendix ‘Benchmarking NCRF’).

Alpha-CENTAURI (Sevim et al., 2016) addresses a problem
similar to the String Decomposition Problem. It takes a set of long
error-prone reads as an input and uses them to generate the most
likely set of monomers. It further decomposes each read into such
monomers. However, Alpha-CENTAURI does not use additional in-
formation about previously inferred HOR structures and has a ra-
ther high rate of the incorrectly called monomers in the read
decomposition.

Alpha-CENTAURI uses a pre-trained Hidden Markov Model
(HMM) for a consensus monomer (consensus of all monomers in
the human genome). It aligns this HMM to all reads using the
HMMer tool (Eddy, 1998) and clusters the generated alignments in
order to identify monomer classes. Since this clustering is imperfect,
the accuracy of string decomposition deteriorates as the tool reports
spurious abnormal HOR structures (see Supplementary Appendix
‘Benchmarking string decomposition tools’). However, the HMM
alignment stage provides an accurate approximation for the starting
and ending positions of each monomer. Using the input set of mono-
mers one can identify a monomer with the highest identity for each
pair of these starting and ending positions, generate non-
overlapping monomer alignments for each read and transform each
read into the monomer alphabet as described in the subsection
‘Transformation from the nucleotide alphabet to the block alpha-
bet’. We refer to this approach (based on running HMMer on the
consensus HMMs derived by Alpha-CENTAURI) as AC.

String Decomposition Graph. Given a block b and a string R,
their standard alignment graph (Compeau and Pevzner, 2018)

Fig. 1. Architecture of cenX. centroFlye assembly of cenX consists of over 1510

HORs that represent units of centromeric ETRs. Five HORs are colored by five

shades of blue illustrating HOR variations. Each HORs is a nested tandem repeat

formed by various monomers of length 171 bp. The vast majority of HORs on

cenX, referred to as canonical HORs, are formed by 12 monomers (shown by 12

different colors). Figure on top represents the dot plot of a canonical HOR that

reveals 12 monomers (also known as alpha satellites). While HORs are 95–100%

similar, monomers are only 65–88% similar. In addition to the canonical 12-mono-

mer HORs, there is a small number of non-canonical HORs with varying numbers

of monomers. Given a read sampled from a centromere and a set of monomers

(referred to as blocks in the String Decomposition Problem), SD translates the read

into a monoread written in the monomer alphabet
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consists of all vertices (i, j) for 0 � i � jbj, and 0 � j � jRj, where
jxj stands for the length of the string x. A vertex (i, j) is connected to
vertices ðiþ 1; jÞ; ði; jþ 1Þ and ðiþ 1; jþ 1Þ representing insertions,
deletions and matches/mismatches, respectively.

Informally, given a set of t blocks and a string R, their String
Decomposition graph (SD graph) consists of t standard alignment
graphs that are ‘glued together’ by their 0-th row (Fig. 2). We index
vertices in this graph as (b, i, j) using three indices (b represents a
block, i represents a position in the block b and j represents a pos-
ition in string R) except for vertices in the 0-th row that are indexed
simply as ð0; jÞ since all blocks share the same ‘glued’ 0-th row.
Additionally, we add edges that connect each vertex ðb; jbj; jÞ in the
last row (for each block b) with vertex ð0; jÞ in the 0-th row.

Formally, the SD graph is constructed on all vertices (b, i, j),
where b is a block, 0 � i � jbj and 0 � j � jRj under the as-
sumption that, for each j, all vertices ðb;0; jÞ form a single vertex
ð0; jÞ. The edge-set of the SD graph consists of the standard align-
ment edges (as in the standard alignment graph) and the block-
switching edges described below. A vertex (b, i, j) is connected to
vertices ðb; iþ 1; jÞ; ðb; i; jþ 1Þ and ðb; iþ 1; jþ 1Þ representing
insertions, deletions and matches/mismatches, respectively (as in
the standard alignment graph) and said transitions are scored as
�d for insertions/deletions (indels), �r for mismatches and þ1 for
matches. Additionally, vertex ðb; jbj; jÞ is connected by a zero-
weight block-switching edge to a vertex ð0; jÞ for each block b
from the block-set. Each such edge models a transition from the end
of an alignment of one block to the start of an alignment of the next
block. Although the SD graph has directed cycles, the longest path (i.e.
a path with the maximum total weight of its edges) in this graph is
well-defined since all directed cycles have negative weights. We refer
to the vertex (0, 0) as the source and to each vertex ðb; jbj; jRjÞ as a
sink of the SD graph.

The SD algorithm. Fischetti et al. (1992) described a wrap-
around dynamic programming algorithm for solving the String
Decomposition Problem in the case of a single block. Matroud et al.
(2011) generalized this algorithm for two blocks and further imple-
mented it in the NTRFinder software tool (Matroud et al., 2012).
Although NTRFinder can be generalized for multiple blocks, it is
not available anymore. SD is a wrap-around dynamic programming
algorithm that solves the String Decomposition Problem for an arbi-
trary number of blocks.

The i-prefix of a block is defined as the string formed by its first i
symbols. Given a block b, we define a (b, i)-chain as a chain comple-
mented by the i-prefix of b in the end [note, that multiple (b, i)-
chains exist]. A dynamic programming algorithm for solving the SD
Problem is based on computing a variable scoreðb; i; jÞ defined as the
score of an optimal global alignment between all possible (b, i)-
chains and the j-prefix of R. We assume that the alignment is scored
using parameters �d for indel penalties, �r for mismatch penalty,
and þ 1 for match premiums. Similarly to the fitting alignment

(Gusfield, 1997), i.e. finding a substring of a string v that has the
highest-scoring alignment to an entire string w, the variable
scoreðb; i; jÞ is initialized as scoreðb; 0; jÞ ¼ 0 for all b and j and
scoreðb; i; 0Þ ¼ �i � d for all i.

To compute scoreðb; i; jÞ, the SD algorithm uses dynamic pro-
gramming to compute the length of a longest path to the vertex (b, i,
j) in the SD graph. The solution of the SD Problem is given by the
longest path from the source to one of the sinks. A block b that max-
imizes this score represents the last block in an optimal chain. Other
blocks in this chain are inferred by backtracking from the sink
ðb; jbj; jRjÞ to the source (0, 0) and are defined by the block-
switching edges in the backtracking path.

Each path from the source to a sink in the String Decomposition
Graph encodes an alignment of a chain of blocks against the input
string R (the score of this alignment is equal to the length of the
path). Conversely, each such alignment is encoded by a path in the
String Decomposition Graph. Therefore, the solution of the String
Decomposition Problem is encoded by a longest path from the
source to a sink in the String Decomposition Graph. See
Supplementary Appendix ‘Uniqueness of the solution of the String
Decomposition Problem’.

The running time and the memory footprint of the longest path
algorithm in a directed acyclic graph is linear in the number of edges
in this graph. The number of edges in the String Decomposition
Graph is OðjRj � lengthðBlocksÞÞ, where length(Blocks) is the total
length of all blocks, but this graph is not acyclic. However, it can be
transformed into an equivalent acyclic graph by introducing new
vertices ð0; jþ 1=2Þ and substituting each block-switching edge end-
ing in a vertex ð0; jÞ by a zero-length edge from its start to a new ver-
tex ð0; jþ 1=2Þ and a zero-length edge from ð0; jþ 1=2Þ to each
vertex from the jþ1� th column (i.e. (0; jþ1) and (b, i, jþ1) for all
0 < i <¼ | b |). See Supplementary Appendix ‘SD implementation
details’.

Transformation from the nucleotide alphabet to the block alpha-
bet. Given a string R and a block-set Blocks, SD generates an opti-
mal chain for R. In the case Blocks represents a monomer-set for a
centromere R, we refer to an optimal chain for this centromere as a
monocentromere. If Blocks represents a monomer-set for a centro-
mere and R represents a read sampled from this centromere, we
refer to an optimal chain for this read as a monoread. We classify a
monoread as correct if it represents a substring of the monocentro-
mere, and incorrect, otherwise.

Since errors in reads trigger errors in monoreads, the SD algo-
rithm generates many incorrect monoreads. Another complication is
that some regions in centromere are not formed by monomers (e.g.
transposon insertions) resulting is a somewhat meaningless transla-
tion of such regions into monomers. However, since each monoread
typically has very few incorrect monomers, below we classify each
monomer in a monoread as either reliable or unreliable. Bzikadze
and Pevzner (2019) demonstrated that such classification enables
the centromere assembly even though many monoreads are
incorrect.

For each block b in an optimal chain for a string R, SD outputs
the starting and ending positions of the alignment of this block in
R. We denote the substring of R spanning these positions as R(b),
construct an alignment between the block b and R(b) and compute
the percent identity of this alignment, referred to as IdentityRðbÞ.
Additionally, we compute the difference between IdentityRðbÞ and
the percent identity of the second-best aligned monomer to R(b),
denoting this difference as IdentityDiffR(b). We classify a block b
as reliable (unreliable) according to the logistic regression model
built based on IdentityRðbÞ and IdentityDiffRðbÞ values (see
Supplementary Appendix ‘Identification of reliable monomers’).
We substitute all unreliable blocks in the string decomposition by
the gap symbol�?�, resulting in a translation of the string R into
the extended block alphabet that consists of all blocks and the gap
symbol (see Supplementary Appendix ‘Processing gaps in the
monomer alignments’). The translated sequence is referred to as
translation(R). If the string R is a centromeric read Read and
blocks represent monomers, we refer to the translation(Read) as a
monoread mono(Read).

Fig. 2. The SD graph represented as a ‘book’ where each page corresponds to an

alignment matrix for a single block, and pages are ‘glued’ together by their 0-th

row. Arrows represent edges of the String Decomposition Graph. Block-switching

edge is colored in blue
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3 Results

Datasets. We analyzed the rel2 dataset of Oxford Nanopore reads
(https://github.com/nanopore-wgs-consortium/CHM13) generated
by the Telomere-To-Telomere (T2T) consortium (Miga et al.,
2019). The dataset contains 11 069 717 reads (155 Gb total length,
50x coverage, the N50 read length equal to 70 kb) generated from
the CHM13hTERT female haploid cell line. We used the rel2 base-
calling with Guppy Flip-Flop 2.3.1.

We benchmarked various approaches to string decomposition
using centromeric ONT reads from chromosome X since this centro-
mere (referred to as cenX) was recently assembled, thus providing
the ground truth for our benchmarking. This benchmarking utilized
2680 reads (total read length 132.9 Mb) that were recruited to cenX
in Bzikadze and Pevzner (2019). In addition to ONT reads, we ana-
lyzed 6.9 million accurate PacBio HiFi reads (total length 75.4 Gbp)
generated by the T2T consortium (Miga et al., 2019). The length of
these reads varies from 2 to 15 bp (57% of HiFi reads have lengths
from 10 to 12 bp).

All scripts that were used for analyzing these datasets are avail-
able at https://github.com/TanyaDvorkina/sdpaper.

3.1 Benchmarking SD on error-prone reads and cenX

assembly
monomers and HOR sequences on cenX. We used the cenX HOR
consensus sequence DXZ1* derived in Bzikadze and Pevzner (2019)
and decomposed it into 12 monomers ABCDEFGHIJKL using
Alpha-CENTAURI (Sevim et al., 2016) (see Supplementary
Appendix ‘cenX monomers’).

Reference cenX sequence. We analyzed the cenX v0.7 assembly
described in Miga et al. (2019). Out of all 2680 cenX reads 1442
reads were aligned to the reference using TandemMapper
(Mikheenko et al., 2020). These reads form the set of mapped reads
with total length 121 Mb and with total length of aligned fragments
76 Mb (see Supplementary Appendix ‘Generating accurate read
alignments to cenX’).

Since each mapped read is typically aligned over its substring (ra-
ther than the entire read), it can be represented as a concatenate of a
non-aligned prefix, an aligned substring and a non-aligned suffix.
We will find it convenient to trim the non-aligned prefix and suffix
in each read, resulting in shorter reads forming a read-set Reads.
Each shortened read Read is now aligned to a substring in cenX that
we refer to as origin(Read).

Translating X centromere and centromeric ONT reads into the
monomer alphabet. Since each read Read in Reads is aligned to a sub-
string origin(Read) in cenX, we can compare the monoread sequence
mono(Read) with the accurate monocentromere sequence
monoðoriginðReadÞÞ representing the ‘ground truth’ with respect to
transforming sequences in the monomer alphabet. Using this approach,
we benchmarked the SD and AC approaches. We used the SD tool to
transform the cenX sequence (3.1 Mb) into the monocentromere
mono(cenX) consisting of 18 103 reliable monomers and 36 gap sym-
bols (�?�) in the cenX region occupied by the LINE repeat. This con-
version is reliable since monomers are rather conserved across cenX
(median percent identity 98.8%). Figure 3 presents the distribution of
percent identities of 12 cenX monomers and the gap monomers.

Monoread-to-monocentromere alignments. We launched AC
and SD to transform each read in Reads into a monoread
mono(Read) and aligned it against monoðoriginðReadÞÞ using the
edit distance scoring (indel and mismatch penalties equal to 1 and
match score equal to 0). Each alignment column contains a pair of
symbols with the first symbol corresponding to a position in
monoðoriginðReadÞÞ and the second symbol corresponding to a pos-
ition in mono(Read). The symbols include 12 monomers, �?�
symbol and the space symbol �-� representing an indel in the
alignment. We classify each column as a match or an error of one of
the following types (Supplementary Fig. S3):

• monomer–monomer mismatch (monomer, monomer);
• monomer-gap mismatch (monomer,?);
• monomer-deletion (monomer, -);

• gap-monomer mismatch (?, monomer);
• gap-deletion (?, -);
• monomer-insertion (-, monomer);
• gap-insertion (-,?).

Left panel in Table 1 shows the error statistics for Reads. The
monomer-gap mismatches usually occur in corrupted regions of
reads, where the identity of the monomer-to-monomer matches
flanking these regions usually falls below 80% (see Supplementary
Appendix ‘Detailed analysis of errors in string decomposition’).

Overall, SD resulted in a 3-fold reduction in errors as compared
to AC (1457 versus 3816). It may appear that the AC tool is already
accurate (0.86% error rate) and a reduction in the error rate (from
0.86% to 0.32%) is a useful but not critically important advance.
However, it is important since it provides information about much
longer k-monomers in monoreads, thus enabling their assembly into
a highly repetitive monocentromere (Bzikadze and Pevzner, 2019;
Suzuki et al., 2019). For example, under an (unrealistic) assumption
that errors are uniformly distributed, SD provides information about
312-monomers, while AC provides information only about 116-
monomers in monoreads (100=0:32 ¼ 312, while 100=0:86 ¼ 116).
Below we analyze errors made by the AC and SD tools in detail.

Analyzing monomer–monomer mismatches. Out of 119 mono-
mer–monomer mismatches made by the SD approach 104 mis-
matches (and 115 out of 139 mismatches made by the AC
approach) represent substitutions of the monomer K by the mono-
mer F (Fig. 4). We explored the monoread alignments that substitute
F by K and found that all such alignments correspond to the non-
standard 16-monomer HOR ABCDEFGHIJ FGHIJKL, where the
second occurrence of F is often replaced by K in monoreads. A simi-
lar situation can be seen for K into L substitutions (3 and 5 mis-
matches for the SD and AC approaches, respectively) in alignments
of the non-standard 11-monomer HOR ABCDEFGHIJ K.

There are six occurrences of the non-standard HOR
ABCDEFGHIJ FGHIJKL in the monocentromere X and six occur-
rences of the non-standard HOR ABCDEFGHIJ KGHIJKL. We refer
to regions encoded as F in the former HOR and as K in the latter
HOR as FK. We computed pairwise percent identities for nucleotides
sequences of each of 12 occurrences of FK in monocentromere and
also compared them to monomers F and K (Fig. 5, Left). This analysis
reveals two clusters: monomers FK at HORs 1–4 and 5–12 (1–4 and
11–12 were encoded as F, while 5–10 were encoded as K). Since the
monomers 1–4 are very close to the monomer F (median percent iden-
tity 98%), they likely represent slightly diverged copies of F.

The second cluster, consisting of FK monomers at HORs 5–12,
can be divided into subclusters of identical monomers 5–10 and 11–
12 (similarity between monomers from these clusters is 98%).

Fig. 3. Distribution of percent identities of 12 cenX monomers and the gap mono-

mer �?�. Each violin plot represents the distribution of the percent identity of a

particular monomer across cenX. A LINE element at positions 2773652–2779726

is represented by 36 consecutive�?� symbols in the monocentromere X
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Surprisingly, monomers 5–12 FK appear to be equidistant from
both monomer F and monomer K with rather low sequence identity
91–92%. Analysis of pairwise alignments between these 8 mono-
mers and monomers F/K reveals that monomers 5–12 likely repre-
sent a chimeric monomer formed by the first half of monomer K
(first 69–98 positions of K) and the second half of monomer F (last

72–101 positions of F), referred to as KþF (Fig. 6). The monomer
KþF has identity 97% with all of eight monomers in the second
cluster. The non-standard HOR ABCDEFGHIJ FGHIJKL was
found in 272 monoreads generated by the SD approach (a similar
HOR ABCDEFGHIJ KGHIJKL was found in 105 monoreads). All
272þ 105 ¼ 377 occurrences of these HORs originated from the

Table 1. Summary of errors in the monoread-to-monocentromere alignments computed by the AC (black) and SD (blue) tools for 12 mono-

mers (Left) and for 13 monomers that include 12 known cenX monomers and a novel (Kþ F) monomer (Right)

Notes: Symbol �monomer� corresponds to 1 of the 12 cenX monomers or (Kþ F) monomer, �?� corresponds to a gap symbol, �-� corresponds to a

space symbol representing an indel in alignment of mono(Read) against monoðoriginðReadÞÞ. A cell (i, j) represents the number of times when a symbol of type i

in monoðoriginðReadÞÞ was aligned to a symbol of type j in mono(Read). For 12 (13) monomers decomposition, the number of matches is 445 169 (445 206) for

SD and 442 783 (442 887) for AC.

Fig. 4. Mismatch substitution matrices for the AC (left) and SD (right) approaches. The (X, Y) cell shows the number of times when symbol X in the monocentromere X

(monomer or the gap symbol�?�) was replaced by symbol Y in the monoread

Fig. 5. Analysis of the non-standard HOR ABCDEFGHIJFGHIJKL. (Left) The heatmap of identities between the occurrences of FK in 12 non-standard HORs ABCDEFGHIJ

FGHIJKL and ABCDEFGHIJ KGHIJKL in cenX as well as monomers F and K. (Right) For all 377 occurrences of ABCDEFGHIJ FGHIJKL or ABCDEFGHIJ KGHIJKL in

Reads, we computed the identity of 377 alignments of the monomer F (x-axis) and the monomer K (y-axis) against the corresponding substring of the read. Blue (red) circles

represent occurrences of monomer F or K aligned to FK from HORs 1–4 (HORs 5–12)
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non-standard HOR ABCDEFGHIJ FGHIJKL in cenX. We classify
these occurrences in two groups: 154 of them correspond to the first
cluster (sequences 1–4 in Fig. 5, Right) and 377� 154 ¼ 223 corres-
pond to the second cluster (sequences 5–12). For each of these 377
occurrences, we extracted the nucleotide sequence that corresponds
to FK and aligned them to monomers F and K. Right panel in Figure
5 reveals two clusters of these 377 monomers that correlate well
with grouping based on two clusters in Figure 5, Left, confirming
that a chimeric monomer KþF is supported by the reads.

Emergence of new monomers in the human genome. Uralsky
et al. (2019) recently arrived to similar conclusions by identifying
chimeric monomers in reference models of centromeres. We hy-
pothesize a potential mechanism that generated the hybrid monomer
KþF. Two cuts were introduced to the canonical 12-monomers
ABCDEFGHIJKL roughly in the middle of monomers K and F,
resulting in trimmed sequences ABCDEFGHIJK’ and ‘FGHIJKL
that were further glued together to form a non-standard 16-mono-
mer ABCDEFGHIJ(KþF)GHIJKL. Our identification of a novel
KþF monomer suggests that a set of chromosome-specific mono-
mers may quickly change during evolution by adding and potentially
expanding hybrid monomers. It also emphasizes the importance of
careful identification of all (even rare) monomers for follow-up
centromere assembly efforts.

We decided to recompute the monoread-to-monocentromere
alignments with the (KþF) monomer added to the original set of 12
monomers. We used the SD tool to convert each read from Reads
and the cenX sequence into the 13-monomer alphabet rather than
the 12-monomer alphabet as before. In the new representation of
the monocentromere, the non-canonical HORs 5–12 contain mono-
mer KþF instead of F or K. The number of monomer-to-monomer
mismatches for both approaches greatly decreased (from 119 to 11
for SD and from 139 to 38 for AC) and the number of other errors
hardly changed (Table 1, Right).

Non-standard 11-monomer ABCDEFGHIJ K has only one oc-
currence within monocentromere X. The monomer K in this 11-
monomer has a rather low identity to the monomers K and L
(87%). But it has identity 96% to a chimeric monomer KþL con-
structed from the first part of monomer K and second part of mono-
mer L. For all eight occurrences of non-standard 11-monomer in
Reads, the last monomer predicted as K or L has higher identity to
KþL (90–94%) than to either monomer K (82–86%) or to mono-
mer L (85%).

String decomposition in the case when the monomer-set contains
highly similar monomers. Distinct monomers forming cenX have ra-
ther low similarity with each other (less than 80% for most mono-
mer pairs). However, some other centromeres are formed by more
similar monomers that may lead to monomer-to-monomer substitu-
tion errors made by string decomposition algorithms. For example,
some monomers forming chromosome 8 (Genbank ID M64779.1)
are very similar (99% identity).

In order to analyze how string decomposition algorithms per-
form in the case of very similar monomers, we added a 13-th artifi-
cial monomer Z to the original set of 12 monomers. Monomer Z
was constructed from monomer A by applying 3, 5, or 8 random nu-
cleotide substitutions at randomly selected positions in the monomer
A sequence (the resulting artificial monomers are referred as Z3, Z5
and Z8, respectively). Adding an extra monomer Z to the set of 12
monomers greatly affects only one type of error in Table 1 (mono-
mer–monomer mismatch): in the majority of cases the monomer A
is replaced by the monomer Z. After adding the 13-th monomer, the
number of monomer–monomer mismatches increased by 235/51/5
for Z3/Z5/Z8 for the SD approach (217/34/8 for the AC approach).

3.2 Automatic HOR extraction from HiFi reads
Recruiting HiFi reads to all human centromeres. Suzuki et al. (2019)
recruited centromeric reads (from a set of error-prone PacBio CLR
reads) originating from chromosomes 11, 17 and X (that are domi-
nated by single HORs) and analyzed rare HORs on these chromo-
somes. Since the accurate HiFi reads (error rate below 1% for most
HiFi reads) are better suited for string decomposition and HOR de-
tection than error-prone reads, we attempted to identify HiFi reads
that originated from all human centromeres (centromeric reads).

First, we identified all HiFi reads that align to the Flye assembly
(Kolmogorov et al., 2019) of the human genome using minimap2
(Li, 2018) and considered reads that have a single high-scoring
alignment, covering at least 90% of the read length. Since Flye does
not attempt to assemble centromeres, we excluded all mapped reads
from further consideration as they are unlikely to be centromeric.
Only 17% of all HiFi reads were retained after this filtering step.

At the next step, we applied the first stage of Alpha-CENTAURI
to the retained reads using the consensus HMM of all monomers. A
read is classified as centromeric if Alpha-CENTAURI aligns the con-
sensus HMM to this read. Only 2% of all HiFi reads were classified
as centromeric (123 891 reads with a total length of 1.4 Gbp) and
were considered further. Since the remaining 15% of all reads do
not contain sequences similar to monomers, they likely represent
sequences from other unassembled regions in the human genome or
experimental artifacts.

Human monomers. Sevim et al. (2016) generated a collection of
1868 putative human monomers. Since this monomer collection
contains many similar (and even identical) monomers, we clustered
similar monomers using single-linkage clustering. Two monomers
belong to the same cluster if the edit distance between them doesn’t
exceed the threshold MonomerDistance (the default value is 6). This
procedure resulted in 965 clusters with the maximum cluster diam-
eter 12 (with respect to the edit distance) and the maximum cluster
size 7. We selected a representative monomer in each cluster as a
monomer with the smallest maximum edit distance to all other
monomers from the cluster. The resulting set of 965 representative
monomers (referred to as AllMonomers) reflects the diversity of cur-
rently known monomers.

Transforming centromeric HiFi reads into monoreads. We
launched the SD tool to transform each selected centromeric read
R into a monoread mono(R) using the monomer-set AllMonomers.
The analysis of generated monoreads revealed the high identity
(95–100%) for the vast majority of monomers against the accurate
HiFi reads. However, some monoreads do not encode repetitive
patterns. Since such monoreads likely belong to pericentromeric ra-
ther than centromeric regions, we only retained 119 807 out of
123 891 monoreads that have at least 36 monomers between left-
most and rightmost monomers with identities > 90%, resulting in
the set MonoReads of the total length 1288 Mb. We numbered
monomers in the decreasing order of their frequencies in mono-
reads (Supplementary Appendix: ‘Most frequent human
monomers’).

Transforming known human HORs into monoHORs. Alkan
et al. (2007) generated a list of 27 known human HOR sequences
that contains HORs from all chromosomes, except for chromo-
somes 13, 14 and 22. We used the SD tool to translate the nucleotide
sequence of 26 out of these 27 HORs (except for the HOR D20Z2
that is represented by its partial copy) into a monoHOR by decom-
posing it into monomers from the set AllMonomers (Fig. 7).

Only 146 out of 965 monomers participated in this decompos-
ition, indicating that either the set of known human HORs is incom-
plete or many monomers in AllMonomers are (i) very rare, or (ii)

Fig. 6. A 3-way alignment between the monomer F (1st row), monomer FK from the fifth instance of the non-standard HOR ABCDEFGHIJKGHIJKL (second row) and the

monomer K (third row). Positions that differ in F and K are colored in red in F and in blue in K. Positions of the monomer FK are colored either in red (if they have the same

nucleotide as in F) or in blue (if they have the same nucleotide as in K). Two positions in FK that differ from positions in both F and K are colored in yellow
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very similar to some of the 146 selected monomers, or (iii) computa-
tional artifacts. On the other hand, some monomers in some
monoHORs are characterized by a rather low percent identity, indi-
cating that either (i) some human monomers remain unknown, or
(ii) some of the known human HORs are incorrect. For example, all
five monomers in the HOR D1Z7_AJ290544 on chromosome 1
(formed by monomers 524, 599, 393, 861) have low identities
(below 60%), indicating that either the human monomers forming
this HOR remain unknown, or that this HOR is incorrect. We clas-
sify a monomer in a monoHOR as valid if its identity to the known
human monomer exceeds MinHORIdentity (default value
MinHORIdentity ¼ 85%).

Inferring putative HORs from monoreads. Although previous
centromere studies used various heuristics to derive the most abun-
dant human HORs (Suzuki et al., 2019; Uralsky et al., 2019), a
general-purpose algorithm for deriving all HORs (including the rare
ones) has not been described yet. Below we describe an algorithm
for HOR inference from a set of centromeric reads. For each mono-
read R and for each k-monomer H in R (2 � k � 20), we calculate
the count of the 2k-monomer HH in R (referred to as
TandemCountRðHÞ). We define the Tandem count of a k-monomer
H as TandemCountðHÞ ¼

P
TandemCountRðHÞ), where the sum is

taken over all reads R in the set MonoReads. We rank all k-mono-
mers in the decreasing order of their tandemCounts (the k-monomer

with the highest tandemCount is assigned the rank 1) and remove a
k-monomer from this list if it either (i) represents a cyclic shift of a
k-monomer with a smaller rank or (i) represents a tandem repeat of
a k-monomer with smaller rank (see Supplementary Appendix
‘Most frequent putative human HORs’). The resulting set of k-
monomers forms a set of putative HORs.

Comparing putative monoHORs with known human
monoHORs. Given two monoHORs, we define their overlap as the
set of all monomers that these monoHORs share. Two monoHORs
are classified as similar if the size of their overlap exceeds T% (the
default value T¼50) of the total number of monomers in each of
these monoHORs.

We compared all putative monoHOR (Supplementary Table S3)
with all known monoHORs (Fig. 7). No similar putative
monoHORs were identified for 10 known monoHORs from chro-
mosomes 1, 5, 7, 9, 10, 19 and Y (shown in red in Fig. 7). Four
known monoHORs (D2Z1, D7Z2, D15Z3 and D18Z2) have simi-
lar low-frequency putative monoHORs with tandem counts below
1500 (shown in yellow in Fig. 7). For all other known monoHORs,
except for D6Z1, D7Z1b, D16Z2 and D18Z1, our method identi-
fied identical putative monoHORs.

Suzuki et al. (2019) recently analyzed centromeres in chromo-
somes 11, 17 and X and used datasets of long error-prone reads
(both PBs and ONT reads) to derive 50 putative HORs for these
centromeres from multiple individuals (including rare HORs that
occurred only in some individuals). In addition to the canonical 12-
monomer HOR on chromosome X (ID ¼ 5 in Supplementary Table
S2), 5-monomer HOR on chromosome 11 (ID ¼ 6) and 16-mono-
mer HOR on chromosome 17 (ID ¼ 8), our analysis revealed 12
rare HORs (TandemCount of each such HOR exceeds 100) that are
similar to these canonical HORs and, thus, have likely originated
from chromosomes 11, 17 and X (IDs 68, 82, 131, 142, 149, 150,
152, 162, 172, 178, 184 and 207).

Our approach identified two 15-monomer monoHORs with IDs
68 and 82 that are similar to D17Z1, while Suzuki et al. (2019) only
found one such 15-monomer HOR. MonoHOR with ID 68 likely
originated from the canonical monoHOR D17Z1 by a deletion of a
monomer 70. Similarly, monoHOR with ID 82 likely originated
from a deletion of a monomer 63 that is adjacent to the monomer
70 in D17Z1. The rare monoHORs from chromosomes 11, 17 and
X, identified by Suzuki et al. (2019) but not by our approach (and
vice versa) may reflect the genomic differences between individuals
analyzed in Suzuki et al. (2019) and the cell line analyzed by the
T2T consortium. Alternatively, some of them may reflect differences
in algorithms for inferring putative HORs.

The canonical HOR D8Z2 on chromosome 8 is formed by 15
distinct monomers. However, since some of these monomers are
similar they are clustered together in the set AllMonomers.
Specifically, monomers 73, 74 and 72 are repeated twice in the
monoHOR 31 that corresponds to the canonical D8Z2
(Supplementary Table S3). We refer to the second occurrence of
each of these monomers as 730; 740 and 720. The edit distance be-
tween monomers 73 and 730 is 1, the edit distance between mono-
mers 74 and 740 is 3 and the edit distance between monomers 72
and 720 is 3. Two substrings of this circular 15-monomer are puta-
tive monoHORs 16 and 20 and have a higher tandem counts (5092
and 4937, respectively) than the canonical 15-monomer with tan-
dem count 1357.

Although the known HOR D7Z1b was not found as is, many
frequent monoHORs share multiple monomers with D7Z1b. For
example, the putative monoHOR 2 (tandem count 67 874) contains
all monomers from D7Z1b and two additional monomers 3 and 4.
Putative monoHOR 41 (tandem count 1369) differs from D7Z1b by
a single substitution of monomer 6 by monomer 3. Both monomers
are almost equally distant from the corresponding region of D7Z1b
with edit distances 6 and 9 for monomer 6 and monomer 3,
respectively.

The canonical HOR D18Z1 on chromosome 18 is highly simi-
lar to a putative monoHOR 29 in Supplementary Table S3 (a single
substitution of monomer 21 by monomer 163). It turned out
that the monomers 163 and 21 are almost equally distant from the

Fig. 7. Monomer representation of 27 known canonical HORs. Each row consists

of two lines: the sequence of monomers that form a HOR, and their sequence identi-

ties to the closest monomer in AllMonomers. Identities below 85% are shown in

red. The�?� symbol reflects monomers that do not appear in any monoread
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corresponding region of D18Z1 (edit distance 11 and 12,
respectively).

Figure 8 provides information about matches between known
and putative monoHORs and illustrates that the current knowledge
of human HORs requires a major update. Since the currently known
HORs were largely derived from much shorter Sanger reads, we be-
lieve that analysis of long and accurate HiFi reads from the entire
human genome provides an opportunity to generate a comprehen-
sive list of all human monomers and HORs.

4 Discussion

SD is the first tool designed specifically for decomposing long error-
prone reads from ETRs (including nested ETRs such as centromeres)
into blocks. We demonstrated that SD accurately transforms long
error-prone reads from centromeric regions into monoreads. This
transformation remains highly accurate even in the case when the
monomer-set contains highly similar monomers with percent iden-
tity as high as 98%. We thus project that the SD tool will accelerate
the ongoing centromere assembly efforts and will help to close the
remaining gaps in the human and other genomes. It also promises to
contribute to the discovery of novel emerging (albeit still rare)
monomers in the human genome as illustrated by our identification

of the emerging KþF and KþL monomers on cenX. Finally, it
revealed that the set of currently known human monomers and
HORs is incomplete (and likely error-prone) and generated many
novel human HORs.
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