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Abstract: Alzheimer disease (AD) is an age-related neurodegenerative disorder characterized by the presence of  

senile plaques, neurofibrillary tangles and neuronal loss. Amyloid-  protein (A ) deposition plays a critical role in the  

development of AD. It is now generally accepted that massive neuronal death due to apoptosis is a common characteristic 

in the brains of patients suffering from neurodegenerative diseases, and apoptotic cell death has been found in neurons and 

glial cells in AD. Melatonin is a secretory product of the pineal gland; melatonin is a potent antioxidant and free radical 

scavenger and may play an important role in aging and AD. Melatonin decreases during aging and patients with AD have 

a more profound reduction of this indoleamine. Additionally, the antioxidant properties, the anti-amyloidogenic properties 

and anti-apoptotic properties of melatonin in AD models have been studied. In this article, we review the anti-

amyloidogenic and anti-apoptotic role of melatonin in AD. 
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1. INTRODUCTION  

 Alzheimer disease (AD), the most common neurodegen-
erative disease with progressive loss of memory and deterio-
ration of comprehensive cognition, is characterized by senile 
plaques, neurofibrillary tangles and extensive neuronal loss. 
These histopathological hallmarks of the disease are ob-
served in the neocortex, hippocampus, and other subcortical 
regions of AD patient brains; these structures are essential 
for cognitive function. Amyloid-  protein (A ) is the main 
constituent of senile plaques, which is implicated in the 
pathogenesis of AD [72]. AD may be further subdivided into 
early-onset (<65 years old) and late-onset (>65 years old) 
groups. Notably, patients with either sporadic or familial AD 
share common clinical and neuropathological markers. Four 
different genes have been implicated in the etiology of AD: 
the amyloid precursor protein (APP), apolipoprotein E, and 
presenilins 1 (PS1) and 2 (PS2) [78, 96]. 

 Melatonin (N-acetyl-5-methoxytryptamine) is synthe-
sized mainly by the pineal gland during the dark phase of the 
circadian cycle [83]. Melatonin has a number of physiologi-
cal functions, including regulating circadian rhythms, clear-
ing free radicals [109, 110], improving immunity, and gener-
ally inhibiting the oxidation of biomolecules. Melatonin  
decreases during the aging process [83, 84] and patients with 
AD have more profound reductions of this substance [55, 
103]. Studies show that melatonin levels are lower in AD 
patients compared with that in age-matched control subjects 
[55, 61, 69]. It is generally accepted that a melatonin deficit 
is closely related to aging and age-related diseases [125].  
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 The great advances have been reported in currently stud-
ies of protection against AD by the antioxidant melatonin; 
this is achieved since melatonin inhibits A -induced toxicity 
[20, 21, 38, 67, 74, 133] and attenuating tau hyperphos-
phorylation [14, 45, 54, 56, 118, 119, 121]. Besides the anti-
oxidant properties, the anti-amyloidogenic actions [71, 73] 
and anti-apoptotic properties [120] of melatonin in AD also 
have been investigated. 

2. AMYLOID PRECURSOR PROTEIN, PRESE-

NILINS, AND -AMYLOID PRODUCTION  

 Most studies link the pathogenesis of AD with increased 
production and/or deposition A  in the brain. Senile plaques 
are composed of the A  which is a 40-43 amino acid peptide 
[91, 100, 101]. A  is derived from the proteolytic processing 
of a transmembrane glycoprotein known as -amyloid pre-
cursor protein (APP) [66]. The subsequent cloning of the 
gene encoding the APP and its localization to chromosome 
21 has been achieved [28, 40, 85, 111]. Cleavage of APP at 
the N-terminus of the A  region by -secretase [114] and at 
the C-terminus by -secretase [88] represents the amyloi-
dogenic pathway for processing of APP to form A . Alterna-
tively, APP can also be processed by -secretase [113] which 
cleaves within the A  sequence and does not produce A .  

 Mutations in three genes have been linked to early-onset 
AD. These genes include those encoding for APP, presenilin 
1 (PS1) located on chromosome 14 and presenilin 2 (PS2) 
located on chromosome 1 [52, 95]. More than 100 different 
mutations in the PS1 gene have been identified [57]. Only a 
few mutations have been found in the PS2 gene. It seems 
likely that presenilin proteins either alter the trafficking  
of APP and its derivatives or they may actually be the  
-secretase responsible for cleavaging of A  from the APP 

precursor protein [90, 126].  
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 All these mutations lead to an increased production and 
accumulation of A . On the other hand, the deposition of 
soluble A  produces aggregation of the peptide forming 
amyloid fibrils which have been reported to be neurotoxic in 
vitro [2, 129] and in vivo [35, 102]. These observations led to 
the amyloid cascade hypothesis which states that excessive 
production of A  is the primary cause of the disease [30].  

 Amino acid sequencing of the proteins making up cere-
bral amyloid revealed two common A  isoforms. One is 
termed A 40, a 40-amino acid polpeptide, and the other 
A 42, a polypeptide of identical composition but having two 
additional amino acids at the terminus. Both isoforms of A  
are hydrophobic and tend to aggregate due to the long stretch 
of hydrophobic amino acids at the C terminal half of the pep-
tide that forms -pleated sheet structures characteristic of the 
A  making up the amyloid plaque. In the brains of AD pa-
tients, A 42 is the predominant species deposited in the 
brain parenchyma [27]. In contrast, A 40 appears to be the 
predominant species deposited in the cerebral vasculature 
[37]. A 42 is more hydrophobic and aggregates more easily 
than A 40 [44, 123]. 

3. A  AND ITS FIBRILLIZATION 

 A  exists in both soluble and fibrillar forms. High levels 
of fibrillary A  are deposited in the AD brain, which is asso-
ciated with loss of synapses, impairment of neuronal func-
tions and loss of neurons [36, 79, 92, 131]. Formation of A  
fibrils from soluble A  is a multi-step process that is pre-
ceded by oligomerization and aggregation of monomeric A , 
and it involves conformational change of the peptide from -
helical to -pleated sheet structure [32]. A cascade of meta-
bolic steps begins with the APP protein, its cleavage into A , 
and the aggregation of A  into oligomers, protofibrils, and 
finally the birefringent amyloid that makes up cerebral 
plaques [93]. The A  oligomeric intermediates (oligomers, 
protofibrils) and the mature fibrils are all neurotoxic, and it 
has been demonstrated that the oligomers and protofibrils are 
actually more neurotoxic than the mature fibrils or amyloid 
plaques [13]. Extensive evidence shows A  fibrils play a 
causal role in the development of AD-type neuropathology 
and dementia [24]. Studies with synthetic A  have confirmed 
that A  is neurotoxic and that its neurotoxicity is largely 
dependent on the ability of A  to form -sheet structures or 
amyloid fibrils [58]. 

4. INHIBITION OF A  FIBRIL FORMATION AND A  

PRODUCTION BY MELATONIN 

 The antiamyloidogenic properties of melatonin for AD 
have been examined [71, 73]. Melatonin pharmacologically 
reduces normal levels of secretion of soluble APP (sAPP) in 
different cell lines by interfering with APP full maturation, 
which would cause a drop in the formation of A  itself [46]. 
Melatonin also affects the mRNA level of APP in a cell type-
specific manner. Pretreatment with melatonin resulted in a 
significant reduction in the APP mRNA level in PC12 cells, 
but failed to produce this effect in human neuroblastoma 
cells [99]. In addition, it has been shown that melatonin can 
interact with A 40 and A 42 and strongly inhibit the forma-
tion of -sheets and amyloid fibrils in vitro [70, 71, 76]. 
These effects were demonstrated by a number of techniques 

including circular dichroism, nuclear magnetic resonance 
spectroscopy and electron microscopy. Skribanek et al. [97] 
also reported that the interaction between A  and melatonin 
was hydrophobic, and took place on the 29-40 residues of the 
A  segment. Pappolla et al. [70] further documented a resi-
due-specific interaction between melatonin and any of the 
three histidine and aspartate residues of A . The imidazole-
carboxylate salt bridges formed by the side chains of his-
tidine and aspartate residues play a key role in the formation 
of the amyloid -sheet structures [34], and disruption of 
these salt bridges promotes fibril dissolution [25]. Melatonin 
may disrupt the imidazole-carboxylate salt bridges and thus 
prevent A  fibrillogenesis and aggregation. This action of 
melatonin reduces the toxicity of A  and also makes it more 
susceptible to proteolytic degradation. However, melatonin 
exhibited no significant destabilizing activity toward pre-
formed fA 1-40 or fA 1-42 [68].  

 Wang et al. [122] studied the effect of melatonin on A  
production in wild-type murine neuroblastoma N2a (N2a/wt) 
and N2a stably transfected with amyloid precursor protein 
(N2a/APP) cell lines used Sandwich ELISA. The results 
showed that melatonin suppressed the A  level in cell 
lysates. In addition, melatonin effectively decreased the level 
of A  in N2a/APP [132]. 

5. MELATONIN REDUCES THE AMYLOID BURDEN 

IN A TRANSGENIC MOUSE MODEL OF AD 

 A transgenic mouse model for AD mimicking the accu-
mulation of senile plaques, neuronal apoptosis and memory 
impairment was used in some studies. Moreover, the anti-
amyloidogenic role of melatonin was confirmed in a trans-
genic mouse model of AD.  

 Melatonin supplementation in mice led to a significant 
reduction in levels of toxic cortical A 40 and A 42 which 
are involved in amyloid depositions and plaque formation in 
Alzheimer diseases [47]. Feng et al. [19] evaluated the long-
term influence of melatonin on neuropathologic changes in 
APP 695 transgenic mice. Both Congo red staining and 
Bielschowsky silver impregnation showed that apparent ex-
tracellular A  deposition in the frontal cortex of APP 695 
transgenic mice, but melatonin supplementation inhibited the 
A  deposits. 

 Matsubara et al. [63] reported that early (starting at 4 
months of age) and long-term administration of melatonin 
partially inhibited the expected time-dependent elevation of 
A  in the treated Tg2576 transgenic mice. Conversly, Qunin 
et al. [81] reported that melatonin failed to modify brain lev-
els of A  in Tg2576 transgenic mice that were old enough to 
have amyloid plaque pathology when treatment was initiated 
at 14 months of age. Since cortical and hippocampal A  con-
tinue to accumulate between 14 and 20 months of age, these 
results indicate that melatonin not only failed to remove ex-
isting plaque, but also failed to prevent additional A  deposi-
tion [80]. The contrary results were because of the age at 
initiation of treatment. Tg2576 mice in the Matsubara study 
started melatonin at 4 months of age (prior to the appearance 
of hippocampal and cortical plaques), compared to 14 
months in the Qunin study. Amyloid plaque pathology typi-
cally appears in Tg2576 mice at 10-12 months of age [33]. 
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These findings indicate that melatonin has the ability to regu-
late APP metabolism and prevent A  pathology, but fails to 
exert anti-amyloid or antioxidant effects when initiated after 
the age of A  deposition. In addition, Cheng et al. [11]  
reported that melatonin has differential effects on hippo- 
campal neurodegeneration in different aged SAMP8, the 
mice initiated treatment from 4-months old exhibited  
a greater response to melatonin supplementation than 7-
months old mice. Melatonin treatment increased hippocam-
pal pyramidal cell number and improved the learning and 
memory deficits of SAMP8.  

6. APOPTOSIS AND AD  

 Apoptosis is a highly conserved form of cell death that is 
characterized by chromatin condensation, nuclear fragmenta-
tion, cytoplasmic membrane blebbing, and cell shrinkage 
[41]. Extensive evidence shows that apoptosis is involved in 
neuronal loss in AD [8, 96, 115]. Postmortem analysis of AD 
brain shows that there is DNA fragmentation in neurons and 
glia of hippocampus and cortex as detected by TdT-mediated 
dUTP nick end labeling (TUNEL) [17, 48, 53, 59, 98, 105, 
107]. Increased expression of Bcl-2 family members [16, 26, 
43, 60, 65, 106], increased levels of prostate apoptosis re-
sponse-4 (Par-4) [29], c-Jun protein upregulation [3], in-
creased caspase activities as well as cleavage of caspase sub-
strates have also been detected in AD brain [1, 10, 49, 77, 
86, 104, 112, 127]. Moreover, Rohn et al. [87] demonstrated 
the activation of mitochondrial and receptor-mediated apop-
totic pathways in AD hippocampal brain sections wherein 
active caspase-9 was co-localized with active caspase-8. Re-
cently, a marked co-localization of pathological hyperphos-
phorylated tau, cleaved caspase-3 and caspase-6 have been 
reported in TUNEL-positive neurons in the brainstem of AD 
patients [9, 117]. In addition, there is evidence for activation 
of cell cycle proteins in AD brain [12, 128]. This may be an 
attempt of the cells to try to survive less than optimal condi-
tions or toxic stimuli [6]. Feng et al. [19] reported that cogni-
tive impairment and apoptosis developed in the APP 695 
transgenic mice as young as 8 months of age; Apoptosis was 
most likely contribute to behavioral impairments in the APP 
695 transgenic mice. The A  can directly induce neuronal 
apoptosis in vitro [31, 75, 89, 124]. Furthermore, in vitro 
studies have shown that A  provokes a significant down-
regulation of antiapoptotic proteins such as Bcl-2, Bcl-xl and 
Bcl-w and a significant up-regulation of proapoptotic pro-
teins such as bax [130]. 

7. ANTI-APOPTOTIC ROLE OF MELATONIN IN AD 

 In vitro experiments showed that A -treated cultures ex-
hibited characteristic features of apoptosis, and melatonin 
attenuated A -induced apoptosis in a number of cellular 
models of AD including hippocampal neurons, PC12 cells, 
mouse microglial BV2 cells and rat astroglioma C6 cells [22, 
23, 38, 74, 94]. 

 Shen et al. [94] used A 25-35 to induce apoptosis in cul-
tured hippocampal neurons, and monitored the apoptotic 
activity of the neurons with or without melatonin treatment. 
The study shows that melatonin at concentrations of 1 10

-6
 

and 1 10
-5

 mol/L prevents neuronal morphological changes 
induced during apoptosis. PC12 cells and rat astroglioma C6 

cells treated with either A 25-35 or A 1-42 underwent apop-
tosis. Melatonin pretreatment significantly attenuated A 25-
35 or A 1-42-induced apoptosis in PC12 cells and rat astro-
glioma C6 cells. The anti-apoptotic effects of melatonin were 
highly reproducible and were corroborated by multiple quan-
titative methods. In addition, melatonin effectively sup-
pressed A 1-42-induced nitric oxide formation, potently 
prevented A 1-40-induced intracellular calcium overload 
[22, 23]. The experiment in mouse microglial BV2 cells in 
vitro showed that pre-treatment with melatonin in the present 
study reduced the level of Abeta-induced intracellular ROS 
(reactive oxygen species) generation, inhibited NF- B acti-
vation, and suppressed the A -induced increase in caspase-3 
enzyme activity. In addition, pre-treatment with melatonin 
inhibits A -induced increase in the levels of Bax mRNA and 
that it enhances the level of Bcl-2 expression [38]. In addi-
tion, melatonin suppresses age-induced apoptosis in cerebel-
lar granule neurons, which may be associated with the acti-
vation of Akt, GSK3  and FOXO-1 [108]. In vivo experi-
ments suggested that long-term melatonin treatment 
significantly decreased the TUNEL-positive neurons in APP 
695 transgenic mice.  

 There are two major apoptotic signaling pathways in the 
central nervous system neurodegenerative diseases: extrinsic 
and intrinsic [120]. The extrinsic apoptotic pathway (death 
receptor pathway) is initiated by death receptors on the sur-
face of the cells, involving caspase-8/Bid and caspase-10 
activation [7, 116, 120]. The intrinsic pathway (the mito-
chondrial pathway) is involved in the neuroprotection of 
melatonin [82]. However, there have been no obvious reports 
of the involvement of extrinsic pathways in the neuroprotec-
tion of melatonin. During the progression of neurodegenera-
tive diseases, the survival signaling cascades are activated by 
neuroprotective agents [64] including the phosphoinositol-3 
kinase (PI3K)/Akt pathway [5, 42, 50], the Bcl-2 pathway 
[82], the NF- B pathway [18], as well as the MAPK  
pathway.  

 The highest levels of melatonin are found in the mito-
chondria [62]. Mitochondria have been identified as a target 
for melatonin [4, 51]. Melatonin promotes mitochondrial 
homeostasis. Mitochondria play a critical role in the neuro-
protective function of melatonin in AD. Melatonin inhibited 
the A -induced increase in the levels of mitochondria-related 
Bax in transgenic AD mice and cultured mouse microglial 
BV2 cells. Furthermore, in vivo observations showed that 
melatonin-treated animals had diminished expression of NF-

B compared to untreated animals [39]. Furthermore, mela-
tonin prevented upregulated expression of Par-4 and Bax and 
inhibited A -induced caspase-3 activity [21]. 

8. CONCLUSION  

 Melatonin can function as an anti-amyloidogenic and 
anti-apoptotic indoleamine in addition to having antioxidant 
properties. Melatonin has been proposed as a treatment for 
AD. The results from APP transgenic mice have showed that 
early, long-term melatonin supplementation produces anti-
amyloid and antioxidant effects, but no such effect is pro-
duced when melatonin treatment is initiated after the age of 
amyloid formation [47, 63, 80, 132]. The results from 
SAMP8 have also indicated that differential effects of mela-
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tonin on hippocampal neurodegeneration are associated with 
the age at initiation of treatment [11]. Furthermore, Dong et 
al. [15] reported that melatonin possesses differential effects 
on A 25-35-induced cytotoxicity in hippocampal neurons at 
different stages of culture, and demonstrated that the differ-
ential effects of melatonin were produced through its differ-
ent actions on mitochondria. These results supported the 
notion that melatonin or its derived analogs could be ex-
plored as a preventive approach in AD, rather than a thera-
peutic approach. Therefore, extensive clinical trials and stud-
ies with transgenic models are necessary to confirm the role 
of melatonin at the late pathological stage of AD.  
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