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ABSTRACT: Using a high-pressure phase equilibrium apparatus and vibrating-tube
densimeter, phase transition pressures of CO2 (1) + acetic acid (2) binary systems with x2
= 0.000, 0.107, 0.163, 0.222, and 1.000 were measured under temperatures from 308.15 to
338.15 K. Besides, the densities at the same composition and temperature under pressure from
15 to 45 MPa were also detected, and the volumes of mixing (ΔVm) were calculated. Three
prediction models (SRK EOS, PC-SAFT EOS, and TS model) were introduced to predict and
correlate the density of binary systems, which was found to have positive relationships with
temperature and acetic acid concentration and a negative relationship with pressure.
Thereinto, the variation trend of CO2 density with pressure tends to be flat under high
pressure, and which of acetic acid density increased linearly with pressure. ΔVm are negative,
and their absolute value increases with the increase of temperature and the decrease of
pressure. The work herein could provide a theoretical guide and basic data for supercritical
CO2 extraction technology and CO2 application in oil field development.

1. INTRODUCTION

Recently, supercritical CO2 utilization technology in the
extraction process has gained much attention.1,2 It was
reported that the transformation of glycerol, as the main
byproduct of biodiesel, via the esterification of glycerol and
acetic acid could be efficient in high-value downstream product
synthesis, such as that of monoglycerate, diglycerate, and
triglycerate. During the process, an extra amount of acetic acid
residual needs to be extracted to further maximize the resource
utilization.3 The supercritical CO2 extraction process is an
efficient, ecological, stable, and cheap technology that could be
used in acetic acid extraction. Thus, the phase behavior and
density of CO2 + acetic acid should be carefully investigated to
provide basic data and experimental guide for further
application.4,5

Moreover, in oil field development, acidification is an
efficient route for carbonate reservoir production improve-
ment.6 However, the general acidification process possesses an
excessive reaction rate, leading to well pipe corrosion. The
introduction of acetic acid could effectively avoid this
situation.7 At present, supercritical CO2 fracturing and
enhanced oil recovery have already become the hotspots in
oil field development. In the deep formation, CO2 and acetic
acid, which have an interaction, could benefit the acidification,
fracturing, and enhanced oil recovery processes.8,9 And it is
urgently needed to investigate the phase behavior and density
of the CO2 + acetic acid binary system, which could provide
technology support for supercritical CO2 application in oil field
development.

In reported supercritical CO2 high-pressure phase equili-
brium and density measurement methods, visible phase
transition pressure measurement and vibrating-tube densim-
eter measurement, which have the advantage of user-friendly
control and nonsampling, have gained much attention.10,11

The Peng−Robinson (PR) EOS,12 Soave−Redlich−Kwong
(SRK) EOS,13 and Tait equation14 are generally used as the
equation of state or empirical model of phase transition
pressure and density. As reported by Gross et al., the
perturbed-chain statistical associating fluid theory equation of
state (PC-SAFT EOS) has good prediction for a high-pressure
CO2 system.15,16 Besides, Toscani and Szwarc reported that a
six-parameter empirical model (TS model) could also correlate
well with density experimental values under high pressure.17

Physically, the accurate determination of phase behavior and
thermodynamic properties of a given gas−liquid mixture
depends on the α function, binary interaction parameters,
mixing rules, and volume translation strategy.18−21 The original
SRK EOS and PR EOS have a relatively large deviation in the
prediction of saturated vapor pressure and liquid density. The
modification of saturated vapor pressure is carried out by using
the α function.22,23 In principle, the existing α functions can be
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classified as Soave-type13,24 and logarithm-type.25 The Soave-
type α function has been found to be the most widely used one
for the two-parameter cubic EOSs. However, the traditional
Soave-type α function cannot satisfy a basic requirement, that
is, it does not exhibit a limiting behavior as the reduced
temperature approaches infinity. For this reason, Heyen
proposed the logarithmic-type α function.26 Through the
improvement of Trebble and Bishnoi25 and Twu et al.,22,27 this
kind of α function has been able to solve this problem, and the
prediction accuracy has been further improved. Since then, Li
and Yang combined the advantages of the two types and
obtained a new α function that could better predict the vapor
pressure of both pure substance and alkane solvent−CO2−
heavy oil systems.28 Recently, Chen and Yang optimized the
reduced temperature for acentric factor in α function
associated with PR EOS and SRK EOS to improve vapor
pressure prediction for heavy hydrocarbon compounds.29

These new α functions can significantly improve the prediction
accuracy of phase behavior not only for small molecules but
also for complex heavy hydrocarbon components.
At present, the existing cubic EOS can provide reliable

prediction for many thermodynamic properties of various
substances but cannot give an accurate calculation of liquid
volume.30 To reduce this error, Martin31 first introduced the
concept of volume translation, and Peneloux et al. suggested a
constant volume correction in SRK EOS.32 This method can
still be used to evaluate the liquid density in supercritical
CO2

33 and other systems.34,35 Further research shows that the
temperature-dependent volume translation model36,37 and
temperature−volume-dependent volume translation
model38,39 can improve the prediction accuracy. Recently,
Chen and Li have fully exploited the potential of the distance
function to improve the accuracy of the volume translation
SRK EOS in predicting the density of saturated and single-
phase liquids.18

To predict the density of mixed systems, binary interaction
parameters and mixing rules are often used by regression of
experimental results.40 Starting from the original classic van der
Waals mixing rule,12,13 a series of studies of SRK EOS and PR
EOS mixed rules, such as the Huron−Vidal mixing rule,41

MHV2 mixing rule,42 PHV mixing rule,43 Wong−Sandler
mixing rule,44 and its modified type.45 These modified mixing
rules and the α function and volume translation we mentioned
before make the SRK EOS and PR EOS still have considerable
vitality.
To the best of our knowledge, for the CO2 + acetic acid

binary system, the investigation of density under high pressure
is still rare.5 In this work, the combination of a self-designed
high-pressure phase equilibrium apparatus with a vibrating-
tube densimeter was introduced to detect the phase transition
pressures of CO2 (1) + acetic acid (2) binary with x2 = 0.107,
0.163, and 0.222, and densities of unitary and binary systems at
temperature of 308.15, 318.15, 328.15, and 338.15 K and
pressure of 15.00, 20.00, 25.00, 30.00, 35.00, 40.00, and 45.00
MPa. At the same time, the α function, binary interaction
parameters, mixing rules, and volume translation strategy are
used for accurately determining phase transition pressures and
density by using SRK EOS, PR EOS, and PC-SAFT EOS
followed by density correlation with the TS model and volume
of mixing calculation.

2. MODELING
The phase transition pressure of the CO2 + acetic acid binary
systems was predicted by modifying the α function of SRK
EOS and PR EOS. In addition, the SRK EOS, PC-SAFT EOS,
and TS model were introduced to predict and correlate the
densities of CO2 + acetic acid unitary and binary systems for
experimental reliability validation. And volumes of mixing
(ΔVm) in binary system were also investigated.

2.1. SRK EOS. SRK EOS13 has the expression of:
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−
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+
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where p, T, and Vm are the pressure, temperature, and molar
volume, respectively. R is the ideal gas constant. a and b are
parameters.
For pure components, the expressions for a and b are:
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where α(Tr, ω) is the α function, which is dependent upon
both the reduced temperature Tr and the acentric factor ω. Tci
is the critical temperature, and pci is the critical pressure. In this
paper, the Soave-type α function13 used in the SRK EOS is
given by:
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For mixed systems, a could be decided by adding the
standard quadratic mixing term a0 and asymmetric (polar)
term a1 together.

= +a a a0 1 (5)

Expressions of a0, a1, and b are shown below:
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In the expressions, xi is the mole fraction, and ηij and lij are
the binary interaction parameters that could be obtained from
density−composition regression. Another three parameters, ai,
aj, and bi, are denoted in SRK EOS especially for the pure
system.
In this paper, since it is necessary to calculate the density of

the liquid phase, the volume translation proposed by
Peneloux32 was used to correct the molar volume:

= −V V cm m0 (9)
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where Vm0 is the molar volume calculated by the equation of
state without the correction, c is the Peneloux volume
correction term, and ci is the Peneloux volume correction
term for pure components, calculated from the critical
temperature (Tci) and pressure (pci) and the Rackett parameter
(ZRAi).
2.2. PR EOS. The expression of the PR EOS12 is:
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For pure components, the expressions for a and b are:
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Here, we use the α function modified by Li and Yang28 to
improve phase transition pressure prediction. The expression
of this α function used in the PR EOS is given by:
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The mixing rule and volume translation are the same as in
SRK EOS, and the meanings of each variable in eqs 12 to 15
are the same as those in Section 2.1.
2.3. PC-SAFT EOS. In PC-SAFT EOS,15,16 compressibility

factor (Z) is related to ideal gas (Zid = 1), hard-chain (Zhc),
segment dispersion (Zdisp), and association (Zassoc), which
could be expressed as below:

= + + +Z Z Z Z1 hc disp assoc (16)

Generally speaking, the non-association molecule could be
presented by three parameters from the pure system, which are
the number of spheres in the chain (m), the diameter of the
spheres (σ), and the segment energy parameter (ε/k). For the
association molecule, another two parameters, the effective
association volume (κAB) and the association energy (εAB),
should also be used. For CO2 and acetic acid used in this work,
CO2, as a non-association molecule, has weak polarity, while
acetic acid is an association molecule with strong polarity. The
detailed information about these two molecules is listed in
Table 1.
For binary system compositing by small molecules, the

parameters could be predicted by the conventional Berthe-
lote−Lorentz combining rules,46 which are shown in the
following:
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Among them, kij is a binary interaction parameter, as the
function of temperature, which could be used to correlate
crossing dispersion energy between different molecules. In this
work, kij is obtained by regressing the experimental data of
density.

2.4. Toscani−Szwarc (TS) Model. The TS model17 is an
empirical density correlation model with six adjusted
parameters, which shows good correlation results in this
work. The model could be expressed as below:

ρ =
− + +

+ +
A A T p A p

A A p A p
1 2 3

0.5

4 5 6
0.5

(21)

In the model, ρ, p, and T are the mass density in kg·m−3,
pressure in MPa, and temperature in K, respectively. A1−A6 are
the six adjusted parameters, which could be calculated by
regressing experimental data.

2.5. Deviation Analysis. Absolute average deviation
(AAD), mean deviation (bias), standard deviation (SDV),
and root mean square (RMS) are used for deviation analysis
between experimental and calculated data. These four
deviations could be expressed as follows:47
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Among them, Yi
exp and Yi

cal represent the experimental and
calculated value, repectively.

2.6. Volumes of Mixing (ΔVm). Volumes of mixing
(ΔVm) of the binary system are calculated with the density
difference between the mixture and pure chemicals (excess
volume), which could be expressed in the following:48

ρ ρ ρ
Δ =

+
− −V

x M x M x M x M
m

1 1 2 2 1 1

1

2 2

2 (27)

Table 1. PC-SAFT EOS Pure-Component Parameters Used in This Work

component M (g·mol−1) mseg/M (mol·g−1) σi (Å) εi (Å)
−1 κAiBi εAiBi (K)−1 ref

CO2 44.01 0.0471 2.7852 169.21 15
acetic acid 60.05 0.0223 3.8582 211.59 0.07555 3044.4 16
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In the expression, ΔVm and ρ are denoted as volumes of
mixing and mixture density, respectively. Besides, xi, Mi, and ρi
represent the molar fraction, molar weight, and density of the
pure system, respectively, with i = 1 as CO2 and i = 2 as acetic
acid.
2.7. Calculation Method. The SRK EOS, PR EOS, PC-

SAFT EOS, and TS model were calculated and decided by the
commercial software Aspen Plus V11 and MATLAB. All the
parameters were correlated with the Marquardt−Levenberg
algorithm of least squares optimization.

3. RESULTS AND DISCUSSION
3.1. Phase Transition Pressure. Density measurement

has meaning only when the system is homogenous. Thus,
herein, the measurement for phase transition pressure was used
further for density measurement. The results are listed in Table
2.

The pressure−composition phase diagram of the CO2 (1) +
acetic acid (2) binary system could be found in Figure 1. In

this figure, solid dots stand for the experimental data, red lines
represent the SRK EOS calculation results with ηij = 0.024 and
lij = 0 using the Soave-type α function, and black lines express
the PR EOS calculation results with ηij = 0 and lij = 0 using the
α function modified by Li and Yang. It clearly shows that PR
EOS has a better ability in phase transition pressure prediction
compared with that of SRK EOS. The AAD values of PR EOS
and SRK EOS are 3.72 and 5.31%, respectively, indicating that
the modified α function can better predict the results of phase
transition pressure of the CO2 + acetic acid binary system.

The phase transition pressure, which is only used for further
density measurement under high pressure, would not be
discussed further in this work.

3.2. Density. In this work, the SRK EOS, PR EOS, PC-
SAFT EOS, and TS model were used to calculate the density
of CO2 + ethyl acetate systems comparing with the
experimental results. Among them, the AAD values of SRK
EOS and PR EOS are about the same. To save space, only the
calculation results using SRK EOS, PC-SAFT EOS, and TS
models are presented in the following paper.

3.2.1. Experimental Results. Density measurement results
for CO2, acetic acid, and CO2 (1) + acetic acid (2) systems are
listed in Table 3. It could be found that the densities for all the

systems have a positive relationship with pressure and negative
relationship with temperature. The density of CO2 is more
affected by temperature and pressure than that of acetic acid.
In detail, the density variation for CO2 would flatten under
high pressure. That is, under low pressure (≤15 MPa), the
CO2 molecules are easy to be compressed. As the pressure is
boosted, the difficulty of compression for CO2 also increases.
These correspond with the gas characteristics under high
pressure.11,49 Besides, the density of acetic acid is found to

Table 2. Phase Transition Pressure for the CO2 (1) + Acetic
Acid (2) Binary System

p (MPa)

x2 T = 308.15 K T = 318.15 K T = 328.15 K T = 338.15 K

0.107 7.14 8.41 9.68 10.92
0.163 6.42 7.70 8.98 10.29
0.222 6.07 7.29 8.50 9.78

Figure 1. Experimental data (solid dot) and calculation ones (solid
lines for SRK EOS and dash lines for PR EOS) of the CO2 (1) +
acetic acid (2) binary system. The black, red, blue, and magenta dots
and lines represent temperatures of 308.15, 318.15, 328.15, and
338.15 K, respectively.

Table 3. Experimental Data for the Densities of CO2 (1) +
Acetic Acid (2) Systemsa

ρ (kg·m−3)

p (MPa) x2 = 0.000 x2 = 0.107 x2 = 0.163 x2 = 0.222 x2 = 1.000

T = 308.15 K
15.00 806 914 950 978 1058
20.00 853 944 974 997 1066
25.00 890 969 994 1013 1073
30.00 920 990 1012 1028 1080
35.00 944 1009 1028 1042 1086
40.00 965 1025 1042 1055 1092
45.00 989 1041 1055 1066 1098

T = 318.15 K
15.00 730 866 911 945 1049
20.00 804 903 939 967 1057
25.00 845 932 962 986 1064
30.00 879 956 982 1003 1071
35.00 909 978 1000 1018 1078
40.00 934 996 1016 1032 1084
45.00 957 1013 1031 1044 1090

T = 328.15 K
15.00 648 817 869 909 1039
20.00 743 858 902 935 1047
25.00 800 893 929 957 1055
30.00 835 922 952 976 1062
35.00 873 946 972 993 1069
40.00 899 967 990 1008 1076
45.00 928 985 1006 1022 1082

T = 338.15 K
15.00 557 762 827 872 1030
20.00 679 811 863 902 1038
25.00 749 853 894 927 1046
30.00 799 885 920 948 1053
35.00 839 913 943 967 1061
40.00 867 936 962 984 1067
45.00 897 957 980 999 1074

aUncertainty: u(T) = 0.05 K, u(p) = 0.02 MPa, and u(ρ) = 4.6 kg·
m−3.
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have a positive linear relationship with pressure, which is
similar with the characteristic of liquids, such as water and
ethanol.50−52

3.2.2. Calculation Results and Deviation Analysis. SRK-
EOS and PC-SAFT EOS were used to predict the density of
CO2 + acetic acid unitary and binary systems, and the TS
model was also introduced for correlation. All the adjusted
parameters of the TS model are listed in Table 4. The
calculation results and deviation analysis of four statistical
valuesAAD, bias, SDV, and RMSfrom different models
are presented in Table 5. Comparison of density−pressure
curves obtained from calculation with experimental data is
shown in Figure 2. For clarity, only prediction curves
calculated from SRK-EOS with nij = 0.024 and lij = 0 and
from PC-SAFT EOS with kij = 0.061 are used herein for
comparison.
From Table 5 and Figure 2, it could be illustrated that SRK

EOS and PC-SAFT EOS have good integral prediction ability
for unitary and binary systems, with overall AAD of 1.75 and
0.92%, respectively. Between them, SRK EOS has a relatively
larger prediction deviation for unitary system, although the
Peneloux volume correction has been used, with AAD for pure
CO2 and pure acetic acid of 2.92 and 5.26%, respectively,
which might be caused by the simplicity of its expressions. For
pure CO2 and pure acetic acid systems, SRK EOS and PC-
SAFT EOS have greater prediction deviation at higher
temperature and lower pressure, while for binary systems,
the prediction accuracy of the two equations of state is the
highest at medium pressure (30 MPa). On the whole, the
prediction accuracy of two kinds of EOS for the binary system
is obviously better than that of the unitary system. It should be
noticed here that the TS model, as a simple model with six
adjusted parameters, could correlate well with experimental
results of density under high pressure, which has an AAD value
of only 0.10%.
3.2.3. Calculation of ΔVm. Volumes of mixing (ΔVm) could

be used to evaluate the deviation between mixture and ideal
state. In this work, eq 17 was used to calculate the ΔVm of the
CO2 (1) + acetic acid (2) system with x2 = 0.107, 0.163, and
0.222, and the results are listed in Table 6. It can be clearly
seen that all the ΔVm under the conditions used herein are
negative. This might be caused by the formation of Lewis
acid−base interaction between CO2 and acetic acid.53,54 With
strong affinity between CO2 and carbonyl of acetic acid, CO2
molecules could easily insert into the gap between acetic acid
molecules and thus cause negative values of ΔVm.

55

By comparison of the ΔVm under different temperatures and
pressures, the absolute values of ΔVm were found to increase
with temperature increase or pressure release. This might be
caused by the lower density of the mixture system and bigger
intermolecular space at relative high temperature (338.15 K)

and low pressure (15 MPa), leading to the increase of absolute
value of ΔVm.

56

4. CONCLUSIONS
A high-pressure phase equilibrium apparatus was introduced to
measure the transition phase pressure of CO2 (1) + acetic acid
(2) at 308.15−338.15 K, and PR EOS was found to have a
better prediction ability in transition phase pressure than SRK
EOS by the modified α function. Besides, a vibrating-tube
densimeter was used for CO2 (1) + acetic acid (2) density
measurement with x2 = 0.000, 0.107, 0.163, 0.222, and 1.000 at
308.15−338.15 K and 15−45 MPa. By calculation of ΔVm, the
SRK EOS, PC-SAFT EOS, and TS model were applied to
predict and correlate the density results.
The densities of all systems were found to have positive

relationships with temperature and acetic acid concentration
but a negative relationship with pressure. Therein, the CO2
density would flatten under high pressure, which is in
accordance with the characteristics of gases under high
pressure generally reported. The SRK EOS, PC-SAFT EOS,
and TS model have good prediction and correlation perform-
ance for densities of pure CO2, pure acetic acid, and CO2 +
acetic acid binary systems, with AAD values of 1.75, 0.92, and
0.10%, respectively. The ΔVm are all negative values, and their
absolute values increased with temperature increase or pressure
decrease. This might be caused by the Lewis acid−base
relationship formation between CO2 and carbonyl of acetic
acid.
All the experimental and calculation data obtained herein

could provide a theoretical guide and data foundation for
supercritical CO2 utilization in extraction and oil field
exploration.

5. EXPERIMENTAL SECTION
5.1. Chemicals. All chemicals used in this work are listed in

Table 7 and are not further purified.
5.2. Structure of the High-Pressure Phase Equili-

brium Apparatus. The visible and volume-variable high-
pressure phase equilibrium apparatus was used to measure the
phase behavior and density of CO2 and acetic acid systems.
The apparatus was built by Jiangsu Haian Oilfield Scientific
Instrument Co., Ltd., and modified somewhat by our group to
satisfy the demand for density measurement under high
pressure. The detailed composition and operation method of
this supercritical CO2 phase equilibrium device, which is
shown in Figure 3, have been described in our previous
works.57,58

A brief introduction would be given here. The apparatus is
composed of a supercharging device (including piston pump,
piston cylinder, etc.), high-pressure visible unit (including
high-pressure autoclave, sapphire window, servo motor
controller, etc.), temperature and pressure control system

Table 4. Adjusted Parameters for the TS Models for Densities of CO2 (1) + Acetic Acid (2) Systems

values

parameters x2 = 0.000 x2 = 0.107 x2 = 0.163 x2 = 0.222 x2 = 1.000

A1 (MPa) 1.163 × 106 67.97 86.16 128.5 107.6
A2 (MPa·K−1) 1.273 × 104 0.1902 0.2176 0.3302 0.07561
A3 (MPa0.5) 1.034 × 106 2.592 4.161 12.84 −3.899
A4 (MPa·m3·kg−1) −3432 0.01177 0.02232 0.02982 0.0812
A5 (m

3·kg−1) −49.8 0.0006575 0.0006347 0.0004251 0.0008208
A6 (MPa0.5·m3·kg−1) 1476 0.004117 0.005413 0.01477 −0.003613
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Table 5. Calculated Results and Deviation Analysis of Density of the CO2 (1) + Acetic Acid (2) Systema

x2 = 0.000

SRK EOS PC-SAFT EOS TS model

p (MPa)
ρcal

(kg·m−3)
ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

T = 308.15 K
15.00 750 6.95 797 1.12 810 −0.50
20.00 820 3.87 851 0.23 858 −0.59
25.00 870 2.25 889 0.12 892 −0.22
30.00 910 1.09 918 0.22 919 0.11
35.00 943 0.11 943 0.11 944 0.04
40.00 971 −0.62 965 0.02 966 −0.10
45.00 996 −0.71 983 0.61 988 0.12

T = 318.15 K
15.00 670 8.22 716 1.92 727 0.41
20.00 760 5.47 792 1.49 799 0.62
25.00 820 2.96 840 0.59 845 −0.03
30.00 865 1.59 876 0.34 879 0.04
35.00 902 0.77 905 0.44 908 0.11
40.00 934 0.04 929 0.54 934 0.00
45.00 961 −0.42 951 0.63 958 −0.11

T = 328.15 K
15.00 583 10.03 621 4.17 644 0.62
20.00 697 6.19 728 2.02 741 0.27
25.00 767 4.13 788 1.50 798 0.25
30.00 820 1.80 832 0.36 839 −0.48
35.00 861 1.37 865 0.92 872 0.11
40.00 896 0.33 893 0.67 901 −0.22
45.00 926 0.22 917 1.19 928 0.03

T = 338.15 K
15.00 534 4.13 523 6.10 561 −0.72
20.00 633 6.77 660 2.80 682 −0.44
25.00 715 4.54 735 1.87 750 −0.13
30.00 774 3.13 786 1.63 798 0.13
35.00 820 2.26 825 1.67 837 0.24
40.00 858 1.04 857 1.15 869 −0.23
45.00 891 0.67 884 1.45 897 0.03

AAD
(%)

2.92 1.27 0.25

bias (%) −2.80 −1.27 0.03
SDV
(%)

3.02 1.37 0.33

RMS
(%)

3.77 1.71 0.31

x2 = 0.107

SRK EOS PC-SAFT EOS TS model

p (MPa)
ρcal

(kg·m−3)
ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

T = 308.15 K
15.00 909 0.55 917 −0.33 915 −0.13
20.00 940 0.42 944 −0.03 945 −0.11
25.00 967 0.21 966 0.31 970 −0.08
30.00 990 0.02 985 0.51 991 −0.10
35.00 1010 −0.12 1001 0.79 1009 0.02
40.00 1028 −0.29 1017 0.78 1026 −0.11
45.00 1044 −0.29 1030 1.06 1040 0.10

T = 318.15 K
15.00 861 0.58 872 −0.69 865 0.12
20.00 899 0.44 905 −0.22 901 0.22
25.00 929 0.32 931 0.11 931 0.12
30.00 955 0.10 953 0.31 956 0.00
35.00 978 −0.01 972 0.61 977 0.10
40.00 998 −0.20 989 0.70 996 −0.04

x2 = 0.107

SRK EOS PC-SAFT EOS TS model

p (MPa)
ρcal

(kg·m−3)
ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

T = 318.15 K
45.00 1016 −0.30 1004 0.89 1013 −0.01

T = 328.15 K
15.00 810 0.86 823 −0.73 814 0.37
20.00 855 0.35 863 −0.58 857 0.12
25.00 890 0.34 894 −0.11 892 0.11
30.00 920 0.22 920 0.22 921 0.15
35.00 945 0.11 942 0.42 945 0.12
40.00 968 −0.10 961 0.62 966 0.10
45.00 987 −0.20 978 0.71 985 0.01

T = 338.15 K
15.00 754 1.05 770 −1.05 764 −0.26
20.00 809 0.25 817 −0.74 813 −0.25
25.00 850 0.35 855 −0.23 853 −0.01
30.00 884 0.11 885 0.02 885 0.02
35.00 912 0.13 910 0.33 913 0.01
40.00 937 −0.11 932 0.43 937 −0.11
45.00 958 −0.10 951 0.63 957 −0.03
AAD (%) 0.28 0.96 0.10
bias (%) −0.16 0.29 −0.01
SDV (%) 0.34 2.38 0.13
RMS(%) 0.35 2.24 0.12

x2 = 0.163

SRK EOS PC-SAFT EOS TS model

p (MPa)
ρcal

(kg·m−3)
ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

T = 308.15 K
15.00 951 −0.11 952 −0.21 951 −0.11
20.00 975 −0.10 973 0.10 975 −0.10
25.00 996 −0.20 991 0.30 995 −0.07
30.00 1014 −0.20 1007 0.49 1013 −0.13
35.00 1030 −0.19 1021 0.68 1028 0.01
40.00 1045 −0.29 1034 0.77 1042 0.03
45.00 1059 −0.38 1047 0.76 1055 −0.03

T = 318.15 K
15.00 912 −0.11 916 −0.55 910 0.11
20.00 940 −0.11 941 −0.21 938 0.11
25.00 963 −0.10 962 0.01 961 0.10
30.00 984 −0.20 980 0.20 982 0.00
35.00 1002 −0.20 996 0.40 1000 0.02
40.00 1018 −0.20 1010 0.59 1016 −0.00
45.00 1033 −0.19 1024 0.68 1030 0.10

T = 328.15 K
15.00 870 −0.12 876 −0.81 869 0.03
20.00 902 0.01 906 −0.44 901 0.14
25.00 929 0.00 930 −0.11 928 0.13
30.00 952 −0.00 951 0.12 951 0.11
35.00 973 −0.11 969 0.31 971 0.10
40.00 991 −0.12 985 0.51 989 0.07
45.00 1007 −0.08 1000 0.60 1005 0.11

T = 338.15 K
15.00 826 0.12 833 −0.73 827 0.01
20.00 863 0.04 869 −0.72 864 −0.12
25.00 894 0.02 898 −0.45 895 −0.11
30.00 920 −0.04 921 −0.11 921 −0.11
35.00 943 −0.03 942 0.11 943 0.03
40.00 963 −0.12 960 0.21 963 −0.11
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(including oil bath, temperature sensor, pressure sensor, etc.),
phase equilibrium measurement unit (including photosensitive
resistance, light source, etc.), and density measurement unit.
Gas could be supercharged through the piston pump and

piston cylinder that are not shown in Figure 1. With the servo

motor to control the piston, the volume and pressure of visible
unit could be varied. The temperature of visible unit was
adjusted by the oil bath. The deviation caused by observation
could be minimized with the introduction of photosensitive
resistance that could vary accompanied by system turbidity.

Table 5. continued

x2 = 0.163

SRK EOS PC-SAFT EOS TS model

p (MPa)
ρcal

(kg·m−3)
ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

T = 338.15 K
45.00 981 −0.11 976 0.41 980 0.04

AAD
(%)

0.13 0.50 0.06

bias (%) 0.12 −0.02 0.00
SDV
(%)

0.11 0.76 0.08

RMS
(%)

0.15 0.71 0.07

x2 = 0.222

SRK EOS PC-SAFT EOS TS model

p (MPa)
ρcal

(kg·m−3)
ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

T = 308.15 K
15.00 981 −0.31 978 0.03 979 −0.10
20.00 1000 −0.33 995 0.22 998 −0.10
25.00 1016 −0.32 1011 0.21 1014 −0.11
30.00 1031 −0.29 1024 0.39 1029 −0.13
35.00 1044 −0.19 1037 0.48 1043 −0.12
40.00 1057 −0.19 1048 0.66 1055 0.04
45.00 1068 −0.19 1059 0.66 1067 −0.09

T = 318.15 K
15.00 948 −0.32 948 −0.32 944 0.11
20.00 969 −0.21 968 −0.10 966 0.12
25.00 988 −0.22 985 0.12 986 −0.01
30.00 1004 −0.11 1000 0.31 1002 0.11
35.00 1019 −0.14 1014 0.39 1018 −0.03
40.00 1033 −0.13 1027 0.48 1031 0.11
45.00 1045 −0.12 1039 0.48 1044 0.02

T = 328.15 K
15.00 913 −0.44 916 −0.77 909 0.03
20.00 937 −0.21 939 −0.43 935 0.01
25.00 958 −0.10 958 −0.10 957 −0.02
30.00 977 −0.10 976 0.02 976 −0.04
35.00 993 0.03 991 0.20 993 0.03
40.00 1008 0.01 1005 0.33 1008 0.01
45.00 1022 −0.03 1018 0.39 1022 −0.01

T = 338.15 K
15.00 876 −0.46 881 −1.03 873 −0.13
20.00 904 −0.22 908 −0.67 903 −0.11
25.00 927 −0.02 930 −0.32 928 −0.13
30.00 948 −0.00 950 −0.21 949 −0.11
35.00 967 0.01 967 −0.03 968 −0.10
40.00 983 0.11 982 0.22 984 0.02
45.00 998 0.10 996 0.30 1000 −0.10
AAD
(%)

0.16 0.35 0.06

bias (%) 0.15 −0.07 0.03
SDV
(%)

0.15 0.42 0.07

RMS
(%)

0.19 0.40 0.07

x2 = 1.000

SRK EOS PC-SAFT EOS TS model

p
(MPa)

ρcal
(kg·m−3)

ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

ρcal
(kg·m−3)

ΔYi ×
100

T = 308.15 K
15.00 1011 4.44 1040 1.70 1059 −0.10
20.00 1015 4.78 1048 1.69 1066 −0.03
25.00 1019 5.03 1055 1.68 1074 −0.09
30.00 1023 5.28 1061 1.76 1080 0.02
35.00 1026 5.52 1068 1.66 1087 −0.07
40.00 1030 5.68 1074 1.65 1093 −0.09
45.00 1033 5.92 1080 1.64 1098 0.01

T = 318.15 K
15.00 1000 4.67 1032 1.62 1049 0.03
20.00 1005 4.92 1040 1.61 1057 0.02
25.00 1009 5.17 1047 1.60 1064 0.02
30.00 1013 5.42 1054 1.59 1072 −0.09
35.00 1017 5.66 1060 1.67 1078 −0.04
40.00 1020 5.900. 1067 1.57 1084 −0.03
45.00 1024 6.06 1073 1.56 1090 −0.01

T = 328.15 K
15.00 989 4.81 1024 1.44 1040 −0.12
20.00 994 5.06 1032 1.43 1048 −0.13
25.00 998 5.4 1039 1.52 1055 −0.04
30.00 1003 5.56 1046 1.51 1063 −0.09
35.00 1007 5.8 1053 1.50 1070 −0.09
40.00 1011 6.04 1060 1.49 1076 0.03
45.00 1014 6.28 1066 1.48 1082 0.02

T = 338.15 K
15.00 978 5.05 1016 1.36 1030 0.01
20.00 983 5.30 1024 1.35 1039 −0.11
25.00 987 5.64 1031 1.43 1046 −0.04
30.00 992 5.79 1039 1.33 1054 −0.09
35.00 996 6.13 1046 1.41 1061 0.03
40.00 1001 6.19 1052 1.41 1068 −0.09
45.00 1005 6.42 1059 1.40 1074 0.01

AAD
(%)

5.26 1.54 0.05

bias (%) −5.26 −1.54 0.05
SDV
(%)

1.90 0.53 0.03

RMS
(%)

5.05 1.47 0.05

Overall

SRK EOS PC-SAFT EOS TS model

AAD (%) 1.75 0.92 0.10
bias (%) −1.59 −0.52 0.02
SDV (%) 1.10 1.09 0.13
RMS (%) 1.90 1.31 0.12

aUncertainty: u(T) = 0.05 K, u(p) = 0.02 MPa, and u(ρ) = 4.6 kg·
m−3.
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The density measurement unit includes a vibrating-tube
densimeter and evaluation unit (DMATM HPM and mPDS-5,
provided by Anton Paar Co., Ltd.), a pressure sensor, a
temperature detector, a computer, and a circulating pump. The
vibrating-tube densimeter is a U-shaped pipe made of
Hastelloy C-276 alloy. The density of as-detected fluid could
be thus decided by the relationship between oscillation period
and mass of vibrating tube.

The phase equilibrium device and density measurement unit
can bear a maximum temperature of 423 K and maximum
pressure of 50 MPa. The uncertainties of temperature,
pressure, and density measurement are ±0.05 K, ±0.02 MPa,
and 4.6 kg·m−3, respectively.

5.3. Method for Phase Equilibrium and Density
Measurement. The measurement method for phase tran-
sition pressure and density of the CO2 + acetic acid system is
listed herein. First of all, a certain amount of acetic acid was

Figure 2. Density−pressure curves of CO2 (1) + acetic acid (2) unitary and binary systems. Symbols represent experimental data from this work.
Solid and dash lines represent the density calculated using the SRK EOS and PC-SAFT EOS, respectively. The black, red, blue, and magenta dots
and lines represent temperatures of 308.15, 318.15, 328.15, and 338.15 K, respectively.
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added into the visible unit followed by high-pressure CO2 that
was introduced by a supercharging device. The mass of CO2 in
the visible device could be detected by the balance. After
temperature setting, the pressure of as-detected fluid was
modulated. When the system became bright and homogenous,
the pressure at the moment was just higher than that of its
phase transition point. Subsequently, the pressure was released
until phase separation occurred. The pressure of the phase
transition point could be exactly confirmed by the variation of
photosensitive resistance.
After the end of phase transition pressure measurement, the

circulating pump was opened to transport the fluid through the
vibrating-tube densimeter. Instantaneous density under differ-
ent temperature and pressure could be measured by the

mPDS-5 unit accompanied by a computer to evaluate and
detect.

5.4. Comparison with Results in the Reference.
Experimental data regarding the investigation of a CO2 +
acetic acid system under high pressure are very rare; thus, only
the density of the pure CO2 system would be compared herein.
From Figure 4, it could be found that the deviation of

experimental data and the ones in the reference59 is small with
an absolute average deviation (AAD) of 1.80%, which indicates
the reliability of this work.

5.5. Establishment of Experimental Conditions. This
work was based on the density and phase behavior
investigation by mixing a large amount of CO2 with a little
acetic acid. Here, 0.107, 0.163, and 0.222 of acetic acid molar
fraction were chosen. The temperature was controlled at

Table 6. ΔVm (cm3·mol−1) for CO2 (1) + Acetic Acid (2)
Binary Systems at Different Temperatures and Pressures

ΔVm (cm3·mol−1)

p (MPa) x2 = 0.107 x2 = 0.163 x2 = 0.222

T = 308.15 K
15.00 −4.805 −5.876 −6.440
20.00 −3.662 −4.498 −4.932
25.00 −2.957 −3.605 −3.935
30.00 −2.480 −3.031 −3.286
35.00 −2.230 −2.680 −2.893
40.00 −1.999 −2.391 −2.599
45.00 −1.665 −1.967 −2.136

T = 318.15 K
15.00 −7.160 −8.612 −9.273
20.00 −4.322 −5.423 −6.005
25.00 −3.486 −4.326 −4.803
30.00 −2.880 −3.567 −3.972
35.00 −2.441 −2.979 −3.304
40.00 −2.096 −2.579 −2.862
45.00 −1.822 −2.249 −2.443

T = 328.15 K
15.00 −10.865 −12.614 −13.337
20.00 −5.738 −7.236 −7.938
25.00 −4.011 −5.135 −5.728
30.00 −3.523 −4.357 −4.818
35.00 −2.692 −3.384 −3.785
40.00 −2.401 −2.976 −3.283
45.00 −1.866 −2.394 −2.670

T = 338.15 K
15.00 −16.788 −19.259 −19.861
20.00 −7.688 −9.655 −10.531
25.00 −5.008 −6.386 −7.142
30.00 −3.621 −4.720 −5.333
35.00 −2.815 −3.688 −4.181
40.00 −2.499 −3.194 −3.642
45.00 −2.016 −2.604 −2.966

Table 7. Specifications of Pure Components

reagent
CAS

number supplier
mass

fraction purification
analysis
method

CO2 124-38-9 Qingdao
Tianyuan
Gas Co., Ltd.

>0.9999 none GCa

acetic
acid

64-19-7 Guangdong
Xilong
Chemical
Co., Ltd.

>0.998 none GCa

aGas chromatography.

Figure 3. Schematic diagram of the high-pressure phase equilibrium
apparatus.

Figure 4. Relative deviations of comparison of density for the pure
CO2 system between measured data in this work and reference
values.59 [Reproduced in part from ref 51. Copyright 2020 American
Chemical Society]
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308.15, 318.15, 328.15, and 338.15 K. Meanwhile, it would
have significance for density measurement provided that the
pressure is higher than the miscibility pressure. Thus, pressure
was set as 15.00, 20.00, 25.00, 30.00, 35.00, 40.00, and 45.00
MPa.
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