
Genetic Epidemiology. 2021;45:685–693. www.geneticepi.org © 2021 Wiley Periodicals LLC | 685

Received: 10 February 2021 | Revised: 10 May 2021 | Accepted: 17 May 2021

DOI: 10.1002/gepi.22421

RE S EARCH ART I C L E

Genome‐wide association analysis of COVID‐19 mortality
risk in SARS‐CoV‐2 genomes identifies mutation in the
SARS‐CoV‐2 spike protein that colocalizes with P.1 of the
Brazilian strain

Georg Hahn1 | Chloe M. Wu2 | Sanghun Lee1,3 | Sharon M. Lutz1,4 |

Surender Khurana5 | Lindsey R. Baden6 | Sebastien Haneuse1 |

Dandi Qiao7,8 | Julian Hecker4,7 | Dawn L. DeMeo7,8 | Rudolph E. Tanzi9 |

Manish C. Choudhary7 | Behzad Etemad7 | Abbas Mohammadi7 |

Elmira Esmaeilzadeh7 | Michael H. Cho7,8 | Jonathan Z. Li7 |

Adrienne G. Randolph7,10 | Nan M. Laird1 | Scott T. Weiss7,8 |

Edwin K. Silverman7,8 | Katharina Ribbeck2 | Christoph Lange1,7,8

1Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
2Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
3Department of Medical Consilience, Graduate School, Dankook University, Yongin, South Korea
4PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard
Pilgrim Health Care Institute, Boston, MA, USA
5Food and Drug Administration, Silver Spring, Maryland, USA
6Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
7Harvard Medical School, Harvard University, Boston, Massachusetts, USA
8Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
9Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
10Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA

Correspondence
Georg Hahn, Department of Biostatistics,
T.H. Chan School of Public Health,
Harvard University, Boston, MA 02115,
USA.
Email: ghahn@hsph.harvard.edu

Funding information

National Heart, Lung, and Blood Institute,
Grant/Award Numbers: 2U01HG008685,
P01HL120839, P01HL132825,
U01HL089856, U01HL089897; NIH
Clinical Center, Grant/Award Numbers:
1R01AI154470‐01, 2U01HG008685;

Abstract

SARS‐CoV‐2 mortality has been extensively studied in relation to host sus-

ceptibility. How sequence variations in the SARS‐CoV‐2 genome affect patho-

genicity is poorly understood. Starting in October 2020, using the methodology

of genome‐wide association studies (GWAS), we looked at the association be-

tween whole‐genome sequencing (WGS) data of the virus and COVID‐19
mortality as a potential method of early identification of highly pathogenic

strains to target for containment. Although continuously updating our analysis,

in December 2020, we analyzed 7548 single‐stranded SARS‐CoV‐2 genomes of

COVID‐19 patients in the GISAID database and associated variants with
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mortality using a logistic regression. In total, evaluating 29,891 sequenced loci of

the viral genome for association with patient/host mortality, two loci, at

12,053 and 25,088 bp, achieved genome‐wide significance (p values of 4.09e−09

and 4.41e−23, respectively), though only 25,088 bp remained significant in

follow‐up analyses. Our association findings were exclusively driven by the

samples that were submitted from Brazil (p value of 4.90e−13 for 25,088 bp).

The mutation frequency of 25,088 bp in the Brazilian samples on GISAID has

rapidly increased from about 0.4 in October/December 2020 to 0.77 in March

2021. Although GWAS methodology is suitable for samples in which mutation

frequencies varies between geographical regions, it cannot account for mutation

frequencies that change rapidly overtime, rendering a GWAS follow‐up analysis

of the GISAID samples that have been submitted after December 2020 as in-

valid. The locus at 25,088 bp is located in the P.1 strain, which later (April 2021)

became one of the distinguishing loci (precisely, substitution V1176F) of the

Brazilian strain as defined by the Centers for Disease Control. Specifically, the

mutations at 25,088 bp occur in the S2 subunit of the SARS‐CoV‐2 spike protein,
which plays a key role in viral entry of target host cells. Since the mutations

alter amino acid coding sequences, they potentially imposing structural changes

that could enhance viral infectivity and symptom severity. Our analysis suggests

that GWAS methodology can provide suitable analysis tools for the real‐time

detection of new more transmissible and pathogenic viral strains in databases

such as GISAID, though new approaches are needed to accommodate rapidly

changing mutation frequencies over time, in the presence of simultaneously

changing case/control ratios. Improvements of the associated metadata/patient

information in terms of quality and availability will also be important to fully

utilize the potential of GWAS methodology in this field.
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1 | INTRODUCTION

Viral mutations can cause increased virulence/trans-
missibility/immune evasion/pathogenicity (Long et al.,
2020), both in animals (Brault et al., 2007; Geoghegan &
Holmes, 2018), and in humans (Bae et al., 2018; Nogales
et al., 2017). Especially for the SARS‐CoV‐2 virus, the
discovery of potential links between viral mutations
and disease outcome would have important implications
for COVID‐19 surveillance and containment (Lo &
Jamrozy, 2020), diagnosis, prognosis, and treatment de-
velopment. In this contribution, we probed each locus of
the single‐stranded RNA of the SARS‐CoV‐2 virus for
direct association with host/patient mortality.

In our initial analysis (October 2020), we aimed to
identify potential links between viral mutations and

mortality by utilizing the GISAID database (Elbe &
Buckland‐Merrett, 2017; Shu & McCauley, 2017). Al-
though continuously updating the analysis, in December
2020, GISAID contained data on 7548 COVID‐19 patients
from 86 countries for whom metadata was available, that
is, age, sex, location, and patient status, and whose viral
genomes are sequenced (see Table 1). The variable “pa-
tient status” indicates if the patient was alive or deceased
at the time the virus sample was submitted to GISAID;
we used it as a surrogate for mortality in our analysis.
As non‐deceased patients at enrollment could have died
of Covid‐19 later, such misclassifications can lead to
reduced statistical power, but not to an inflated type‐1
error. For the analysis, we repurposed the methodology
of genome‐wide association studies (GWAS)
(Manolio, 2010). This approach is widely used in human
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genetics and can test thousands of genetic loci for asso-
ciation in data sets such as the one of GISAID.

To identify potential confounding geographic factors
in the sequencing data, we first conducted principal
component analysis of the Jaccard similarity matrix
(Figure 1) that was computed for the 7548 viral genomes
available for our analysis. We utilized the Jaccard simi-
larity matrix because its computation does not require
estimates of the mutation frequency for each locus in the
SARS‐CoV‐2 genome, in contrast to other similarity ma-
trices such as the variance/covariance matrix (Prokopenko
et al., 2016). We found that the virus genomes clustered in
distinctive branches that correspond to the geographic
regions from where their data was submitted to GISAID
(Forster et al., 2020, Hahn, Lee, Weiss, et al., 2020) (see
Figure 1). Both, the geographical clustering of the viral
genomes and their similarity within regions, can cause
bias in the association analysis if unaccounted for. Hence,
we generated additional eigenvector plots to investigate
the number of eigenvectors needed to eliminate bias
caused by such clustering. Based on a visual inspection of
these plots, we selected the first 10 eigenvectors of the
Jaccard matrix as covariates for the following logistic re-
gression analyses.

2 | METHODS

2.1 | Data acquisition

The analysis presented in this article is based on
nucleotide sequences with accession numbers

EPI_ISL_403962 to EPI_ISL_636981, downloaded from
the GISAID database (Elbe & Buckland‐Merrett, 2017;
Shu & McCauley, 2017) as a file in “fasta” format on 06
December 2020. Only patients with additional metadata
(age, sex, and hospitalization status as plain text

TABLE 1 Characteristics of all patients in the GISAID data set for whom complete meta‐information and sequenced viral genomes
were available

Mutation frequency in
% at the following loci

Region #total #females #males
Deceased/
non‐ deceased %deceased Mean age 12,053 25,088

Entire data set 7548 3313 4235 722/6826 9.6 47.6 1.2 2.2

Africa 1517 954 563 2/1515 0.1 38.8 0.0 0.2

Eastern Mediterranean 730 180 550 131/599 17.9 45.4 0.0 0.1

Europe 1872 896 976 70/1802 3.7 56.0 0.1 0.0

Pan American Health
Organization

1505 637 868 435/1070 28.9 51.9 5.7 10.6

Brazil 430 223 207 192/238 44.7 55.1 20.0 37.0

South‐East Asia 1116 367 749 83/1033 7.4 45.1 0.0 0.1

Western Pacific 808 279 529 1/807 0.1 41.6 0.0 0.2

Note: Total number of samples (as well as males/females), numbers of deceased/non‐deceased, rate of deceased samples at enrollment, mean age, and mutation
frequencies for 12,053 and 25,088 bp.

FIGURE 1 Geographic distribution of 7548 SARS‐CoV‐2
genomes. Genomes are depicted according to their first two
eigenvectors of the Jaccard matrix and colored by geographic
region. The eigenvector plot shows distinct grouping of
SARS‐CoV‐2 genomes according to their geographic origin.
Furthermore, genomes that carry a mutation at 12,053 or 25,088 bp
are depicted by triangles. The majority of those are located in a
subbranch whose samples come predominantly from Pan America

HAHN ET AL. | 687



comments) were selected on GISAID, resulting in 8647
samples.

2.2 | Data cleaning

We filtered the 8647 samples for complete nucleotide
sequences and aligned them to the SARS‐CoV‐2 re-
ference sequence (published on GISAID under the ac-
cession number EPI_ISL_402124) using MAFFT (Katoh
et al., 2002).

Using the location tag in the fasta file, we grouped all
samples according to the WHO regional offices for Africa
(AFRO, N= 1517), for the Eastern Mediterranean
(EMRO, N= 730), for Europe (EURO, N= 1872), for
South‐East Asia (SEARO, N= 1116), for the Western
Pacific (WPRO, N= 808), as well as the Pan American
Health Organization (PAHO, N= 1505). In particular,
the countries included in each group are as follows: (1)
AFRO (Algeria, South Africa, Gambia, Nigeria, Senegal,
as well as Congo, Madagascar, Mozambique, Tunisia,
Ghana, Rwanda, Cameroon); (2) EMRO (Egypt, Mor-
occo, Kuwait, Lebanon, Oman, Saudi Arabia, United
Arab Emirates, as well as Iran, Iraq, Bahrain); (3) EURO
(Austria, Belgium, Bosnia and Herzegovina, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Faroe Is-
lands, France, Germany, Hungary, Italy, Israel, Poland,
Portugal, Romania, Russia, Slovakia, Spain, Sweden,
Turkey, Kazakhstan, as well as Andorra, Georgia, Nor-
way, Ukraine, Switzerland, Saint Barthelemy, Guade-
loupe, Saint Martin, Mongolia, Greece, Finland,
Moldova, Reunion); (4) PAHO (Canada, USA, Costa
Rica, Mexico, Argentina, Brazil, Chile, Colombia, Ecua-
dor, Peru, Venezuela, as well as Puerto Rico, Uruguay,
Panama, Dominican Republic); (5) SEARO (Bangladesh,
India, Indonesia, Myanmar, Nepal, Sri Lanka, Thailand);
(6) WPRO (Cambodia, Japan, Malaysia, Vietnam, Aus-
tralia, Guam, Hong Kong, China, Singapore, as well as
South Korea, Taiwan, New Zealand, Philippines).

Finally, we matched the samples to the metadata
information (age, sex, clinical outcome) available on
GISAID. Filtering for those samples having complete
metadata information resulted in n= 7548 samples.

2.3 | Data analysis

After alignment with MAFFT (Katoh et al., 2002), we
compared all aligned sequences of length p= 29,891 en-
trywise to the SARS‐CoV‐2 reference sequence, and de-
noted in a matrix X with an entry Xij= 1 that sequence i
deviated from the reference sequence at position j. All
other entries of X are zero.

We used the R‐package “locStra” (Hahn, Lutz,
Hecker, et al., 2020; Hahn, Lutz, & Lange, 2020) to cal-
culate the Jaccard similarity matrix (Jaccard, 1901;
Prokopenko et al., 2016; Schlauch et al., 2017; Tan
et al., 2005) for the n viral genomes based on the matrix
X. The Jaccard matrix J(X) has n rows and n columns,
and each entry (i,j) is the Jaccard similarity index be-
tween the binary vector of mismatches/mutations (with
respect to the reference sequence) for the ith and jth
SARS‐CoV‐2 genome in our data set. Computation of the
first 10 eigenvectors of the Jaccard similarity matrix J(X)
allows us to visualize the geographic clustering of the
viral genomes. We guard the logistic regression analysis
against confounding by including the first eigenvectors in
the regression analysis as covariates.

For the association analysis of the entire viral gen-
ome, we defined the response to be a binary indicator for
the clinical outcome, where we only distinguish between
all those patients/hosts whose hospitalization status tag
at enrollment into the GISAID database was listed as
“deceased” (outcome of 1) versus the remaining samples
as non‐deceased (outcome of 0). At this point, no other
information regarding clinical outcome is available in
GISAID.

We performed a logistic regression of the binary
outcome variable for each of the p= 29,891 loci on the
following covariates: the column vector X·i encoding the
mismatches/mutations of each sample at the ith location
on the SARS‐CoV‐2 nucleotide sequence, the patient's
age, sex, location (WHO region), and the first 10 eigen-
vectors of the Jaccard matrix. The WHO region was in-
cluded as we observed in Figure 1 that the viral genomes
cluster into distinct branches that correspond to the
geographic regions. The logistic regression was carried
out in R using the default “glm” command, where the
parameter “family” was set to “family=binomial(link =
“logit”).” We tested the ith locus/location of the viral
genome for association with mortality by testing whether
the regression coefficient for column X·i is equal to zero.
We controlled for multiple tests using the Bonferroni
correction at an uncorrected threshold of 0.05, resulting
in the corrected threshold of 0.05/29,891 = 1.67e−06.

To quantify unmeasured confounding, we computed
E‐values (VanderWeele & Ding, 2017) with the help of the
function “evalues.OLS” of the R‐package “EValue”
(Mathur et al., 2021) on CRAN. Conditional on the mea-
sured covariates, the E‐value is the minimum strength of
association (with both treatment and outcome) required
for an unmeasured confounder to fully explain a specific
treatment–outcome association. The E‐value is measured
on the risk ratio scale. A small (large) E‐value indicates
that small (considerable) amounts of unmeasured con-
founding is needed to explain an effect estimate.
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Finally, we also perform an analysis with a matched
data set. For this, we match each sample in GISAID that
is deceased at submission to the closest non‐deceased
one, measured in Euclidean distance in the eigenvector
space of the Jaccard matrix (Figure 1). When running the
logistic regression on the matched data set, we test each
of the p= 29,891 loci on the column vector X·i (encoding
the mismatches to the reference genome), as well as the
patient's age and sex only.

3 | RESULTS

After testing each locus (presence/absence of mutation)
of the viral genome individually for association with the
status indicator variable (deceased/non‐deceased) of
the host/patient at submission to GISAID, two loci of
the SARS‐CoV‐2 genome achieved genome‐wide sig-
nificance: one at position 12,053 bp with p value 4.09e
−09, and one at 25,088 bp with p value 4.41e−23
(Table 2). The E‐values for both loci are 715 and 6696,
respectively, hinting at the fact that a considerable un-
measured confounding would be needed to explain such
an effect estimate.

To investigate the robustness of the highly significant
association signals, we examined the data set at the in-
dividual patient and locus level. Our findings were en-
abled by two features specific to the data: (1) the
Brazilian centers reported much larger numbers of de-
ceased patients than the other centers world‐wide. At
enrollment, 44.7% of the Brazilian patients were deceased
in contrast to 9.6% in the entire data set (including
Brazil). (2) We also noticed that all genomes that carry at

least one of the mutations either at 12,053 or 25,088 bp
are located predominantly in the branch of the eigen-
vector plot (see Figure 1) that corresponds to the PAHO/
South America region.

We conducted two different types of sensitivity ana-
lyses to minimize the chances that the observed asso-
ciations are caused by confounding/GISAID data set
composition (Table 2): (1) Our data set was restricted to
genomes that were matched based proximity in the ei-
genvector plots (see Section 2 for details), called
“matching” in Table 2. (2) As further examination of the
deceased indicator variable revealed that all “deceased”
carrier genomes came from Brazil, our second sensitivity
analysis was restricted to genomes that were submitted
from the PAHO region and Brazil, respectively. In both
analyses, 25,088 bp maintained significance at 0.05/
29,891 = 1.67e−06, but 12,053 bp ceased to be significant.
The effect size estimates showed risk increases for mor-
tality of a factor of 5–16 for carriers of a mutation at
25,088 (Table 2). The E‐value for 25,088 bp in the Brazil
analysis is 3.0, that is, to move the confidence interval to
include the null, an unmeasured confounder that is as-
sociated with the Covid‐19 mortality and the presence of
the mutation at 25,088 by a risk ratio of 3.0‐fold each
could do so, but weaker confounding could not.

To summarize, all the results of the secondary analyses
(Table 2) support the genome‐wide significant association
between the mutation at 25,088 bp and mortality. The
large effect estimate and E‐value for the mutation at
25,088 bp (Table 2) are substantial in support of the as-
sociation, as it is difficult to imagine an unaccounted
confounding mechanism that would affect this mutation
among roughly 30k loci and that would be strong enough
to cause such profound association signals in our analysis.
Since the criteria for selection into the study likely varies
by country, and may be related to the deceased indicator,
the odds ratio estimate from the Brazil sample alone may
be most interpretable. Among the samples from Brazil,
18.2% of the patients whose viral genome did not carry any
mutation at either loci were deceased at enrollment,
compared with 82.4% for patients whose viral genomes
carried the mutation at 25,088 bp only.

As of December 2020, Table 1 also provides a regional
breakdown of the “deceased‐at‐enrollment” rates and the
mutation frequencies for both loci. The rarity of the
mutations outside of Brazil in December 2020 means that
there was virtually no power to detect any association (if
they existed).

It is important to note that locus at 25,088 bp colo-
calizes with the P.1 variant that has become part of the
CDC definition (precisely, substitution V1176F) of the
Brazilian strain in April 2021 (UCSC Genome Browser
on SARS‐CoV‐2, 2021).

TABLE 2 Sample size, number of deceased samples, as well as
p values and odds ratios from the logistic regression on the two
mutations: for the entire data set, for each WHO region, and for
samples from Brazil only

Analysis
Sample
size Deceased Locus p Value

Odds
ratio

Overall 7548 722 12,053 4.09e−09 6.4

25,088 4.41e−23 12.9

Matched
analysis

1452 722 12,053 5.53e−05 3.5

25,088 4.91e−11 4.8

PAHO 1505 435 12,053 1.22e−09 7.3

25,088 3.10e−24 15.9

Brazil 430 192 12,053 2.27e−04 3.5

25,088 4.90e−13 9.2
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4 | DISCUSSION

Single mutations in viruses can confer enhanced trans-
mission and/or virulence associated with patient mor-
tality (Bae et al., 2018; Brault et al., 2007). In our analysis
of SARS‐CoV‐2, the mutation at 25,088 bp occurs in the
spike glycoprotein, which mediates viral attachment and
cellular entry.

The spike protein consists of two functional subunits:
S1, which contains the receptor‐binding domain, and S2,
which contains the machinery needed to fuse the viral
membrane to the host cellular membrane. The mutation
at 25,088 bp is in the S2 subunit, and specifically occurs
within the S2′ site, which is cleaved by host proteases to
activate membrane fusion (Figure 2). The V1176F mu-
tation in S2 is located in the Heptad repeat 2 domain,
which is involved in the viral fusion machinery. In many
viruses, membrane fusion is activated by proteolytic
cleavage, an event which has been closely linked to
infectivity—for instance, a multibasic cleavage site is a
signature of highly pathogenic viruses including avian
influenza (Walls et al., 2020). In coronaviruses, mem-
brane fusion is known to depend on proteolytic cleavage
at multiple sites, including the S1/S2 site, located at the

interface between the S1 and S2 domains, and the S2′ site
located within the S2 domain. These cleavage events can
impact infection—in fact, a distinct furin cleavage site
present in the SARS‐CoV‐2 S1/S2 site is not found in
SARS‐CoV (Vankadari, 2020), and it is thought to in-
crease infectivity through enhanced membrane fusion
activity (Vankadari, 2020; Walls et al., 2020; Xia
et al., 2020). Consequently, mutations at these sites can
alter virulence—for instance, a recent study reported that
mutations disrupting the multibasic nature of the S1/S2
site affect SARS‐CoV‐2 membrane fusion and entry into
human lung cells (Hoffmann et al., 2020). Several studies
have also found that SARS‐CoV mutants with an added
furin recognition site at S2′ had increased membrane
fusion activity (Belouzard et al., 2009; Watanabe
et al., 2008). Although enhanced infectivity does not al-
ways cause a higher fatality rate, more infectious viruses
can lead to a higher viral load, which can impact
symptom severity and mortality (Pujadas et al., 2020).

All carriers of a mutation at 25,088 bp exhibit a G to T
missense mutation (Table 3), which changes the encoded
amino acid from valine to phenylalanine. Compared to
the branched chain structure of valine, phenylalanine
has a bulkier aromatic structure. Such a substitution may

FIGURE 2 Proposed model showing how the S2 mutation may enhance proteolytic activation. The SARS‐CoV‐2 spike protein is colored
by region (blue—S1, green—S2, magenta—S2′). The S2′ site is cleaved by host proteases, facilitating membrane fusion and viral entry into
host cells. A mutation in this region, depicted in yellow, could theoretically increase proteolytic activity and membrane fusion, thereby
causing greater infectivity

TABLE 3 Number of genomic
variants at each locus, affected protein
position, and corresponding amino acid
change

Locus A C G T Protein Position Primary substitution

12,053 0 7453 0 87 nsp7 71 Leu⟶ Phe

25,088 0 0 7331 166 Spike 1176 Val⟶ Phe

Note: Amino acid in the reference sequence in bold.
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impose local structural constraints, stabilize particular
secondary structures (Makwana & Mahalakshmi, 2015),
or introduce specific interactions which lead to pre-
ferential binding. Therefore, a mutation in the S2′ do-
main which promotes proteolytic cleavage could
theoretically enhance viral infectivity (Figure 2) and
consequently, patient mortality. Although many current
therapies primarily target the receptor binding domain
within the S1 subunit of the SARS‐CoV‐2 spike protein,
our findings suggest that the S2 domain may be an im-
portant additional target for therapeutic development.
The emergence of a more aggressive P.1 lineage carrying
this mutation was associated with a second wave of in-
fection across Brazil (Faria et al., 2021). Several modeling
approaches have estimated P.1 to have higher transmis-
sion and reinfection (Faria et al., 2021; Coutinho
et al., 2021, preprint), and there is evidence suggesting
that P.1 is less susceptible to therapeutic or vaccine‐
induced neutralizing antibodies (Hoffmann et al., 2021).
Further experimental characterization of the biological
effects of this mutations can have important implications
for SARS‐CoV‐2 treatment and containment.

The mutation at 12,053 bp occurs within the ORF1ab
gene, which expresses a polyprotein comprised of 16
nonstructural proteins (Yoshimoto, 2020). Specifically,
12,053 bp occurs in NSP7, which dimerizes with NSP8 to
form a heterodimer that complexes with NSP12, ulti-
mately forming the RNA polymerase complex essential
for genome replication and transcription. Mutations
causing enhanced viral polymerase activity have been
linked to increased pathogenicity of influenza viruses. All
carriers of a mutation at 12,053 bp exhibit a C to T mis-
sense mutation, which causes leucine to be substituted
for phenylalanine (Table 3). Such a mutation may confer
structural rigidity which could potentially alter interac-
tions with other components of replication and tran-
scription machinery, though experimental analysis is
needed to test these hypotheses.

From a methodological perspective, there are poten-
tial strengths to our GWAS analysis approach to se-
quenced SARS‐CoV‐2 genomes. As the independent
support of our association findings for the locus at
25,088 bp illustrates, GWAS methodology might be a
well‐suited tool for the early detection of new viral
strains in global database systems such as GISAID, to
which scientists submit their viral genomes during pan-
demics with minimal requirements regarding the meta/
clinical information about the host/patient. In general,
GWAS methodology would be suitable to analyze the
highly correlated viral genomes in such data sets, as the
GWAS approach can simultaneously handle different
subpopulations with different proportions of cases/
controls.

However, there are important limitations to applying
GWAS methodology in a pandemic. More transmissible
variants will alter mutation frequencies and increase the
case/control ratio, as occurred for these two variants.
Deployment of vaccines or targeted monoclonal anti-
bodies may exert immunologic pressure on the virus
leading to selective viral evolution. Standard GWAS
methodology assumes a stable mutation frequency and is
then no longer valid. Additional analytic methods are
required to adjust for a time‐changing variant frequency
but to fully utilize all viral genome sequences, the
availability and the quality of meta information/patient
information must be robust, using consistent outcome
definitions and accurate data capture.
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