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Abstract: The accurate measurement of slope displacement profiles using a fiber Bragg grating
flexible sensor is limited due to the influence of accumulative measurement errors. The measurement
errors vary with the deformation forms of the sensor, which dramatically affects the measurement
accuracy of the slope displacement profiles. To tackle the limitations and improve the measurement
precision of displacement profiles, a segmental correction method based on strain increments
clustering was proposed. A K-means clustering algorithm was used to automatically identify the
deformation segments of a flexible sensor with different bending shapes. Then, the particle swarm
optimization method was adopted to determine the correction coefficients corresponding to different
deformation segments. Both finite element simulations and experiments were performed to validate
the superiority of the proposed method. The experimental results indicated that the mean absolute
errors (MAEs) percentages of the reconstructed displacements using the proposed method for six
different bending shapes were 1.87%, 5.28%, 6.98%, 7.62%, 4.16% and 8.31%, respectively, which had
improved the accuracy by 26.83%, 18.94%, 29.49%, 26.35%, 7.39%, and 19.65%, respectively. Therefore,
it was confirmed that the proposed correction method was competent for effectively mitigating the
measurement errors and improving the measurement accuracy of slope displacement profiles, and it
presented a vital significance and application promotion value.

Keywords: FBG; displacement profiles measurement; segmental correction method; strain increments;
clustering algorithm

1. Introduction

Landslide is part of the most disastrous geological hazards, occurring due to rainfall, earthquake
load, steep slopes and human activities, and causing thousands of casualties, significant damage,
and economic loss [1,2]. In the Shuping landslide, in May 2004, approximately 163 families (around
580 people) were relocated. Recently, at least 10 people were killed and 22 others are missing after a
rain-triggered landslide buried mountain-side factories in northwestern Shaanxi province. Internal
horizontal displacements of slope can provide deformations at different depths and determine the
magnitude, rate, direction, depth, and type of landslide movement. Thus, it is important for researchers
to understand the deformation mechanisms of landslides, analyze the slope stability, provide an early
warning to the public, and protect lives and property [3,4].

In the past several decades, various geotechnical instruments and measurement methods have been
developed and adopted for measuring the internal displacements of slopes [5]. Traditional measurement
methods mainly consist of an inclinometer [6], linear variable differential transformers (LVDTs) [7],
an inductive displacement sensor [8], and multi-point extensometers [9]. A corresponding evaluation
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with respect to the slope stability can be implemented by analyzing displacement distributions
measured using the above sensors. In spite of this, it shows several disadvantages, including poor
moisture-proofness, signal loss for long distance transmission, poor durability, and the fact that
active devices require power supply, etc. As a particular class of sensors, fiber Bragg grating (FBG)
sensors have received much attention due to their prominent advantages, such as being immune
to electromagnetic noise, being waterproof, easy multiplexing, a negligible weight and size, high
precision, etc. [10,11]. A variety of FBG-based sensors [12], such as the FBG-segmented deflectometer,
FBG strain gauge and FBG tilt sensor, have been designed for the real-time measurement of different
mechanical parameters, including internal displacements, strains and inclination angles, etc., so as to
conduct a safety evaluation of slopes. Nevertheless, most of the aforementioned FBG sensors can only
monitor the parameters that are related to slope stability with the point-mode. They are inapplicable for
measuring the whole internal displacement profiles of the slope and for locating the sliding surfaces.

To tackle the above-mentioned limitations, some FBG-embedded flexible sensors that were
fabricated by integrating the FBG arrays into flexible substrates have been widely adopted to capture
the displacement profiles in the field of robotics, medical engineering, aerospace, infrastructure and
geotechnical engineering [13,14]. These FBG flexible sensors could be pre-installed in the structure
to be measured, utilizing shape reconstruction algorithms to reconstruct the displacement profile
distributions. The deformed shape reconstructions of flexible sensors are crucial to accurately measure
the structural displacement profiles. Bhamber et al. [15] and Xu et al. [16] adopted bidirectional
curvatures and a curve fitting algorithm to reconstruct the shapes of the robotic arm and soft surgical
actuator. Yi et al. [17] developed a shape reconstruction method based on spatial movable coordinates,
and realized the reconstruction of the flexible morphing wing shape. Derkevorkian et al. [18] utilized
strain information of the swept plate structure and a series of displacement transfer functions to estimate
the corresponding displacement fields. Kim et al. [19] investigated a deflection estimation technique
for measuring the shape of rotating blades, which was based on distributed strain information and a
displacement-strain transformation (DST) matrix obtained from the modal approach. Bang et al. [20]
created a finite element model based DST matrix for the estimation of wind turbine structures. In the
field of geotechnical engineering, researchers have studied shape sensing methods for measuring
displacement profiles in critical areas based on the FBG-embedded flexible sensors. Wang et al. [21]
fabricated an intelligent geogrid embedded with FBG sensors and employed a curvature-based
reconstruction method to estimate the displacements related to geotechnical engineering. Kim et al. [22]
utilized a regression analysis method to measure the deflection curves, and subsequently adopted
the method for the evaluation of bridge displacements. Li et al. [23] and Zhu et al. [24] established
strain-deflection relationships for FBG flexible rods, which were then used in physical model tests to
measure displacement profiles in an underground cavern group and dam. As far as monitoring the
internal displacements of slopes was concerned, Pei et al. [25] developed a new type of FBG-based
in-place inclinometer for slope monitoring according to the classical indeterminate beam theory. Guo
et al. [26] estimated the displacement profiles of the slope using the curvatures and deflection angles
detected by the FBG flexible sensor. The above scholars, with comprehensive insights in the field of
FBG shapes sensing, have propelled research forward, and the technology has advanced to achieve an
excellent performance in their respective application fields.

In practical applications, encounters with accumulative measurement errors are unavoidable
during the displacement profile reconstruction employing that abovementioned methods. This is due
to the temperature impacting the FBG points, the differences in the strain transfer rates, and the layout
intervals of FBG sensing points, etc. These inefficiencies can be overcome by using the suitable correction
method for correcting the reconstructed displacements, as well as by improving the measurement
accuracy. So far, some works have already made progress in the error analyses and corrections of shape
sensing. Sun et al. [27] experimentally calibrated the relationships between bending curvatures and
wavelength-shifts at each sensing point in order to reduce strain transferring errors, and adopted a linear
interpolation of the curvatures to improve the reconstruction accuracy of polyimide film deformations.
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Abayazid et al. [28–30] optimized the placement of sensing points and used the k-nearest neighbor
interpolation model to reconstruct the curvature functions, and the proposed methods were conducted
to improve the reconstruction precision of structural deformations. Zhang et al. [31] developed the least
mean square algorithm based parameter identification method and the construction of the dynamic
error analysis model, which has been employed to shape reconstructions and error analyses of space
plate structures. Wang et al. [32] investigated an in-situ calibrated deformation reconstruction method,
and improved the estimation accuracy of deformation fields effectively.

Although the correction methods being leveraged in the aforementioned studies have mitigated the
accumulative errors and improved the accuracy of measured displacement profiles, they corrected the
measured displacements without considering the diversity of deformation forms. It was found in the
author’s previous research [33] that the correction method depended highly on the deformation forms.
The displacements with a variety of deformed configurations cannot be universally corrected using
one established and unique correction coefficient. The best way is to determine the correction weights
for different bending shapes and then correct the reconstructed displacements accordingly. For the task
of the internal horizontal displacements monitoring in the slopes, the displacements to be measured
sometimes cover a long-distance range in the vertical direction. Furthermore, the displacements at
different depths of the slopes are extremely complex during the evolution process of landslides. As a
result, the internal horizontal displacements may have a variety of deformed shapes along dissimilar
positions of the slope. Therefore, the displacement profile sensing method and correction method
for monitoring the internal displacements should be able to automatically identify the deformation
segments with different bending shapes, and then correct the different deformation segments according
to the corresponding correction coefficients. Nevertheless, the methods of automatic identification of
deformation segments and segmental correction have seldom been studied. Therefore, the ultimate
goal of the current research is to develop a displacement profile reconstruction and correction method
dedicated to the FBG flexible sensor for the internal displacement profiles monitoring of the slope.

In this paper, we proposed a segmental correction method based on strain increment clustering
with the characteristics of self-correction displacement profile reconstruction, which had the ability
to identify and correct deformation segments automatically for different bending shapes of the
flexible sensor. Specifically, we calculated the strain increments at sensing points and extracted them
as eigenvalues to be clustered. Then the clustering algorithm was employed to cluster the strain
increments so that the deformation segments with different bending shapes of the flexible sensor
could be identified automatically. The correction coefficients of the deformation segments were
determined by calibrating the typical bending shapes of the sensor in the measurement of the slope
displacement profiles, and the optimization algorithm was adopted to determine their optimal values.
The remainder of the paper was organized as follows: in Section 2, the correction method of shape
sensing was explained in detail. Then, in Section 3, a finite element simulation was conducted to verify
the displacements sensing effects. Next, we conducted an FBG flexible sensor fabrication, experiment
and analysis in Section 4. Finally, Section 5 presents the concluding remarks.

2. Methodology

2.1. Reconstruction Based on Beam Element Decomposition Method

The flexible sensors for the slope displacement monitoring are mostly manufactured by flexible
structures embedded within FBG. FBG sensing points are deployed at equal intervals along the axis
of the flexible structures. It should be emphasized that the deformation displacements of the slope
are calculated according to the strain distributions measured by the quasi-distributed FBG sensing
points embedded in the flexible substrates. The flexible structures can be considered to be composed
of several beams with a length L and the end of each beam being called the measuring point.

As described in Figure 1, the beam is bent under the action of force F at the measuring point,
which can be modeled by the pure bending model in mechanical engineering [34,35]. The distance



Sensors 2019, 19, 3750 4 of 24

from the sensing point to the fixed end is L/2. According to material mechanics, the strain of the sensing
point can be expressed by:

∆ε =
FLZ
2EI

(1)

where E is the elasticity modulus, I is the inertia moment, and Z is the distance between the sensing
point and the neutral axis.
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Therefore, the deflection ω and rotation angle θ at the measuring point can be represented as: ω = FL3

3EI = 2L2

3Z ∆ε

θ = FL2

2EI = L
Z ∆ε

(2)

In a geometric coordinate system, the fixed end coordinate of the first beam is O (0, 0) and the
tangent direction is y-axis, as shown in Figure 2.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 24 

 

composed of several beams with a length L and the end of each beam being called the measuring 
point. 

As described in Figure 1, the beam is bent under the action of force F at the measuring point, 
which can be modeled by the pure bending model in mechanical engineering [34,35]. The distance 
from the sensing point to the fixed end is L/2. According to material mechanics, the strain of the 
sensing point can be expressed by: 

Δ
2
FLZε

EI
=  (1) 

where E is the elasticity modulus, I is the inertia moment, and Z is the distance between the sensing 
point and the neutral axis. 

 
Figure 1. Measurement mechanism of each of the beam. 

Therefore, the deflection ω and rotation angle θ at the measuring point can be represented as: 
3 2

2

2 Δ
3 3

Δ
2

FL Lω ε
EI Z

FL Lθ ε
EI Z


= =


 = =

 (2) 

 

In a geometric coordinate system, the fixed end coordinate of the first beam is O (0, 0) and the 
tangent direction is y-axis, as shown in Figure 2. 

1

1

i

n
n
θ

−

=


 
Figure 2. The schematic diagram of the beam element decomposition method. 

The horizontal displacement of the first beam at the measuring point is: 

=x ω1 1  (3) 

When i ≥ 2, for the i-th beam, the horizontal displacement of the measuring point consists of 
three parts: the measuring point displacement of the (i−1)-th beam xi-1, the sum of the rotation angles 
of the (i−1)-section beams induce the displacement xiR, and xiω is produced by the deflection ωi of the 
i-th beam. xiR and xiω are represented as: 

Figure 2. The schematic diagram of the beam element decomposition method.

The horizontal displacement of the first beam at the measuring point is:

x1 = ω1 (3)

When i ≥ 2, for the i-th beam, the horizontal displacement of the measuring point consists of three
parts: the measuring point displacement of the (i−1)-th beam xi−1, the sum of the rotation angles of the
(i−1)-section beams induce the displacement xiR, and xiω is produced by the deflection ωi of the i-th
beam. xiR and xiω are represented as: 

xiR = L · sin
i−1∑

n = 1
θn

xiω = ωi · cos
i−1∑

n = 1
θn

(4)
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According to the above description, we can obtain the following formulas:
x1 = ω1 i = 1

xi = xi−1 + L · sin
i−1∑

n = 1
θn +ωi · cos

i−1∑
n = 1

θn i > 1
(5)

Therefore, the displacements of the measuring points will be deduced from the strain values
measured by the FBG sensing points. It should be emphasized that the rigidity of the flexible rod
is consistent with or less than that of the whole soil environment medium in the slope where the
flexible rod is located. Thus, it can be considered that the deformation of the flexible rod reflects the
displacements distributions at different depths of the slope.

2.2. Correction Method

The shape reconstruction algorithm based on a beam element decomposition method has the
ability to calculate the bending shapes of the FBG flexible sensor. However, the occurrence of
accumulative errors during the deformed shapes reconstruction is inevitable, and the larger the
measurement range, the more serious the accumulative errors are. Additionally, the displacements to
be measured sometimes cover a long-distance range in the vertical direction for the internal horizontal
displacements monitoring in the slopes. Furthermore, the displacements at different depths of the
slopes are extremely complex during the evolution process of landslides. As a result, the internal
horizontal displacements may have a variety of deformed shapes along dissimilar positions of the
slope. Therefore, the correction utilizing unified coefficient can hardly guarantee the measurement
accuracy for the diversity of deformation forms.

To tackle this problem, a segmental correction method based on strain increment clustering with the
characteristics of self-correction displacement profiles reconstruction was proposed, which had ability
to automatically identify different deformation segments and correct the reconstructed displacements
of each segment accordingly. Specifically, we calculated the strain increments at sensing points and
extracted them as eigenvalues to be clustered. Then, the clustering algorithm was employed to cluster
the strain increments so that the deformation segments with different bending shapes of the flexible
sensor could be identified automatically. The correction coefficients of the deformation segments were
determined through calibrating the typical bending shapes of the sensor in the measurement of the
slope displacement profiles, and the optimization algorithm was adopted to determine their optimal
values. The specific scheme is as follows.

2.2.1. Categories of Internal Displacements

The internal horizontal displacements of the slope can provide information on the below-ground
movement and can serve to detect the position of the sliding surfaces, which are crucial to understand
the possibility of the occurrence and mechanism of landslide events. It is necessary to lay flexible sensors
in the places where deformation may occur according to the actual geographical location to effectively
monitor the internal displacement of the slope. In the process of FBG flexible sensor placement, firstly,
drilling is carried out in the slope, and the casing with the same material of flexible substrate is embedded
in the borehole. Then, the outer periphery of the casing is grouted with cement mortar. Next, the FBG
flexible sensor is placed in the casing [36,37]. With the protection of the casing, even if the shear strains
around the FBG flexible sensor are large, this will not cause the plastic deformation of the whole sensor
structure. Meanwhile, it avoids direct contact with the backfill, which may cause potential damage to the
FBG sensing points. The casing and flexible substrate are the same material, which can achieve a better
mechanical matching. The FBG flexible sensor is installed vertically in a slope borehole and traverses
the potential sliding zones to the bottom (see Figure 3a). The bottom of the flexible sensor is considered
fixed, and the deformation sensing mechanism is similar to that of a cantilever beam. The shear force
of the internal soil is altered as a result of rainfall, groundwater, earthquake load, overload and other
factors, which eventually trigger the landslide. According to the thickness of the landslide, it can be
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divided into a shallow landslide, middle landslide and deep landslide. The deformed shapes of the
flexible sensor have diversified characteristics because multiple sliding surfaces may occur at different
depths of the slope, and the displacements of the active sliding zone and passive sliding zone are
different. As shown in Figure 3b, the bottom displacements of the slope are basically unchanged, and
the displacements in the active sliding zones are larger, while the displacements in the passive sliding
zone are smaller. It is found that although the flexible sensor has many different bending shapes, they
can be categorized into three classes based on the strain increments at the sensing points. In Class I, the
strain increments at the sensing points are positive, while the negative strain increments at the sensing
points are Class II, and the strain increments hardly changed in Class III. The displacements of the
measuring points are calculated based on the strain values measured by the FBG sensing points. If the
strain value of the sensing point remains untouched, the beam where the sensing point is located will
not produce a deflection displacement. Thus, only the strain values of the sensing points at Classes I
and II are corrected, but the strain values of Class III are not corrected. A clustering method based on
strain increments has been proposed according to the above analyses.
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2.2.2. A Clustering Method Based on Strain Increments

The strain increments at the sensing points are clustered, achieving the goal of segmental correction
for different bending shapes of the flexible sensor. We assume that we start from the fixed end of the
flexible sensor and the definition of the strain increment as the strain variation of the i-th sensing point
relative to the (i−1)-th sensing point. Specifically, central wavelengths of the FBG sensing points are
collected using an FBG demodulator, and Equation (9) is applied to convert the wavelength variations
to the strain values Si. Then, we calculate the strain increment Ai at each FBG sensing point. When
i > 1, Ai = Si − Si−1; when i = 1, A1 = A2. We determine whether |Ai| is greater than 10−5, and if so,
Ai remains unchanged; if not, make Ai = 10−6. The demodulation precision of the FBG interrogator
is 1 pm, which is equivalent to about 1 micro-strain. The absolute values of all strain increments
under 10 micro-strains are regarded as constant to increase fault tolerance. For further convenience
of calculation, the points with constant absolute values of strain increments are assigned as 10−6.
The strain increments at the sensing points are clustered directly, and will result in clustering errors
because of the inflection points of the strain values.

To eliminate clustering errors caused by inflection points, the strain incremental ratio Bi at each
FBG sensing point is calculated. When i > 1, Bi = Ai/Ai−1; when i = 1, make B1 = B2. Then, we
determine the number of |Bi| > 10 or |Bi| < 0.1, which is equal to the number of inflection points.
The strain increments of the same categories change slightly, so the strain incremental ratios are on
the brink of 1. The inflection points change the variation trend of the strains at the sensing points.
The strain value at the inflection point is the maximum value, where the absolute value of the strain
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incremental ratio is less than 0.1. While the strain value at the inflection point is the minimum value,
the absolute value of the strain incremental ratio at this point is greater than 10. The strain increment
Ai at the inflection point is replaced by Ai+1. The new obtained strain increments are clustered based
on an intelligent clustering algorithm, and the bending shapes of the flexible sensor are divided into
different deformation segments. The strain values of the different deformation segments are corrected
by corresponding correction coefficients. The bending shapes of the flexible sensor are reconstructed
by the beam element decomposition method and the corrected strains.

2.2.3. Cluster Algorithm and Optimization Algorithm

The K-means clustering algorithm is adopted to intelligently cluster deformation segments
under different bending shapes of the flexible sensors in this research study. K-means clustering is a
classical clustering algorithm and the widely applicable one, developed by Mac Queen in 1967 [38].
This method is a local clustering algorithm that divides the whole dataset into K disjoint clusters.
We determine whether there are points where |Ai| are less than 10−5, and if not, we make K = 2; if so,
we determine whether the number of inflection points is greater than 1, and if so, we make K = 3;
if not, we make K = 2. We distribute each data point to the nearest cluster based on the Euclidean
distance matrix. The clustering results obtained by this algorithm are marked by small sample distances
within the clusters and large sample distances between the clusters. Compared with conventional
popular clustering algorithms, this algorithm has the characteristics of a fast convergence to a local
optimum and sizable amount of datasets processing. The different deformation segments of the
flexible sensor are clustered automatically based on the K-means algorithm, and the corresponding
correction coefficients are automatically selected for the different segments. The process of calculating
the correction coefficients is described as follows.

We assume that the actual horizontal displacements of the measuring points are XRi, with I = 1, 2,
. . . , n. The calculation displacements based on the corrected strain values k·∆ε and the reconstruction
algorithm are XCi (k). Thus, the mean absolute errors (MAEs) of the measuring points are calculated in
accordance with the following formula:

MRE =
1
n

n∑
i = 1

∣∣∣XCi(k) −XRi
∣∣∣ (6)

The actual horizontal displacements of the measuring points are taken as the benchmark, and the
MAEs are minimized as the optimization objective. The particle swarm optimization (PSO) method is
adopted to define the correction coefficients k for different deformation segments. A detailed formula
description of PSO was presented in [39]. In 1995, the PSO algorithm was developed by Eberhart based
on animal behaviors such as fish schooling and birds flocking, and it has the advantages of simplicity,
a fast convergence speed and fewer parameters. The PSO algorithm includes two equations. The first
equation involves updating the position of the particle:

xi(t + 1) = xi(t) + vi(t + 1) (7)

The second equation involves updating the velocity of a particle:

vi(t + 1) = wvi + C1r1(pi
best(t) − xi(t)) + C2r2(Gbest − xi(t)) (8)

where xi (t) and xi (t + 1) express the position vectors of particle i at time t and t+1, respectively;
v represents the velocity vector of the particle, and w is the inertia weight parameter that indicates the
impact of the previous velocity; C1 and C2 represent the acceleration coefficients, which are called the
cognition learning factor and the social learning factor, respectively; r1 and r2 are random numbers in
the range of [0,1], and pi

best(t) and Gbest represent the local best and the global best, respectively. Each
particle has a velocity vector and its physical location in space. In the process of motion, the particle
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can remember the local best position pi
best(t) and communicate with other particles to find the global

best position Gbest. The algorithm determines the fitness of each particle by iteration based on the
objective function. The global best position can be achieved when the objective function is minimized.
Therefore, the corresponding correction coefficients in different deformation segments can be obtained
by using the PSO optimization algorithm. The specific flow chart was given in Figure 4.
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Figure 4. Flow chart of the segmental correction method based on strain increments at sensing points.

3. Simulation Verification

In this paper, a finite element method was applied to simulate the bending shapes of the FBG
flexible sensor, and the effects of displacement sensing that had been adopted in unified correction
and segmental correction were compared. To remain consistent with the flexible sensor of plate-like
structure used in the experiment, a slender plate model with a length of 1900 mm, a width of 10 mm and
a thickness of 2 mm was established, as shown in Figure 5a1,b1,c1. The initial end surface (the bottom of
the slender plate model) central coordinates were O (0, 0, 0), and the slender plate model was divided
into 19 segments along the y-axis (length direction). Each segment was to be regarded as a beam
element of the FBG flexible sensor. The slender plate material was epoxy resin, and its mechanical
property parameters were listed in Table 1. In this study’s simulation, the slender plate model had a
total of 18,785 meshes with minimum unit masses of 0.2418. After that, with consideration given to the
geometrical nonlinearity of the material applied in the simulation, an elastic model was selected.

Table 1. Mechanical property parameters of epoxy resin materials.

Parameters Values

elasticity modulus 24 GPa
shearing modulus 8.7 GPa

mass density 1950 Kg/m3

tensile strength 300 MPa
Poisson ratio 0.38
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Figure 5. Demonstration of the simulation results of the slender plate model under different loading 
modes. (a1), (b1) and (c1) represented the simulation diagrams for Type 1, Type 2 and Type 3, 
respectively; (a2), (b2) and (c2) represented the displacements contrast of the measuring points for 
Type 1, Type 2 and Type 3, respectively. 
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monitoring the internal displacements of the slope. For Type 1 (Figure 5a1), the displacements of the 
slender plate model (from the bottom to the 7-th measuring point) were constrained to zero. 100 mm 
and 0 mm displacements were exerted along the x direction at (−1, 1300, 0) and (−1, 1900, 0), 

Figure 5. Demonstration of the simulation results of the slender plate model under different loading
modes. (a1), (b1) and (c1) represented the simulation diagrams for Type 1, Type 2 and Type 3,
respectively; (a2), (b2) and (c2) represented the displacements contrast of the measuring points for
Type 1, Type 2 and Type 3, respectively.

A displacement constraint was fixed on the bottom of the slender plate, and three different types of
displacements were exerted to simulate the possible bending shapes of the flexible sensor in monitoring
the internal displacements of the slope. For Type 1 (Figure 5a1), the displacements of the slender
plate model (from the bottom to the 7-th measuring point) were constrained to zero. 100 mm and
0 mm displacements were exerted along the x direction at (−1, 1300, 0) and (−1, 1900, 0), respectively.
For Type 2 (Figure 5b1), the displacements (from the 8-th measuring point to the 11-th measuring
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point) were constrained to zero. The displacements were imposed on the slender plate at (−1, 400, 0),
(−1, 1500, 0) and (−1, 1900, 0) along the x direction, respectively, and the displacement values were
100 mm, 80 mm and 0 mm, respectively. For Type 3 (Figure 5c1), −100 mm and 0 mm displacements
were exerted along the x-axis at (−1, 400, 0) and (−1, 800, 0), respectively.

Considering the practical engineering application, for the task of internal horizontal displacements
monitoring in the slopes, the displacements to be measured sometimes cover a long-distance range in
the vertical direction. To simulate this circumstance, a slender plate model of epoxy resin material
with a length of 10,000 mm, width of 10 mm and thickness of 2 mm was also simulated. Its bending
shapes were represented in Figure 6a1,b1,c1. For Type 4 (Figure 6a1), 1000 mm, 500 mm, 750 mm and
50 mm displacements were applied along the x-axis at (−1, 4000, 0), (−1, 6000, 0), (−1, 8000, 0) and
(−1, 10,000, 0) on the slender plate model, respectively. Meanwhile, the displacements from the bottom
to the 20-th measuring point were constrained and remained unchanged. For Type 5 (Figure 6b1), we
applied 1000 mm, 100 mm, 300 mm and 1000 mm displacements along the x direction at (−1, 2000, 0),
(−1, 5000, 0), (−1, 6500, 0) and (−1, 10,000, 0), respectively. For Type 6 (Figure 6c1), the displacements
of two regions (from the bottom to the 15-th measuring point and from the 40-th measuring point
to the 50-th measuring point) were constrained to zero and 80 mm, respectively. Meanwhile, the
displacements were imposed to the slender plate model at (−1, 2500, 0), (−1, 6500, 0), (−1, 7500, 0) and
(−1, 10,000, 0) along the x direction, respectively, and the displacement values were 180 mm, 300 mm
120 mm and 280 mm, respectively.
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Figure 6. Demonstration of the simulation results of the slender plate model under different loading
modes. (a1), (b1) and (c1) represented the simulation diagrams for Type 4, Type 5 and Type 6,
respectively; (a2), (b2) and (c2) represented the displacements contrast of the measuring points for
Type 4, Type 5 and Type 6, respectively.

For the six typical bending shapes, the strain values in the coordinate points of Si (−1, 50 + 100 × i, 0)
with i = 0, 1... m were extracted from the slender plate model. Meanwhile, the displacements in the
coordinate points of Pj (−1, 100 × j, 0) with j = 1, 2, ..., n were extracted as the standard displacement
values. For Types 1, 2 and 3, m and n were 18 and 19 respectively, while for Types 4, 5 and 6, m and n
were 99 and 100, respectively. By using the standard displacement values of the measuring points as the
benchmark, the optimization goal was to minimize the MAEs between the reconstructed displacements
and actual displacements at each measuring point. Different deformation segments under each typical
bending shape of the slender plate were categorized into different classes by using the K-means
clustering algorithm. Then, a PSO optimization algorithm was adopted to calculate the correction
coefficients for different classes and define the unified correction coefficient of the overall deformation
as a comparison at the same time. The correction coefficients for Class I and Class II were determined
to be k1 = 0.96 and k2 = 1.07, respectively, and the unified correction coefficient was k0 = 1.02. To be
clear, the correction coefficients (k1, k2, and k0) were the average values under three bending shapes
(Type 1, 2 and 3). These correction coefficients were also employed in Types 4, 5 and 6 to contrast the
displacement sensing effects under different methods.

To obtain the displacements of the measuring points under different bending shapes, the strain
values which had been extracted were employed for the reconstruction of the different bending shapes
of the slender plate via the shape reconstruction algorithm. Figures 5a2,b2,c2 and 6a2,b2,c2 displayed
the contrast between the displacements of the measuring points before and after the corrections, as well
as the actual displacements under the different bending shapes. It can be seen that, having been
influenced by multiple factors (such as the accumulated errors of the measuring points), there were
certain errors between the initial reconstructed displacements and the actual displacements. It was
observed for Types 2, 3, 4 and 5 that the absolute errors of the measuring points away from the fixed end
(the bottom of the slender plate) had gradually increased (with maximum errors of 31.87 mm, 56.38 mm,
62.76 mm and 71.52 mm, respectively), and both were located at the last measuring point. However, for
Types 1 and 6, the measuring points with the maximum absolute errors were located in the 10-th, and
16-th points, with absolute error values of 20.78 mm and 40.08 mm, respectively. This was determined
to be due to the fact that the displacement errors of the measuring points displayed the phenomena of
positive and negative error offsets. It was obvious that the initial reconstructed displacements of the
measuring points had larger errors for each type.

Figure 7 depicted the MAEs of the measuring points under three modes of initial reconstruction,
unified correction and segmental correction. The extracted strain values for each bending shape
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were corrected by the unified coefficient, and the MAEs of the measuring point demonstrated larger
differences. For instance, for Types 1, 2, 4 and 5, the MAEs of the corrected measuring points were
decreased by 2.89 mm, 0.93 mm, 9.24 mm and 0.23 mm, respectively, compared with those before the
correction. Nevertheless, for Types 3 and 6, the MAEs of the measuring points were augmented by
unified corrections, which were 2.97 mm and 2.43 mm, respectively. Therefore, this fully testified to
the fact that it was not competent to use the unified correction method to correct different bending
shapes. However, the absolute errors of the six bending shapes had been determined to decline
significantly after the strain values of different deformation segments for each bending shape were
corrected by the segmental coefficients. The MAEs of Types 1, 2, 3, 4, 5 and 6 after the segmental
corrections were 3.22 mm, 3.90 mm, 12.76 mm, 9.8 mm, 11.3 mm and 8.19 mm, respectively. The MAEs
had dwindled by 6.55 mm (Type 1), 8.27 mm (Type 2), 9.13 mm (Type 3), 17.74 mm (Type 4), 14.1 mm
(Type 5), and 13.14 mm (Type 6), respectively, following the segmental corrections. The segmental
correction coefficients determined by Types 1, 2, and 3 were also applied to Types 4, 5, and 6 with good
correction performances. The segmental coefficients correction showed its advantages in correcting
the displacement errors of the measuring points with different bending shapes when compared with
the unified coefficient correction. These findings indicated that the segmental correction method
had the ability to improve the displacement accuracy of the measuring points with different bending
shapes, which confirmed that it was necessary and feasible to use segmental correction for the various
bending shapes.
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Figure 7. Comparison of MAEs based on different methods under six bending shapes. 

4. Experimental Section and Analyses 

4.1. Design of the FBG Flexible Sensor 

The operability and convenience of the experiment were considered, and an FBG flexible sensor 
with a plate-like structure was designed in the experiment. As shown in Figure 8, to fabricate the 
sensor, an epoxy resin plate was adopted as a flexible substrate, which had the characteristics of a 
high strength, corrosion resistance, and high temperature resistance. The flexible plate length was 
1900 mm, the width was 10 mm and the thickness was 2 mm, which could recover the original shape 
after many measurements, so as to obtain a good repeatability for the displacements measurement. 
The FBG sensing points were symmetrically attached on the front side surface and rear side surface 
along the central axis using a commercial adhesive. The intervals between the adjacent FBG sensing 
points were 100 mm, and FBGs were manufactured using the phase mask technology by Suzhou 
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4. Experimental Section and Analyses

4.1. Design of the FBG Flexible Sensor

The operability and convenience of the experiment were considered, and an FBG flexible sensor
with a plate-like structure was designed in the experiment. As shown in Figure 8, to fabricate the
sensor, an epoxy resin plate was adopted as a flexible substrate, which had the characteristics of a high
strength, corrosion resistance, and high temperature resistance. The flexible plate length was 1900 mm,
the width was 10 mm and the thickness was 2 mm, which could recover the original shape after many
measurements, so as to obtain a good repeatability for the displacements measurement. The FBG
sensing points were symmetrically attached on the front side surface and rear side surface along the
central axis using a commercial adhesive. The intervals between the adjacent FBG sensing points were
100 mm, and FBGs were manufactured using the phase mask technology by Suzhou NanZee Sensing
Technology Co., Ltd., Suzhou, China. The detailed parameters were set out in Table 2. In practical
engineering applications, the flexible substrate surface is grooved along the axis, and then the FBG
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sensors are fixed in the grooves. Besides, the outer part of the FBG flexible sensor is protected by a
casing. These measures and methods maximize the protection of the sensing points and ensure the
accuracy of the strain transmission.

Table 2. The detailed parameters of the fiber Bragg grating (FBG) sensing points.

Parameters Description

fiber type single mode fiber
grating length 10 mm

bandwidth 3 dB <0.2 nm
side lobe suppression ratio >15 dB
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Figure 8. Schematic diagram of the FBG flexible sensor. (a) Side view of the sensor; (b) Front view of
the sensor.

4.2. Temperature Sensing Experiment

The flexible plate was divided into 19 beam elements by the FBG sensing points. When the flexible
sensor was bent, the sensing point 1 and sensing point 2 (see Figure 8a) would respectively be stretched
and compressed because the sensing points were symmetrically placed on both sides of the beam
element. Thus, the bending-induced wavelength shifts of the two sensing points were identical in the
opposite direction. Meanwhile, the temperature-induced wavelength shifts demonstrated the same
direction. Therefore, the strain differences between the two sensing points on each beam element were
used to eliminate the influence of the temperature. Then, the strain value could be calculated as:

∆ε =
1
2
(∆ε1 − ∆ε2) =

1
2(1− Pe)

(
∆λ1

λ1
−

∆λ2

λ2
) (9)

In engineering applications, the FBG flexible sensor is buried inside the slope, and the temperature
around the sensor varies greatly throughout the year. Therefore, it is required for the sensor to have
the ability to conduct a temperature self-compensation to avoid measurement deviations caused by
temperature. A temperature sensing experiment was performed at room temperature for the fabricated
FBG flexible sensor. The sensor was in a free state, and a four-channel FBG demodulation instrument
SM130 (MOI) was employed to collect the central wavelength of each sensing point, whose wavelength
measurements ranged from 1510 nm to 1590 nm with a demodulation precision of 1 pm. The central
wavelengths of all FBG sensing points were recorded in real time from 8 a.m. to 8 p.m. The central
wavelength variations of two sensing points on one of the beam elements were shown in Figure 9.
The central wavelength maximum variations of the sensing point 1 and sensing point 2 were 68 pm
and 73 pm, respectively. It was evident that temperature fluctuations could cause measurement errors.
However, the differences of the central wavelength variations between the two sensing points were
concentrated near zero, and the maximum fluctuation was only 6 pm. In addition, the maximum
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fluctuation values of the difference between the central wavelength variations of the two sensing points
on the other beam elements were in the range of 10 pm. Therefore, it could be considered that the
flexible sensor achieved an excellent performance in terms of temperature self-compensation.
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4.3. Experimental Validations of the Proposed Correction Method

To verify the feasibility and effectiveness of the segmental correction method based on the strain
increments at the sensing points, the displacements calibration experiment was implemented in this
study. Figure 10 displays the experimental setup. One end of the FBG flexible sensor was fixed on the
calibration platform with coordinate paper (cell: mm2). The coordinate of the fixed point on side A was
O (0, 0), and the coordinates of each measuring point on side A were Pi (0, 100 × i), with i = 1, 2, . . . ,
19. The tail fiber was connected to the SM130, and the central wavelength data of the all FBG sensing
points collected by the SM130 demodulation were transmitted to the computer via a network cable.
Then, the displacements were exerted to the different locations of the sensor for the formation of the
different bending shapes, and the displacements of each measuring point were detected by electronic
digital caliper (resolution: 0.01 mm). It should be noted that the wavelengths of the sensing points
on side B minussymmetrical the wavelengths of the sensing points on side A, which was adopted to
achieve the purpose of eliminating the influence of temperature.
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Figure 10. Schematic diagram of the experimental facility.

The experiment was conducted on three typical bending shapes of the FBG flexible sensor that
may occur in the engineering application, and three different sizes of displacements were applied
to each type. Type 1 (Figure 11a) included middle landslides and deep landslides. To simulate the
bending shapes of the flexible sensor for Type 1, three different sizes of displacements were applied to
the sensor at (0, 1000) and (0, 1900) along the x direction, at 178.72 mm/15.34 mm, 237.2 mm/38.36 mm,
and 278.06 mm/55.47 mm, respectively. Mainly middle landslides and a deep horizontal displacement
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remained essentially unchanged and were expressed in Type 2 (Figure 11b). Thus, the displacements
were subjected along the x-axis at (0, 1600) and (0, 1900), at 134.18 mm/−10.05 mm, 158.61 mm/−8.14 mm,
and 178.17 mm/−5.42mm, respectively, while at the same time the displacements from the measuring
point 1 to measuring point 7 remained basically unchanged. Shallow landslides and deep landslides
occurred in Type 3 (Figure 11c) and the middle belonged to the passive sliding zone. In the course of
the experiment, the displacements were exerted on the sensor at (0, 700), (0, 1500) and (0, 1900) along
the x direction, respectively, and the displacement values in the three cases were 162.48 mm/−8.26 mm/

172.12 mm, 195.04 mm/−19.19 mm/224.12 mm, and 215.07 mm/−25.14 mm/174.49 mm, respectively.
For the displacement values in the three cases for each bending shape, three repetitions were performed
in each case. Then, SM130 was employed to collect the central wavelength data of each sensing
point on both sides of the flexible sensor. The actual displacement values were achieved using an
electronic digital caliper when the displacements were stable. A displacement case was randomly
selected for each bending shape, and the average of three repetitive experimental data values was
taken. The displacements of the measuring points and micro-strains of the sensing points for each type
were illustrated in Figure 12a1,b1,c1.
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Figure 11. Schematic diagram of the different bending shapes of the FBG flexible sensor under different
loading modes. (a) shows middle landslides and deep landslides; (b) shows mainly middle landslides
and a deep horizontal displacement remained essentially unchanged; (c) shows shallow landslides and
deep landslides.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 24 

 

displacements were subjected along the x-axis at (0, 1600) and (0, 1900), at 134.18 mm/−10.05 mm, 
158.61 mm/−8.14 mm, and 178.17 mm/−5.42mm, respectively, while at the same time the 
displacements from the measuring point 1 to measuring point 7 remained basically unchanged. 
Shallow landslides and deep landslides occurred in Type 3 (Figure 11c) and the middle belonged to 
the passive sliding zone. In the course of the experiment, the displacements were exerted on the 
sensor at (0, 700), (0, 1500) and (0, 1900) along the x direction, respectively, and the displacement 
values in the three cases were 162.48 mm/−8.26 mm/172.12 mm, 195.04 mm/−19.19 mm/224.12 mm, 
and 215.07 mm/−25.14 mm/174.49 mm, respectively. For the displacement values in the three cases 
for each bending shape, three repetitions were performed in each case. Then, SM130 was employed 
to collect the central wavelength data of each sensing point on both sides of the flexible sensor. The 
actual displacement values were achieved using an electronic digital caliper when the displacements 
were stable. A displacement case was randomly selected for each bending shape, and the average of 
three repetitive experimental data values was taken. The displacements of the measuring points and 
micro-strains of the sensing points for each type were illustrated in Figure 12a1,b1,c1. 

  
     (a) Type 1       (b) Type 2          (c) Type 3 

Figure 11. Schematic diagram of the different bending shapes of the FBG flexible sensor under 
different loading modes. (a) shows middle landslides and deep landslides; (b) shows mainly middle 
landslides and a deep horizontal displacement remained essentially unchanged; (c) shows shallow 
landslides and deep landslides. 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0 50 100 150 200 250

 Displacement
 Microstrain

M
ea

su
rin

g 
po

in
ts

Displacement (mm)

-1500 -1000 -500 0 500 1000 1500

Microstrain

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Class IIIClass IIClass I

M
ea

su
rin

g 
po

in
ts

 
(a1)                                   (a2) 

Figure 12. Cont.



Sensors 2019, 19, 3750 16 of 24
Sensors 2019, 19, x FOR PEER REVIEW 16 of 24 

 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Class IIIClass IIClass I

M
ea

su
rin

g 
po

in
ts

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0 30 60 90 120 150

 Displacement
 Microstrain

M
ea

su
rin

g 
po

in
ts

Displacement (mm)

-3000 -2500 -2000 -1500 -1000 -500 0 500 1000

Microstrain

 
(b1)                                    (b2) 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

-50 0 50 100 150 200 250

M
ea

su
rin

g 
po

in
ts

Displacement (mm)

-3000 -2000 -1000 0 1000 2000 3000

 Displacement
 Microstrain

Microstrain

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Class IIIClass IIClass I

M
ea

su
rin

g 
po

in
ts

 
(c1)                                      (c2) 

Figure 12. The displacements of the measuring points and micro-strains of the sensing points for 
three types and the clustering results. (a1), (b1) and (c1) represented the displacements and strains for 
Type 1, Type 2 and Type 3, respectively. (a2), (b2) and (c2) represented the clustering results for Type 
1, Type 2 and Type 3, respectively. 
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Figure 12. The displacements of the measuring points and micro-strains of the sensing points for three
types and the clustering results. (a1), (b1) and (c1) represented the displacements and strains for Type 1,
Type 2 and Type 3, respectively. (a2), (b2) and (c2) represented the clustering results for Type 1, Type 2
and Type 3, respectively.

For each type, we calculated the strain increments at the sensing points and extracted them as
eigenvalues to be clustered. The K-means clustering algorithm was employed to cluster the strain
increments so that the deformation segments with different bending shapes of the flexible sensor could
be identified. For Type 1, the 10-th strain value was the inflection point, so the K value was equal to 2,
and the clustering algorithm outputted two classes. It can be seen from Figure 12a1 that the strain
values (from the first sensing point to the 9-th sensing point) were decreased gradually, so the strain
increments at these sensing points were negative values and belonged to Class II; meanwhile, the strain
values from the 10-th sensing point to the 19-th sensing point were increased gradually, which should
belong to Class I with positive strain increments. The clustering results were consistent with the
analyses, as displayed in Figure 12a2. For Type 2, the strain values had two inflexion points (8-th point
and 16-th point), and there were points where the strain increments were basically unchanged. Thus,
K was assigned to 3, and different deformation segments were clustered into three classes. Figure 12b1

demonstrated that the strain increments hardly changed from the first sensing point to the 7-th sensing
point; the strain increments from the 8-th point to the 15-th point were negative values, while the
strain increments were positive values from the 16-th point to the 19-th point. Different deformation
segments were clustered correctly based on the clustering algorithm (see Figure 12b2). For Type 3
(see Figure 12c1), although the strain values had two inflection points (7-th point and 15-th point), there
were no points where the strain increments were basically unchanged. Therefore, the value set for
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K was 2, obtaining two classes of clustering results. In Class I, the strain increments at the sensing
points (from 7-th point to 14-th point) were positive, while the negative strain increments at the sensing
points (from first point to 6-th point and from 15-th point and 19-th point) were Class II. It can be seen
from Figure 12c2 that the clustering results were consistent with the analyses. The clustering results
of each type indicated that different deformation segments of the flexible sensor have been correctly
categorized by the clustering algorithm.

The next step was to calculate the correction coefficients of different classes. To be specific,
the actual horizontal displacements of the measuring points were taken as the benchmark, and the
optimization objective was to minimize the MAEs between the reconstructed displacements based
on the shape reconstruction algorithm and actual displacements at each measuring point. A PSO
optimization algorithm was adopted to define the correction coefficients for different classes and to
calculate the unified correction coefficient of the overall deformation as a comparison at the same
time. The correction coefficients for Class I and Class II were determined to be k1 = 0.85 and k2 = 1.18,
respectively, and the unified correction coefficient was k0 = 1.08. It should be noted that three correction
coefficients (k1, k2, and k0) were average values in the three cases for each bending shape.

Figure 13 displays the contrast between the displacements of the measuring points before and
after the corrections, and the actual displacements under the three bending shapes, as well as the
absolute errors of the measuring points before and after the corrections. It can be seen that there were
certain errors between the initial reconstructed displacements and the actual displacements. It was
observed that among these, with the increasing distances between the measuring points and fixed end,
the absolute errors of Types 1 and 2 had gradually increased. The maximum absolute errors had all
occurred at the 19-th measuring point (for example: 90.23 mm and 43.87 mm). The overall trend of
absolute errors in Type 3 increased gradually, and the maximum error (equal to 72.47 mm) occurred at
the 19-th measuring point. However, the absolute errors of some measuring points (9-th, 11-th and
12-th points) were smaller than that of the previous one. The reason for this phenomenon was that the
error directions were different, and the positive and negative errors were offset. It was obvious that the
initial reconstructed displacements of the measuring points had larger errors for each type.
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Figure 13. Demonstration of the experimental results under three bending shapes of the FBG flexible 
sensor. (a1), (b1) and (c1) represented the displacements contrast of the measuring points for Type 1, 
Type 2 and Type 3, respectively. (a2), (b2) and (c2) represented the absolute errors contrast of the 
measuring points for Type 1, Type 2 and Type 3, respectively. 

The MAEs calculated by the initial reconstruction, along with the two correction methods, were 
depicted in Figure 14. After the strain values of all beam elements for each bending shape were 
corrected by the unified coefficient, the MAEs of the measuring points displayed larger differences. 
For example, for Type 1, the MAE of the measuring points after the correction was at the maximum 
at 33.00 mm; for Type 2, the MAE was the minimum at 9.55 mm; for Type 3, the MAE was 31.22 mm. 
For Type 1, 2, and 3, the MAEs of the corrected measuring points were decreased by 7.95 mm, 3.16 
mm, and 4.08 mm, respectively, compared with those before the correction. However, after the strain 
values of different deformation segments for each bending shape were corrected by the segmental 
coefficients, the absolute errors of the three bending shapes had been significantly reduced. The 
MAEs of Types 1, 2, and 3 after segmental corrections were 2.67 mm, 2.77 mm and 6.76 mm, 
respectively. The MAEs had been reduced by 38.28 mm (Type 1), 9.94 mm (Type 2) and 28.54 mm 
(Type 3), respectively, following the segmental corrections. Compared with the unified coefficient 
correction, the segmental coefficients correction had a better correction ability for the displacement 
errors of the measuring points with different bending shapes, while also improving the 
measurement accuracy of the FBG flexible sensor. 

Figure 13. Demonstration of the experimental results under three bending shapes of the FBG flexible
sensor. (a1), (b1) and (c1) represented the displacements contrast of the measuring points for Type 1,
Type 2 and Type 3, respectively. (a2), (b2) and (c2) represented the absolute errors contrast of the
measuring points for Type 1, Type 2 and Type 3, respectively.

The MAEs calculated by the initial reconstruction, along with the two correction methods, were
depicted in Figure 14. After the strain values of all beam elements for each bending shape were
corrected by the unified coefficient, the MAEs of the measuring points displayed larger differences.
For example, for Type 1, the MAE of the measuring points after the correction was at the maximum at
33.00 mm; for Type 2, the MAE was the minimum at 9.55 mm; for Type 3, the MAE was 31.22 mm.
For Type 1, 2, and 3, the MAEs of the corrected measuring points were decreased by 7.95 mm, 3.16 mm,
and 4.08 mm, respectively, compared with those before the correction. However, after the strain values
of different deformation segments for each bending shape were corrected by the segmental coefficients,
the absolute errors of the three bending shapes had been significantly reduced. The MAEs of Types 1,
2, and 3 after segmental corrections were 2.67 mm, 2.77 mm and 6.76 mm, respectively. The MAEs had
been reduced by 38.28 mm (Type 1), 9.94 mm (Type 2) and 28.54 mm (Type 3), respectively, following
the segmental corrections. Compared with the unified coefficient correction, the segmental coefficients
correction had a better correction ability for the displacement errors of the measuring points with
different bending shapes, while also improving the measurement accuracy of the FBG flexible sensor.
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4.4. Method Scalability of the Proposed Method

It has been pointed out that the displacements at different depths of the slopes are extremely
complex during the evolution process of landslides because of the double influences of natural factors
and anthropogenic activities. The bending shapes of the flexible sensor have diversified characteristics
in the slope measurement. To verify the scalability of the segmental correction method, three other
typical bending shapes of the FBG flexible sensor have been also executed in the scalable experiment.
Both the segmental correction coefficients (k1 = 0.85 and k2 = 1.18) and the unified correction coefficient
(k0 = 1.08) that had been determined in the above experiment were adopted in the comparison of
the displacements sensing. Type 4 (Figure 15a1) included middle landslides and deep landslides,
and the shallow layer produced a reverse horizontal displacement influenced by rainfall. To realize
the bending shapes of the flexible sensor for Type 4, 73.78 mm, 36.07 mm, 29.14 mm, −67.96 mm and
87.49 mm displacements were imposed to the flexible sensor at (0, 400), (0, 700), (0, 1200), (0, 1600)
and (0, 1900) along the x direction, respectively. The overall slip of slope body occurred in Type 5
(Figure 15b1). Thus, we applied a 149.56 mm displacement along the x-axis at (0, 1000). For Type 6
(Figure 15c1), landslides occurred in the shallow layer and middle layer. Meanwhile, it engendered a
reverse horizontal displacement in the deep layer due to the groundwater being affected. In order
to achieve this goal, the displacements were exerted on the sensor at (0, 600) and (0, 1200) along the
x direction, respectively, and the displacement values were −149.89 mm and 0.36 mm, respectively.
Repeated experiments were performed three times for each bending shape, and the average data were
taken. Figure 15 displays the contrast of the displacements sensing under four modes (actual value,
initial reconstruction, unified correction and segmental correction), as well as the absolute errors of the
measuring points before and after the corrections.
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It was obvious that the initial reconstructed displacements of the measuring points had larger 
errors for each type (see Figure 15a2,b2,c2). The absolute errors had gradually increased, and the 
maximum absolute errors had all occurred to the 19-th measuring point (for example: 38.13 mm, 
42.56 mm and 74.62 mm). The MAEs calculated by the initial reconstruction, along with the two 
correction methods, were depicted in Figure 16. Following the unified coefficient correction, the 
MAEs of corrected measuring points were decreased by 11.05 mm for Type 5. On the contrary, for 
Types 4 and 6, the MAEs of the measuring points were raised by unified corrections, which were 
0.82 mm and 2.15 mm, respectively. Therefore, this exposed the inefficiencies of using a unified 

Figure 15. Demonstration of the experimental results under three bending shapes of the FBG flexible
sensor. (a1), (b1) and (c1) represented the displacements contrast of the measuring points for Type 4,
Type 5 and Type 6, respectively. (a2), (b2) and (c2) represented the absolute errors contrast of the
measuring points for Type 4, Type 5 and Type 6, respectively.

It was obvious that the initial reconstructed displacements of the measuring points had larger
errors for each type (see Figure 15a2,b2,c2). The absolute errors had gradually increased, and the
maximum absolute errors had all occurred to the 19-th measuring point (for example: 38.13 mm,
42.56 mm and 74.62 mm). The MAEs calculated by the initial reconstruction, along with the two
correction methods, were depicted in Figure 16. Following the unified coefficient correction, the MAEs
of corrected measuring points were decreased by 11.05 mm for Type 5. On the contrary, for Types 4
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and 6, the MAEs of the measuring points were raised by unified corrections, which were 0.82 mm and
2.15 mm, respectively. Therefore, this exposed the inefficiencies of using a unified correction coefficient
to correct the different bending shapes. The absolute errors of each type had been significantly reduced
following the segmental coefficients. The MAEs of Types 4, 5 and 6 were 3.58 mm, 6.59 mm and
9.64 mm, respectively, following the segmental corrections. The MAEs had dwindled by 12.38 mm
(Type 4), 11.69 mm (Type 5), and 22.78 mm (Type 6), respectively. Consequently, the segmental
correction method and the correction coefficients determined by Types 1, 2 and 3 have also achieved
favorable performances in the displacement errors correction of the measuring points in Types 4, 5
and 6. For each type, the displacement of each measuring point was Xi, with i = 1, 2, ..., 19. The mean

absolute displacement x of the measuring points was 1
19

19∑
i = 1
|Xi|. The MAE percentage can be calculated

by MAEs/x × 100%. The MAE percentages of the measuring points based on different methods under
six bending shapes were reflected in Table 3. The MAE percentages of Types 1, 2, 3, 4, 5 and 6 after
segmental corrections were 1.87%, 5.28%, 6.98%, 7.62%, 4.16% and 8.31%, respectively. The MAE
percentages had been declined by 26.83% (Type 1), 18.94% (Type 2), 29.49% (Type 3), 26.35% (Type 4),
7.39% (Type 5), and 19.65% (Type 6), respectively, following the segmental corrections. The MAE
percentages of each bending shapes were observed to be relatively low.
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Table 3. The MAE percentages based on different methods under six bending shapes.

Bending Shapes Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Before Correction 28.70% 24.22% 36.47% 33.97% 11.55% 27.96%
Unified Correction 23.13% 18.20% 32.26% 35.72% 4.57% 29.81%

Segmental Correction 1.87% 5.28% 6.98% 7.62% 4.16% 8.31%

In all of the experimental operations, the spectrum of the sensing points displayed excellent
performances without distortion. In practical engineering applications, the FBG flexible sensor is
mounted in the casing. With the protection of the casing, the influence of the shear strain around the
sensor is eliminated, and the sensing points are protected at the same time. Even if the FBG flexible
sensor undergoes various bending deformations, the strain increments at the sensor points can only
be in three classes at most, which is consistent with the scheme proposed in this paper. By using
the proposed correction method, we can obtain reliable data to realize accurate measurements of
displacement in the slope. Compared with the dimension of the fabricated sensor, the displacement of
the deformation segments meets the practical application requirements. Therefore, early warning is
provided to the public before the plastic deformation of the FBG flexible sensor occurs. These findings
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indicated that the proposed segmental correction method was feasible, and the method was found
to be effective in improving the displacement field sensing accuracy of the FBG flexible sensor in
slope-related applications.

5. Conclusions

In this research, a self-correction displacement profiles sensing method based on strain increment
clustering was proposed, which had ability to improve the accuracy of the FBG flexible sensor for
measuring the horizontal displacement profiles inside the slope. Unlike the traditional correction
method which calibrated the entire deformed shape and then applied the unified coefficient to correct
the structures to be measured, our method was competent in automatically identifying different
deformation segments using a K-means clustering algorithm based on strain increments at sensing
points. After that, the correction coefficients of the deformation segments were determined by
calibrating the typical bending shapes of the FBG flexible sensor in the measurement of the slope
displacement profiles, and the PSO optimization algorithm was employed to achieve their optimal
values. In addition, a finite element method was adopted to simulate six typical bending shapes of a
slender plate model, and the necessity and feasibility of the proposed correction method were analyzed
in detail. Furthermore, the operability and convenience of the experiment needed to be taken into
consideration, and an FBG flexible sensor was fabricated by integrating the FBG sensing points with a
flexible epoxy resin plate substrate. A temperature sensing experiment was performed to determine
that the influences of temperature fluctuations could be eliminated by using differences of the central
wavelength variations between two sensing points in each beam element. Finally, in order to validate
the feasibility and effectiveness of the proposed method, the displacement calibration experiment was
implemented. The clustering results of each type indicated that different deformation segments of the
flexible sensor have been correctly categorized by the K-means clustering algorithm. Following the
segmental corrections, the MAE percentages of six types were 1.87% (Type 1), 5.28% (Type 2), 6.98%
(Type 3), 7.62% (Type 4), 4.16% (Type 5) and 8.31% (Type 6), respectively, which was an improvement
of the accuracy by 26.83%, 18.94%, 29.49%, 26.35%, 7.39%, and 19.65%, respectively. The contrast
of displacement sensing in four modes (actual value, initial reconstruction, unified correction and
segmental correction) fully illustrated the feasibility and validity of the segmental correction method.
Overall, these findings indicated that a self-correction displacement profiles sensing method based
on strain increment clustering was empowered to effectively improve the displacement accuracy of
measuring points with different bending shapes for the FBG flexible sensor. This method has broad
application prospects in the measurement of displacement fields inside a slope.

The above operations were carried out in the laboratory, and excellent results were obtained.
Considering the practicability and scalability of the proposed method, the next step is to apply the
manufactured sensors to practical engineering and to verify their measurement performance. Full
consideration is given to the protection of FBG sensing points and the plastic deformation of sensors
under a large displacement deformation. In the future, more work should be investigated to promote
the performance of the FBG flexible sensor.
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sensing. Measurement 2018, 128, 119–137. [CrossRef]

15. Bhamber, R.S.; Allsop, T.; Lloyd, G.; Webb, D.J.; Ania-Castanon, J.D. Arbitrary real-time three-dimensional
corporal object sensing and reconstruction scheme. Opt. Lett. 2012, 27, 3549–3551. [CrossRef]

16. Xu, L.; Ge, J.; Patel, J.H.; Fok, M.P. Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for
3-dimensional shape sensing. Opt. Express 2017, 25, 24727–24734. [CrossRef] [PubMed]

17. Yi, J.C.; Zhu, X.J.; Zhang, H.S.; Shen, L.Y.; Qiao, X.P. Spatial shape reconstruction using orthogonal fiber
Bragg grating sensor array. Mechatronics 2012, 22, 679–687. [CrossRef]

18. Derkevorkian, A.; Masri, S.F.; Alvarenga, J.; Boussalis, H.; Bakalyar, J.; Richards, W.L. Strain-based deformation
shape-estimation algorithm for control and monitoring applications. AIAA J. 2013, 51, 2231–2240. [CrossRef]

19. Kim, H.; Kang, L.H.; Han, J.H. Shape estimation with distributed fiber Bragg grating sensors for rotating
structure. Smart Mater. Struct. 2011, 20, 035011. [CrossRef]

20. Bang, H.J.; Kim, H.; Lee, K.S. Measurement of strain and bending deflection of a wind turbine tower using
arrayed FBG sensors. Int. J. Precis. Eng. Manuf. 2012, 13, 2121–2126. [CrossRef]

21. Wang, Z.F.; Wang, J.; Sui, Q.M.; Jia, L.; Li, S.C.; Liang, X.M.; Lu, S.D. Deformation reconstruction of a smart
Geogrid embedded with fiber Bragg grating sensors. Meas. Sci. Technol. 2015, 26, 125202. [CrossRef]

22. Kim, N.S.; Cho, N.S. Estimating deflection of a simple beam model using fiber optic Bragg-grating sensors.
Exp. Mech. 2004, 44, 433–439. [CrossRef]

23. Li, Y.; Wang, H.P.; Zhu, W.S.; Li, S.C.; Liu, J. Structural stability monitoring of a physical model test on
an underground cavern group during deep excavations using FBG sensors. Sensors 2015, 15, 21696–21709.
[CrossRef] [PubMed]

24. Zhu, H.H.; Yin, J.H.; Zhang, L.; Jin, W.; Dong, J.H. Monitoring internal displacements of a model dam using
FBG sensing bars. Adv. Struct. Eng. 2010, 13, 249–261. [CrossRef]

25. Pei, H.F.; Yin, J.H.; Zhu, H.H.; Hong, C.Y.; Jin, W.; Xu, D.S. Monitoring of lateral displacements of a slope
using a series of special fiber Bragg grating-based in-place inclinometers. Meas. Sci. Technol. 2012, 23, 025007.
[CrossRef]

http://dx.doi.org/10.1016/j.measurement.2018.09.019
http://dx.doi.org/10.1108/SR-10-2017-0218
http://dx.doi.org/10.1109/ACCESS.2018.2843787
http://dx.doi.org/10.1016/j.compgeo.2005.07.003
http://dx.doi.org/10.1007/BF02479436
http://dx.doi.org/10.3390/s140509074
http://dx.doi.org/10.1088/0964-1726/22/12/125002
http://dx.doi.org/10.1109/ACCESS.2018.2877887
http://dx.doi.org/10.1109/JSEN.2019.2891734
http://dx.doi.org/10.3390/s17030452
http://www.ncbi.nlm.nih.gov/pubmed/28245551
http://dx.doi.org/10.1016/j.measurement.2018.06.034
http://dx.doi.org/10.1364/OL.37.003549
http://dx.doi.org/10.1364/OE.25.024727
http://www.ncbi.nlm.nih.gov/pubmed/29041418
http://dx.doi.org/10.1016/j.mechatronics.2011.10.005
http://dx.doi.org/10.2514/1.J052215
http://dx.doi.org/10.1088/0964-1726/20/3/035011
http://dx.doi.org/10.1007/s12541-012-0281-2
http://dx.doi.org/10.1088/0957-0233/26/12/125202
http://dx.doi.org/10.1007/BF02428097
http://dx.doi.org/10.3390/s150921696
http://www.ncbi.nlm.nih.gov/pubmed/26404287
http://dx.doi.org/10.1260/1369-4332.13.2.249
http://dx.doi.org/10.1088/0957-0233/23/2/025007


Sensors 2019, 19, 3750 24 of 24

26. Guo, Y.X.; Zhang, D.S.; Fu, J.J.; Liu, S.B.; Zhang, S.Z.; Zhu, F.D. Development and operation of a fiber Bragg
grating based online monitoring strategy for slope deformation. Sens. Rev. 2015, 35, 348–356. [CrossRef]

27. Sun, G.K.; Li, H.; Dong, M.L.; Lou, X.P.; Zhu, L.Q. Optical fiber shape sensing of polyimide skin for a flexible
morphing wing. Appl. Opt. 2017, 56, 9325–9332. [CrossRef] [PubMed]

28. Kim, B.; Ha, J.; Park, F.C.; Dupont, P.E. Optimizing curvature sensor placement for fast, accurate shape sensing
of continuum robots. In Proceedings of the IEEE International Conference on Robotics and Automation,
Hong Kong, China, 31 May–7 June 2017.

29. Abayazid, M.; Kemp, M.; Misra, S. 3D flexible needle steering in soft-tissue phantoms using fiber Bragg
grating sensors. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe,
Germany, 6–10 May 2013.

30. Zhou, J.Z.; Cai, Z.H.; Kang, L.; Tang, B.F.; Xu, W.H. Deformation sensing and electrical compensation of
smart skin antenna structure with optimal fiber Bragg grating strain sensor placements. Compos. Struct.
2019, 211, 418–432. [CrossRef]

31. Zhang, H.S.; Zhu, X.J.; Gao, Z.Y.; Liu, K.N.; Li, Z.W. Dynamic error analysis method for vibration shape
reconstruction of smart FBG plate structure. Shock Vib. 2015, 2016, 1–13. [CrossRef]

32. Wang, Z.F.; Wang, J.; Sui, Q.M.; Li, S.C.; Jia, L. In-situ calibrated deformation reconstruction method for fiber
Bragg grating embedded smart Geogrid. Sens. Actuators A Phys. 2016, 250, 145–158. [CrossRef]

33. Tian, C.B.; Wang, Z.F.; Sui, Q.M.; Wang, J.; Dong, Y.N.; Li, Y.J.; Han, M.J.; Jia, L.; Wang, H.P. Design and
optimization of FBG implantable flexible morphological sensor to realize the intellisense for displacement.
Sensors 2018, 18, 2342. [CrossRef] [PubMed]

34. Ge, J.; James, A.E.; Xu, L.; Chen, Y.; Kwok, K.W.; Fok, M.P. Bidirectional soft silicone curvature sensor based
on off-centered embedded fiber Bragg grating. IEEE Photonics Technol. Lett. 2016, 28, 2237–2240. [CrossRef]

35. Boresi, A.P.; Richard, J.S. Advanced Mechanics of Materials, 6th ed.; Wiley: San Francisco, CA, USA, 2002;
pp. 263–294.

36. Zheng, Y.; Zhu, Z.W.; Deng, Q.X.; Xiao, F. Theoretical and experimental study on the fiber Bragg grating-based
inclinometer for slope displacement monitoring. Opt. Fiber Technol. 2019, 49, 28–36. [CrossRef]

37. Bellas, M.; Voulgaridis, G. Study of the major landslide at the community of Ropoto, Central Greece,
mitigation and FBG early warning system design. Innov. Infrastruct. Solut. 2018, 3, 30. [CrossRef]

38. Zahra, S.; Ghazanfar, M.A.; Khalid, A.; Azam, M.A.; Naeem, U. Novel centroid selection approaches for
kmeans-clustering based recommender systems. Inf. Sci. 2015, 320, 156–189. [CrossRef]

39. Raza, A.; Yousaf, Z.; Jamil, M.; Gilani, O.; Abbas, G.; Uzair, M.; Shaheen, S.; Abdeldjabar, B.; Li, F.J.
Multi-objective optimization of VSC stations in multi-terminal VSC-HVdc grids, based on PSO. IEEE Access
2018, 6, 62995–63004. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1108/SR-01-2015-0012
http://dx.doi.org/10.1364/AO.56.009325
http://www.ncbi.nlm.nih.gov/pubmed/29216105
http://dx.doi.org/10.1016/j.compstruct.2018.12.048
http://dx.doi.org/10.1155/2016/5958073
http://dx.doi.org/10.1016/j.sna.2016.09.027
http://dx.doi.org/10.3390/s18072342
http://www.ncbi.nlm.nih.gov/pubmed/30029470
http://dx.doi.org/10.1109/LPT.2016.2590984
http://dx.doi.org/10.1016/j.yofte.2019.01.031
http://dx.doi.org/10.1007/s41062-018-0133-8
http://dx.doi.org/10.1016/j.ins.2015.03.062
http://dx.doi.org/10.1109/ACCESS.2018.2875972
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Reconstruction Based on Beam Element Decomposition Method 
	Correction Method 
	Categories of Internal Displacements 
	A Clustering Method Based on Strain Increments 
	Cluster Algorithm and Optimization Algorithm 


	Simulation Verification 
	Experimental Section and Analyses 
	Design of the FBG Flexible Sensor 
	Temperature Sensing Experiment 
	Experimental Validations of the Proposed Correction Method 
	Method Scalability of the Proposed Method 

	Conclusions 
	References

