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ABSTRACT Psychosocial environments impact normative behavioral development
in children, increasing the risk of problem behaviors and psychiatric disorders across
the life span. Converging evidence demonstrates that early normative development
is affected by the gut microbiome, which itself can be altered by early psychosocial
environments. However, much of our understanding of the gut microbiome’s role in
early development stems from nonhuman animal models and predominately focuses
on the first years of life, during peri- and postnatal microbial colonization. As a first
step to identify if these findings translate to humans and the extent to which these
relationships are maintained after initial microbial colonization, we conducted a
metagenomic investigation among a cross-sectional sample of early school-aged
children with a range of adverse experiences and caregiver stressors and rela-
tionships. Our results indicate that the taxonomic and functional composition of
the gut microbiome correlates with behavior during a critical period of child de-
velopment. Furthermore, our analysis reveals that both socioeconomic risk expo-
sure and child behaviors associate with the relative abundances of specific taxa
(e.g., Bacteroides and Bifidobacterium species) as well as functional modules en-
coded in their genomes (e.g., monoamine metabolism) that have been linked to
cognition and health. While we cannot infer causality within this study, these
findings suggest that caregivers may moderate the gut microbiome’s link to en-
vironment and behaviors beyond the first few years of life.

IMPORTANCE Childhood is a formative period of behavioral and biological develop-
ment that can be modified, for better or worse, by the psychosocial environment that is
in part determined by caregivers. Not only do our own genes and the external environ-
ment influence such developmental trajectories, but the community of microbes living
in, on, and around our bodies—the microbiome—plays an important role as well. By
surveying the gut microbiomes of a cross-sectional cohort of early school-aged children
with a range of psychosocial environments and subclinical mental health symptoms, we
demonstrated that caregiving behaviors modified the child gut microbiome’s association
to socioeconomic risk and behavioral dysregulation.
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Childhood is a formative period of behavioral development that can influence the
trajectory of psychiatric disorders and problem behaviors across the life span (1).

Research has recently clarified the profound impact that a child’s economic, social, and
caregiving environment plays in determining such outcomes (2, 3). For example,
exposure to particular environmental factors early in life, such as growing up under low
socioeconomic status (e.g., low income to needs ratio) or experiencing high family
disruption and turmoil, can increase a child’s risk of developing psychiatric disorders
and associated problem behaviors (4). Caregivers, however, are one of the most
proximal influences on and predictors of child wellbeing and can modify how these
environmental risk factors, especially socioeconomically linked risk factors, impact the
child’s neurobiological and behavioral development (5). Across species, caregivers serve
to protect their offspring’s development from exogenous stressors and modify child-
hood behavioral responses to adverse economic and social environments (3). Indeed,
responsive and predictable caregiver behaviors are linked to improved child outcomes
(6). Conversely, negative caregiver behaviors, such as perceived parental stress or
disrupted parent-child relationships, can leave children more vulnerable to biological
perturbations and behavioral dysregulation (7). Identifying early risk factors or corre-
lates of childhood behavioral dysregulation is particularly important given that child-
hood is a time when mental health symptoms begin to emerge.

Ongoing research seeks to characterize the underlying mechanisms by which
adverse environments and caregiving behaviors (both positive and negative) influence
a child’s behavioral development. Such research demonstrates that these environments
and caregiving behaviors can alter the developmental trajectory of central, autonomic,
and peripheral nervous systems function (8). While these efforts have helped the design
of subsequent interventions (9) as well as policy and practice (10), there remain open
questions about the mechanisms by which these physiological systems are altered and
whether other aspects of physiology and health contribute to how exogenous factors
influence behavioral development.

Recent research points to the gut microbiome as a potential determinant of how a
child’s environment ultimately impacts both their neurobiological function and mental
health outcomes (11). The gut microbiome (hereafter “microbiome”) is the community
of microbes and their genes that reside within the gastrointestinal tract and may be a
key, yet relatively understudied driver of neurobiological and behavioral development.
Extensive animal model experiments demonstrate that the microbiome communicates
with the central nervous system to influence social, explorative, and affective behavior
through several pathways, including neuroendocrine and immune system coordina-
tion, vagal nerve stimulation, and neurotransmitter metabolism (see reference 12 for a
review of mechanisms). Accordingly, the microbiome’s successional dynamics in the
gut are increasingly understood to interact with and shape the trajectory of neurobi-
ological development (13). That said, limited research has investigated the micro-
biome’s relationship with behavioral dysregulation early in life (14). The studies con-
ducted to date have linked the composition of the microbiome to infant and toddler
behaviors, such as surgency/extroversion, fear (15), and cognitive development (16). In
addition, preliminary evidence from human studies of autism spectrum disorder sug-
gests that the microbiome continues to play an active role in behavioral development
following the first few years of initial gut colonization (17). It remains unclear if the
microbiome associates with other forms of behavioral dysregulation and if it links to the
onset of psychiatric disorders and problem behaviors. Defining the connection be-
tween the gut microbiome and subclinical behavioral dysregulation is particularly
important given that normative behavior and behavioral disruptions develop through-
out childhood and that this period of development offers opportunities to intervene
and treat disorders as they emerge.

Recent research points to the microbiome’s sensitivity to psychosocial environments
and caregiving behaviors (18), raising the potential that the microbiome may mediate
how these exogenous factors impact behavioral development. For example, rodent
pups that experienced an early life stressor of low resources, a model designed to
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mimic low socioeconomic status (SES), exhibited altered microbial compositions, in-
creased intestinal permeability, and increased anxiety-like behaviors in adulthood
relative to controls (19). Similarly, human adults from lower SES backgrounds exhibited
lower microbial diversity (20). Moreover, in both humans and nonhuman primates,
prenatal physiological stress and a negative mother-infant relationship appear to
reduce the level of bifidobacteria and lactobacilli in the infant’s microbiome (21, 22).
Relatedly, rodent pups exposed to repeated, prolonged maternal separation experience
altered gut microbial profiles and increased intestinal permeability following social
stressors in adulthood (23). The role of socioeconomic risk and caregiver behaviors on
the developing microbiome remains notably understudied, and it is unclear if these
relationships remain beyond the first few years of life.

Based on this prior research, we investigated the microbiome’s link to socioeco-
nomic risk, caregiving behaviors (both positive and negative), and child behaviors. The
goal of this study was to determine if and how the microbiome relates to environmen-
tal factors and behavioral symptoms in early school-age children (5 to 7 years old, mean
[standard deviation (SD)] 6.12 [0.69]; 58% female) (see Table S1 and Table S5 in the
supplemental material for all sample metadata). To accomplish this goal and improve
our understanding of the potential mechanisms through which the gut microbiome
relates to environmental factors and behavioral symptoms, we interrogated the gut
microbiome of these children using a technique known as shotgun metagenomics (24).
This approach differs from 16S rRNA gene sequencing—the typical method used to
study the microbiome’s relationship with behavioral symptoms (16), which only affords
direct insight into the taxonomic composition of the microbiome—in that metagenom-
ics applies whole-genome sequencing to the collective set of organisms that make up
the microbiome. In so doing, it not only offers insight into who resides in the gut, but
also clarifies which functional pathways are encoded in their genomes.

We generated shotgun metagenomic data from a cohort of children and deter-
mined how both the microbial taxa and the specific genetic functions they encode
associate with subclinical child behavioral dysregulation symptoms (hereafter “behav-
ioral dysregulation”), socioeconomic risk, and caregiver behaviors. We first tested if
concurrent socioeconomic status associated with the child microbiome and whether
self-reported parental behaviors statistically interacted with this association to explain
additional variance. In addition, we examined how the child microbiome is associated
with parent-reported child internalizing and externalizing behaviors and whether
self-reported caregiver behavior statistically moderated this association. Finally, we
investigated if there were specific microbial taxa and metabolic pathways associated
with different metrics of socioeconomic risk and child behavioral dysregulation. To our
knowledge, this is the first study to assess the linkage between the microbiome, a
child’s environment, and behavioral dysregulation symptoms during the 5- to 7-year-
old age range of formative behavioral and biological development. In so doing, this
study reveals that exogenous factors, including self-reported parental behavior, impact
the gut microbiome beyond the first few years of life and that the microbiome
associates with behavioral dysregulation, even at subclinical thresholds.

RESULTS

In order to profile the microbiome, we collected stool from 40 children from a
midsize city in the Pacific Northwest of the United States that were already participating
in a larger study (25). Parents of the children filled out questionnaires regarding five
covariate categories: socioeconomic risk, behavioral dysregulation, caregiver behavior,
demography, gut-related history (i.e., factors known to influence microbiome compo-
sition, such as antibiotic use), and a week-long diet journal. DNA was extracted from the
fecal samples, sequencing libraries were prepared, and shotgun metagenomic se-
quencing was conducted according to standard protocols (see Materials and Methods).
Unique metagenomic sequences were assigned, if possible, to the bacterial species
level, which resulted in 213 unique taxon assignments after quality control. Using these
assignments, we estimated the taxonomic composition of the microbiome. Sequences
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were also assigned to molecular functional groups using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database. These assignments are referred to as KEGG
orthologs (KOs) and represent individual functions within larger genomic modules,
which are components of functional pathways. The sequence set was assigned to
13,183 unique KOs after quality control. Using these taxonomic and functional assign-
ments, we constructed community tables (matrices of taxon or KO relative abundances
by sample) to test associations between the microbiome and our covariates of interest
in a statistically rigorous manner (see Materials and Methods and Supplemental Meth-
ods for specific details regarding participants, sample collection, molecular methods,
and sequence analysis).

Because the questionnaires filled out by parents encompassed more potential covari-
ates (n � 52) than microbiome samples (n � 40), we began our analysis by selecting the
covariates within each covariate category that explained a statistically significant
amount of variance in the microbiome composition between samples (see Materials
and Methods). This covariate selection process returned a set of 17 significant covari-
ates for taxonomic composition and 10 covariates for functional composition of the
microbiome (see Table 1). In order to test our hypotheses that socioeconomic risk,
behavioral dysregulation, and caregiver behavior covariates significantly associate with
the composition of the microbiome, we utilized a constrained correspondence analysis
(CCA) to create ordinations. This method is particularly appropriate for our study design
because it accounts for the variance in the microbiome explained by factors that prior
research indicates may have a strong effect on the composition of the microbiome but
which are not the direct focus of this research (i.e., demography, gut-related history,
and diet). We then ran a permutational analysis of variance (PERMANOVA) on the
remaining, unexplained variance to test the significance of the relationships between
covariates and the composition of the microbiome. Selected covariates within each
category (e.g., demography, gut-related history, diet, child dysregulation behaviors,
socioeconomic risk, and caregiver behavior) were determined by the envfit model. For
each set of covariates, we tested their association with both the taxonomic (species)
and functional (KO) composition of the microbiome.

Microbiome composition, socioeconomic risk, and caregiver behavior. We first
examined whether metrics of socioeconomic risk and caregiver behavior significantly
explain the observed variance in overall microbiome diversity and composition. In
addition, we investigated whether these associations manifested at the level of the
taxonomic identities of the microbiome constituents or the functional potential of the
metagenome. We started by testing the associations between the taxonomic compo-
sition of the microbiome and the selected socioeconomic risk and caregiver behavior
covariates. To maximize scientific rigor, we constructed a CCA model, which is based on

TABLE 1 The set of covariates selected by envfit analysis for both taxonomic- and functional-based microbiome compositiona

Microbiome
profile Caregiver behavior

Behavioral
dysregulation Socioeconomic risk Demography

Gut-related
history Diet

Taxonomic Parent-child dysfunction CBQ inhibitory control LEC turmoil Locations Days eating fruit
Days eating fiber (vegetable �

fruit)
LEC poverty-related events Days eating protein (total)

CBQ impulsivity Days eating yogurt
Income to needs Avg. no. food categories/day

Days eating vegetables
CBCL depressive

problems
LEC total Days recorded vegetarian diet

Day diet recorded
Functional

potential
Parent-child dysfunction CBQ impulsivity LEC poverty-related events Child ethnicity Days eating yogurt

CBQ inhibitory control LEC turmoil
CBCL depressive

problems
LEC total

Income to needs
aAll metrics are reported via questionnaire by the parent. PSI, parenting stress index; LEC, life events checklist; CBQ, children’s behavior questionnaire; CBCL, child
behavior checklist.
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a Euclidian distance, that first accounted for the selected gut-linked (previously shown
to influence gut [25–28]) and diet covariates (see Table 1 for specific covariate names)
by determining the amount of variance explained. The gut-linked and diet covariates
accounted for 24.9% of the total variance in taxonomic composition. The socioeco-
nomic risk and caregiver behavior covariates that remained in the best model accord-
ing to the Akaike information criterion explained a further 13.6% of the variance,
leaving 61.5% of the variance unexplained. A PERMANOVA test on this CCA model
revealed a significant association between taxonomic composition and parent-child
dysfunction (F � 1.82, P � 0.0140; Fig. 1A; Table S2a) as well as a significant interaction
term between parent-child dysfunction and income to needs (F � 1.82, P � 0.0157;
Fig. 1A; Table S2a).

As noted previously, the metagenomic (as opposed to amplicon-based) methodol-
ogy we employed made it possible to test the associations between socioeconomic
risk, caregiver behavior, and the functional composition of the microbiome. We set the
demography and diet covariates (see Table 1) as conditional variables, which explained
12.5% of the total variance in functional composition. The socioeconomic risk and
caregiver behavior covariates that remained in the best model accounted for 22.3% of
the total variance in functional composition, while 65.3% remained unexplained. A
PERMANOVA test on this model found that the caregiver covariate parent-child dys-
function significantly interacted with both turmoil events (F � 2.82, P � 0.0053; Fig. 1B).
These results provide evidence that, in terms of the microbiome’s functional potential,

FIG 1 Constrained correspondence analysis (CCA) ordinations for taxonomic and functional composition of the microbiome and socioeconomic risk and
caregiver behavior covariates. Only covariates that have significant main effects or are part of a significant interaction are depicted in each ordination.
Significance was assessed using PERMANOVA (� � 0.05). See Tables S2a and b for statistical results. (A) Ordination of taxonomic (species-level) composition.
Each point represents a sample and consists of two parts; the color of the outer circle corresponds to the sample’s income to needs score, and the inner circle
is shaded from white to black indicating the sample’s parent-child dysfunction score. (B) Ordination of functional (KO level) composition. The outer circle of
the point is colored according to the sample’s LEC turmoil score. The inner circle is shaded identically to panel A.
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caregiver behavior can moderate the associations between socioeconomic risk covari-
ates and the microbiome.

Microbiome composition, behavioral dysregulation, and caregiver behavior. In
order to address our second question, whether metrics of behavioral dysregulation and
caregiver behavior significantly explain the observed variance in overall microbiome
diversity and composition, we applied the same analysis pipeline as above but substi-
tuted selected child behavioral dysregulation symptom covariates for the socioeco-
nomic risk covariates. The analysis of the taxonomic composition of the microbiome
revealed no significant associations (Table S2c). The conditional covariates (from the
gut-related history and diet categories) explained 25.3% of the variance in taxonomic
composition, while the focal covariates explained an additional 9.0%.

For the functional composition of the microbiome, the conditional covariates (from
the demography and diet categories) explained 12.5% of the variance in composition,
and the focal covariates explained an additional 33.7%. The analysis revealed a signif-
icant association between functional composition and impulsivity (F � 2.02, P � 0.0302;
Fig. 2A; Table S2d). The analysis also found that the caregiver behavior covariate
parent-child dysfunction significantly interacted with two child behavioral dysregula-
tion symptom covariates: ability to inhibit impulses (inhibitory control; F � 3.91,
P � 0.0005; Fig. 2B; Table S2d) and depression (depressive problems; F � 2.37,
P � 0.0149; Fig. 2C; Table S2d). Again, these results provide evidence that the micro-
biome is associated with particular types of behavioral dysregulation and that caregiver
behavior may moderate these associations. However, the evidence produced from this
population of individuals suggests that it is the composition of functional groups within
the microbiome, more so than the taxonomic composition of the microbiome, which
correlates with behavioral dysregulation and caregiver behavior.

Individual taxa, KOs, and socioeconomic risk— child behavioral dysregulation
symptom covariates. The above analyses assessed covariates of the overall composi-
tion and diversity of the gut microbiome. To obtain a finer resolution on the interac-
tions between the gut microbiome, socioeconomic risk, and behavioral dysregulation,
we employed pairwise compound Poisson generalized linear models (CPGLM) to
regress a specific taxon or KO relative abundance in the gut against each socioeco-
nomic risk or behavioral dysregulation covariate. A comprehensive set of results of the
pairwise relationships that maintained significance after false discovery rate (FDR)
correction can be found in Tables S3 and S4. Briefly, we found 63 significant pairwise
relationships between covariates and taxa identified at the species level (46 for behavioral
dysregulation, 17 for socioeconomic risk covariates; Fig. 3). For these taxon-covariate
relationships, we found numerous associations involving butyrate-producing bacteria
as well as other taxa of interest, including Bacteroides fragilis and Bacteroides thetaiotao-
micron, which have demonstrated anti-inflammatory effects in mice and humans (30).
We found FDR-corrected significant relationships between 7 socioeconomic risk and 13
child behavioral dysregulation symptom covariates and 690 functions defined at the KO
level. Of these 690 pairwise results, 88 KOs were grouped within defined metabolic
modules (Fig. 4). Consistent with prior studies, for the KO-covariate relationships, we
found numerous associations involving monoamine metabolism (including tryptophan,
tyrosine, glutamate, and leucine) and microbe-host antagonism (types II, III, and VI
secretion systems).

DISCUSSION

The present study provides novel insights into the relationship between the gut
microbiome and both the psychosocial environment and behavioral dysregulation in a
cross-sectional sample of early school-aged children (Fig. 5). Furthermore, this is the
first study to assess if caregiving behaviors modify the association between a child’s gut
microbiome and their level of socioeconomic risk exposure and behavioral dysregula-
tion. As such, this work provides a potentially new avenue of research into the
mechanisms of behavioral intervention, though it would behoove such exploration to
first replicate these findings in larger populations.
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Regardless, our study reveals supportive evidence that the psychosocial environ-
ment continues to shape not only the taxonomic composition, but also the functional
potential of the microbiome beyond the initial gut microbial colonization that occurs
in the perinatal period. Notably, the behavioral dysregulation symptoms measured in
this study occurred at thresholds not necessarily indicative of psychiatric disorders of
childhood. That these relationships were observed at subclinical levels of behavioral
dysregulation symptoms suggests that the microbiome may indicate or drive the
emergence of dysregulated behavior (i.e., providing early associative relationships prior
to reaching clinical thresholds). This study was cross-sectional, and therefore we cannot
determine which children later developed a psychiatric disorder. Future studies should
seek to expand on these findings through longitudinal metagenomic investigations.
Moreover, this study associated the microbiome with behavior dysregulation symp-
toms and cannot discern a causal role of the microbiome on such symptomatology.

FIG 2 CCA ordinations for functional composition of the microbiome, behavioral dysregulation, and caregiver behavior covariates. Only covariates that have
significant main effects or are part of a significant interaction are depicted in each ordination. Significance was assessed using PERMANOVA (� � 0.05). See
Tables S2c and d for statistical results. (A) Ordination of functional (KO level) composition. Each point represents a sample and is colored by the participant’s
impulsivity score. (B) Ordination of functional (KO level) composition; sample locations are identical to panel A. In this panel, the outer circle of the point is
colored according to the sample’s inhibitory control score, and the inner circle is shaded from white to black indicating the sample’s parent-child dysfunction
score. (C) Ordination of functional (KO level) composition; sample locations are identical to panels A and B. The color of the outer circle corresponds to the
sample’s depressive problems score, and the inner circle is shaded identically to panel B.
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Therefore, investigations are needed to determine if the microbiome indeed drives the
symptomatologic variation observed here.

The quality of the caregiver-child relationship moderates the association be-
tween socioeconomic risk and both the structure and functional capacity of the
gut microbiome. As shown in Fig. 1A and B (Tables S2a and b), both the taxonomic
structure and functional capacity of the gut microbiome varied as a function of how
parent-reported parent-child dysfunction related to two metrics of socioeconomic risk:
income-to-needs ratio in the case of microbiome structure, and family turmoil in the
case of microbiome functional capacity. These results are consistent with prior literature
showing that both economic and social forms of adversity associate with different
microbial profiles (31–33) and underscore the potential for caregivers to affect how
socioeconomic risk exposure impacts the developing gut microbiome. For example,
adverse postnatal environments that are often comorbid with socioeconomic risk, such

FIG 3 A network representing statistically significant pairwise associations, according to generalized linear models, between individual taxa and behavioral
dysregulation or socioeconomic risk covariates. The left column shows individual behavioral dysregulation. The middle column shows individual taxa identified
to the species level. The right column shows individual socioeconomic risk covariates. Lines are drawn between a covariate and a taxon only if there is a
significant relationship. The color of the line represents whether the association between the covariate and taxon is negative (blue) or positive (red). The width
and intensity of the line color represent the slope of the regression line that describes the association (steeper regression lines are wider and brighter).
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FIG 4 A network representing statistically significant pairwise associations, according to generalized linear models, between individual KOs (grouped
into modules) and behavioral dysregulation or socioeconomic risk covariates. The left column shows individual behavioral dysregulation. The middle

(Continued on next page)

Child Gut-Microbiome-Behaviors ®

January/February 2020 Volume 11 Issue 1 e02780-19 mbio.asm.org 9

https://mbio.asm.org


as frequent antibiotic use or toxicant exposure, associate with altered microbial com-
position and intestinal permeability (31, 34). Such differences in microbial exposure in
early development associate with different profiles of immune function (32). Our results
are further consistent with proposed models of how caregivers serve as protective
moderators of outcomes in children that face adversity (31, 32) and suggest that a
caregiver’s ability to buffer the effect of environmental stressors extends to the child’s
gut microbiome beyond the first few years of life.

The quality of the caregiver-child relationship moderates the association be-
tween measures of behavioral dysregulation and the gut microbiome’s functional
capacity. When we tested whether the relationship between the gut microbiome and
behavioral dysregulation was statistically moderated by the parent-child relationship,
our analyses only found significant associations for the functional capacity of the
microbiome (Fig. 2A to C; Table S2d). In this case, the nature of the relationship
between the functions encoded in the gut microbiome and two measures of behavioral
dysregulation— depressive problems and inhibitory control—were modified by the
quality of the parent-child relationship (a third behavioral dysregulation metric, impul-
sivity, had a significant main effect). This observation aligns with prior literature that
found that behavioral dysregulation in childhood spans internalizing (e.g., depression
and anxiety) and externalizing (e.g., impulsivity and aggression) dimensions (33). The
lack of any significant behavioral dysregulation for microbiome structure may indicate
either that this study is underpowered at the taxonomic level or that these relationships
are more dependent on the metabolic capabilities of the whole microbiome than
attributes associated with specific taxa. In either case, these patterns suggest that
intervening to improve the parent-child relationship may influence the functional
capacity of the microbiome more strongly than its taxonomic composition. Future work

FIG 4 Legend (Continued)
column shows functional groups assigned at the KEGG module level. The right column shows individual socioeconomic risk covariates. Lines are drawn
between a covariate and a module only if there is a significant relationship. The color of the line represents whether the association between the
covariate and module is negative (blue) or positive (red). The width and intensity of the line color represent the slope of the regression line that
describes the association (steeper regression lines are wider and brighter).

FIG 5 The results of our hypothesis testing using ordination-based analyses. White solid arrows indicate
relationships supported by evidence from prior psychological research. Black arrows represent the
relationship between the covariate categories and composition (taxonomic or functional) of the gut
microbiome as determined by our ordination- and PERMANOVA-based analysis (see Table S2). Straight
arrows represent significant main effects between the microbiome and a covariate category (e.g.,
between behavioral dysregulation and the functional composition of the microbiome). Arrows that curve
through caregiver behavior indicate that there is a significant interaction between caregiver behavior
and the other covariate category (e.g., our analysis revealed significant interactions between socioeco-
nomic risk and caregiver behavior in their association with the functional composition of the
microbiome).
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should seek to tease apart the mechanisms by which parenting behaviors may influ-
ence the microbiome in later periods of development.

As noted above, our use of correlative methods means that we cannot disentangle
the nature of the associations described here. For example, it is possible that socio-
economic risk and behavioral dysregulation symptoms moderate the association be-
tween the microbiome and caregiver behavior. Moreover, factors that potentially
confound caregiver behavior, such as the child’s diet (which we did take into account
in these models to a limited degree) and environmental exposure from socioeconomic
risk, are challenging to disentangle without nuanced study designs. While our study
cannot definitively conclude that the quality of caregiving impacts the microbiome’s
association with socioeconomic risk or behavioral dysregulation, it offers unique insight
that importantly guides future work designed to test these specific hypotheses.

Specific gut microbial taxa associate with socioeconomic risk and behavioral
dysregulation. To understand which specific gut taxa might link to the socioeconomic

risk and behavioral dysregulation covariates measured in our study, we conducted
pairwise comparisons between these covariate scores and the relative abundance of
each microbial taxon observed in the gut (Fig. 3; Table S3). The taxon that associated
with the greatest number of socioeconomic risk and behavioral dysregulation covari-
ates was Bacteroides fragilis. Interestingly, B. fragilis associated with reduced levels of
aggressive behavior, emotional reactivity, externalizing behavior, sadness, and impul-
sivity, as well as with an increase in inhibitory control (i.e., better mental health). B.
fragilis was also associated with lower reported incidents of family turmoil (and total
Life Events Checklist [LEC] score). These results are noteworthy because studies in mice
have found that B. fragilis modulates the immune system and protects against
pathogen-induced inflammation, specifically through the production of polysaccharide
A (30, 35). A close relative of B. fragilis, B. thetaiotaomicron, has also been shown to have
anti-inflammatory effects in the mammalian intestine (36); our study also finds that B.
thetaiotaomicron associates with decreases in anxiety problems and externalizing and
internalizing behaviors as well as the overall score for negative behavioral dysregula-
tion Child Behavior Checklist (CBCL) total. Recent psychological research links chronic
intestinal inflammation to depression and anxiety (37, 38). In light of these observa-
tions, we hypothesize that the anti-inflammatory properties of Bacteroides may impact
intestinal inflammation in children to subsequently influence behavior. Future work is
required to assess this hypothesis.

Our pairwise correlations identified three known butyrate-producing taxa—Copro-
coccus comes, Eubacterium rectale, and Roseburia inulinivorans—that associate with
various aspects of socioeconomic risk or behavioral dysregulation. The production of
butyrate from plant-derived polysaccharides by the gut microbiome is understood to
be an important mechanism through which high-fiber diets promote beneficial health
effects (39, 40). There are, however, only certain taxa that have the ability to produce
butyrate (41). Surprisingly, two of the butyrate-producing species in our samples, C.
comes and E. rectale, positively associated with elevated anxious depression and
reduced inhibitory control, respectively. This observation defies our expectation given
that prior animal work points to butyrate’s important role in maintaining gut health and
behavior dysregulation (42). It is possible that these taxa carry other functions that
overwhelm the effects of their butyrate production on symptoms of behavioral dys-
regulation, that overall butyrate production is reduced even though the relative
abundances of these two taxa are high in certain microbiomes, or that butyrate
production links to adverse behaviors under some contexts. On the other hand, the
third butyrate-producing taxon in our samples, R. inulinivorans, associated with a
decrease in depressive problems. This observation is consistent with prior literature that
suggests that increases in butyrate production improve overall mental health (42).
Future work should seek to disentangle butyrate’s specific role in mediating behavioral
dysregulation and how its production by different taxa or in conjunction with different
diets impacts this role, particularly with human developmental populations.
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Specific functions encoded in the gut metagenome associate with socioeco-
nomic risk and behavioral dysregulation. To determine if there exist specific func-
tional properties of the gut metagenome that link to socioeconomic risk and behavioral
dysregulation, we also used pairwise regression to associate measures of these cova-
riates with specific microbiome functions at the module and KO levels (Fig. 4; Table S4).
These microbiome functions can be broadly grouped into two major functional cate-
gories, functions that are putatively involved in inducing intestinal inflammation and
functions involved in the production of monoamine precursors.

We found significant associations between a number of patient covariates and
pathways involved in bacterial secretion systems, including the type II, III, and VI
secretion systems. In particular, the relative abundance of KOs assigned to these
secretion system modules significantly associated with the increase in scores for
aggressive behavior, anxiety problems, anxious depression, depressive problems, ex-
ternalizing behavior, anger frustration, and life events including family illness, family
separation, and turmoil. These secretion systems play a variety of roles but generally
function to impact how bacteria that carry these systems interact with other microbes
or their host. For example, the type II secretion system is common among Gram-
negative bacterial taxa and is a recognized virulence factor for many pathogens (43).
Likewise, the type III secretion system is a known virulence factor for pathogens such
as Salmonella (44) and Pseudomonas species (45). While not as well known as a host
antagonist, the more recently discovered type VI secretion system can mediate direct
competition between bacterial species within a community (46), modulate gut motility
in zebrafish (47), and induce inflammation in mice (48). In light of these observations,
we hypothesize that behavioral dysregulation may link to the emergence of a proin-
flammatory gut dysbiosis caused by invading pathogens or pathobionts. For example,
both Vibrio and Salmonella species can use secretion systems (types II and IV for Vibrio
and types III and VI for Salmonella) to both directly attack other bacteria and induce
inflammation in the host, which provides them an additional competitive advantage
(47, 49–51). Future studies are needed to elucidate whether these secretion systems
have direct or indirect effects on the gut-brain axis and which taxa in the gut carry
these systems.

Related to secretion, we also identified links between behavioral covariates and KOs
involved in the synthesis and transport of heme and/or iron. In particular, heme/iron-
associated KOs strongly correlated with fear scores as well as incidents of family turmoil.
Iron (often found within the host as organic heme), is a necessary element for all life
and a constant source of competition for gut microbes (52). Increases in the abundance
of heme/iron-associated functional modules associates with gut inflammation, partic-
ularly inflammatory bowel disease in both humans and mice (53, 54). These observa-
tions support the hypothesis that the functioning of gut microbes may influence
intestinal inflammation, which in turn impacts behavior. However, the associations
discussed here could also result from the growth of microbes that are effective at
sequestering heme that is deposited into the gut as a result of inflammation-induced
intestinal bleeding.

Intriguingly, we also found relationships between both socioeconomic risk and
behavioral dysregulation and microbial functions that have been implicated in modi-
fying behaviors or cognitive function in animal models. For example, these behavioral
covariates correlated with various KOs and modules involved in the metabolism of
monoamines that are often used as, or are common precursors to, neurotransmitters
and neurohormones. For example, two behavioral covariates, anxiety problems and
fear, positively associated with modules involved in the biosynthesis of melatonin from
the metabolism of tryptophan. Additionally, impulsivity, family illness, and family
separation associated with a module involved with tryptophan metabolism to kynure-
nine. Tryptophan is an essential amino acid, meaning it must be derived from the diet,
and therefore, the concentrations of available tryptophan can feasibly be altered by
microbial metabolism (55). Indeed, many studies in animal models have linked symp-
toms of depression and anxiety and the availability of peripheral tryptophan (37, 55,
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56). As a specific example, germfree mice have greater plasma concentrations of
tryptophan (55, 57), greater concentrations of hippocampal serotonin levels, and a
lower kynurenine to tryptophan ratio (a common marker of tryptophan degradation)
than do conventional mice (55). Furthermore, germfree mice were shown to have
reduced levels of anxiety, compared to conventional mice (55). This reduced anxiety
phenotype of germfree mice, along with their kynurenine to tryptophan ratio, normal-
ized after colonization with a conventional microbiome, presumably due to the intro-
duction of taxa capable of metabolizing tryptophan and making it unavailable to the
host (55). Based on these observations, we hypothesize that microbes that degrade
tryptophan can influence human behavior dysregulation at young ages.

Additionally, we resolved associations between behavioral covariates and the me-
tabolism of other notable monoamines, such as glutamate (58–60), leucine (59, 61), and
glutamine (62). Glutamate is the most abundant excitatory neurotransmitter in the
vertebrate central nervous system as well as the most abundant amino acid in verte-
brate diets (63). While dietary glutamate has not been linked to any neuropathology,
the excitatory effects of glutamate have been linked to neurodegenerative disorders
such as motor neuron disease (MND) or amyotrophic lateral sclerosis (ALS), Hunting-
ton’s disease, Parkinson’s disease, and Alzheimer’s disease (63). Another monoamine,
leucine, can relatively easily pass through the blood-brain barrier, where astrocytes
convert it into glutamate (64, 65). Glutamine is also a precursor to glutamate but is also
directly involved in the maintenance of a healthy gut and its response to injury (66). In
light of these observations, we posit that the microbiome influences the abundance of
these monoamines in a way that impacts the gut-brain axis.

Notably, these findings provide the foundation for future studies to replicate with
larger samples and to assess longitudinal changes to better tease apart causal rela-
tionships. This study offers a fundamental step toward translating animal models to
sensitive periods of human development, providing a proof of concept design to
determine if the microbiome is linked to behavioral dysregulation and socioeconomic
risk. Importantly, diet could be an important factor that confounds the relationships
between the gut microbiome and socioeconomic risk or parent behavior beyond what
we were able to measure within the scope of this study. Future work should build upon
these findings to specifically interrogate the impacts of diet. If diet proved to be a
mechanism driving these relationships, it could provide a targeted direction to include
within psychosocial intervention designs.

Conclusion. We tested associations between socioeconomic risk, child behavioral

dysregulation, and the microbiome in terms of both taxonomic structure and functional
potential in a cross-sectional sample of 5- to 7-year-olds. In doing so, we discovered
that not only are there significant associations between metrics of socioeconomic risk
and behavioral dysregulation with the microbiome, but that the quality of the parent-
child relationship (here parentally reported) and parental stress statistically moderated
these relationships. Furthermore, we uncovered associations between individual taxa
(e.g., B. fragilis) and functional groups (e.g., monoamine metabolism) within the micro-
biome and metrics of socioeconomic risk and behavioral dysregulation. These taxa and
functional groups represent potential mechanisms through which the microbiome
interacts with the psychosocial environment and, if replicated, potentially influence the
development of behavior.

The results of this study suggest that when examining the trajectory of child
psychological development, we need to consider biology, physiology, psychosocial
environment, and the microbiome. All of these factors can elicit mutual effects,
indicating that the way one factor impacts the psychological development of a child
may change depending on the nature of one or more of the other relationships. Future
studies, utilizing both human and animal models, should seek to tease apart specific
behavioral links with the microbiome and extend this design to a wider range of
behavioral symptomatology and socioeconomic risk.
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MATERIALS AND METHODS
Sample Collection. Parents were instructed to collect a small stool sample from their child using a

clean plastic collection device and OMNIgene-Gut collection tube (DNA Genotek, Ottawa, ON, Canada).
Collection tubes were packaged and mailed at ambient temperature to the University of Oregon
(Eugene, OR), where they were transferred to – 80°C upon receipt. See Supplemental Methods for greater
detail, including measures of diet and health.

Questionnaires. Socioeconomic risk was indexed using metrics of socioeconomic status and the Life
Events Checklist (LEC) (67). The Life Events Checklist was used to provide an index of adverse home
environment exposure. This provides a total score and subscales to identify specific components of
adverse life events. Subscales included poverty, turmoil, family illness, neighborhood violence, family
separation, and an overall total score. Household poverty was indexed by the income-need ratio. See
Supplemental Methods for the range, mean, and SD of subscales.

Behavioral dysregulation was indexed using two previously validated parent-report measures, the
Child Behavior Questionnaire (CBQ) (68) and the Child Behavior Checklist (CBCL) (69). Given that
childhood is a period in which behavioral dysregulation symptoms share common risk factors and less
differentiation across both internalizing and externalizing dimensions of disorders than typically dis-
cussed in adult samples, we included both internalizing (e.g., depression, anxiety) and externalizing (e.g.,
inhibitory control, aggression) symptoms in our analyses. Subscales of interest included anxiety prob-
lems, depression, emotional reactivity, anxious depressed, internalizing total, aggressive behavior, ex-
ternalizing total, overall total score, and inhibitory control. See Supplemental Methods for the range,
mean, and SD of subscales.

Caregiver behavior was indexed via the parent reports Parenting Stress Index (PSI) (70) and Inter-
personal Mindfulness in Parenting (IEM-P) (71) and the Five Factor Mindfulness Questionnaire (FFMQ)
(72). These questionnaires provided a range of perceived parental stress and wellbeing, both in general
and within the parent-child relationship. See Supplemental Methods for the range, mean, and SD of
subscales.

DNA extraction and sequencing. DNA was extracted from 250-�l aliquots of the OMNIgene-Gut
samples using the MoBio PowerLyzer PowerSoil kit (Qiagen, Hilden, Germany) with the following
protocol modifications: following the addition of solution C1, a 1-minute bead-beating step was
performed on a Mini-BeadBeater-96 (BioSpec Products, Bartlesville, OK, USA), followed by a 10-minute
incubation at 65°C; in the final step, DNA was eluted in two stages for a combined total of 100 �l.

Metagenomic analyses. Raw metagenome sequences were prepared for analysis using the Shot-
cleaner workflow (73), which follows the Human Microbiome Project Consortium data processing
guidelines (74). All raw sequences can be accessed through the NCBI at BioProject PRJNA496479, and the
code for all of the analyses can be accessed at https://github.com/kstagaman/flannery_stagaman
_analysis.

Briefly, low-quality sequences were trimmed or removed, sequences matching the human genome
were discarded, and identical sequences were collapsed into a single read. As an additional quality
control, we removed 3 of 40 fecal samples due to poor sequencing coverage (coverage range of removed
samples, 19,013 to 23,743 sequences; coverage range of remaining samples, 3,499,106 to 15,776,004
sequences). These high-quality sequences were then run through Shotmap (73) to quantify KEGG
orthology (KO) group relative abundance and Metaphlan2 to quantify taxon relative abundance (75). All
resulting data and the sample metadata were analyzed in R (76).

We applied a data reduction technique to minimize the number of covariates considered in our
subsequent analyses. This process is important to reduce the potential for model overfitting given the
large number of covariates relative to the number of samples measured in our study. Using the ordinate
function from the phyloseq package (77), we generated a principal-coordinate analysis (PCoA) ordination
based on the Bray-Curtis dissimilarities for both the functional (KO) and taxonomic communities (Fig. S2).
Briefly, we applied the envfit function (78) to Bray-Curtis dissimilarity-based PCoAs of microbiome
taxonomy (species level) or functional capacity and identified covariates that explained a significant
amount of variation across individuals (Fig. S3 and S4). This process identified a set of 17 significant
covariates for taxonomic composition and 10 covariates for functional composition of the microbiome,
with many of the selected covariates overlapping between the two groups. This finding is unsurprising
given the strong correlation between taxonomic and functional beta-diversity (Procrustes r � �0.84,
P � 0.0001; Table S4). The significant covariates used in our successive analyses are defined in Table 1.
See Supplemental Methods for additional details.

We utilized a constrained correspondence analysis (CCA; cca function) (78) to determine the variance
in microbiome composition (functional and taxonomic) that covariates within the socioeconomic risk,
child behavioral dysregulation, and caregiver behavior categories explained. The CCA method is useful
in this case because it allowed us to first account for the variance in microbiome composition explained
by demographic, gut-related, and dietary covariates, which might otherwise confound our analysis,
before assessing the variance explained by the covariates of interest for this study. We assessed the
significance of associations between the selected covariates and the microbiome using a permutational
ANOVA (PERMANOVA) analysis (anova.cca function) (78) on the resulting CCA ordination.

To determine if the envfit-selected caregiver behavior covariate parent-child dysfunction interacted
with either the socioeconomic risk or child behavioral dysregulation covariates, we first built CCA models
(one for socioeconomic risk and one for child behavioral dysregulation) with all possible covariate
interactions. However, this produced large models that reduced our chance of finding real, significant
associations due to the number of terms. Therefore, before running a PERMANOVA test, we subjected
each CCA object to model selection based on the Akaike information criterion (AIC) by stepwise addition

Flannery et al. ®

January/February 2020 Volume 11 Issue 1 e02780-19 mbio.asm.org 14

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA496479
https://github.com/kstagaman/flannery_stagaman_analysis
https://github.com/kstagaman/flannery_stagaman_analysis
https://mbio.asm.org


or subtraction of terms (ordistep function) (78). The model selected using this method was then analyzed
using PERMANOVA to determine if there were significant associations between covariate interactions
and the microbiome. All of these computational methods are available as supplemental data.

The above methods can analyze the relationships between the covariates of interest and the overall
composition of the microbiome (in terms of taxonomy and functional potential), but they may miss
important relationships between covariates and individual taxa or microbial functions. To determine if
such relationships exist in this data set, we conducted pairwise regressions between the abundance of
each taxon or KO and each socioeconomic risk and child behavioral dysregulation covariate. We included
in each regression model the same demographic, gut-related, and dietary terms to account for their
variance as well. The regression method used was a compound Poisson generalized linear model
(CPGLM) (79), which uses a distribution that has a point mass over zero, allowing it to better handle the
sparseness of functional and taxonomic community data (53). After all pairwise regressions, we adjusted
the P values using the false discovery rate (FDR) with a cutoff of q � 0.05. We then removed any pairs
where the taxon or KO was absent from half of the samples or more and presented the results in Tables
S3 and S4.
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