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ABSTRACT: A H(C)Rh triple resonance NMR experiment makes the rapid detection of 103Rh chemical shifts possible, which were
previously beyond reach. It served to analyze a series of dirhodium and bismuth−rhodium paddlewheel complexes of the utmost
importance for metal−carbene chemistry. The excellent match between the experimental and computed 103Rh shifts in combination
with a detailed analysis of the pertinent shielding tensors forms a sound basis for a qualitative and quantitative interpretation of these
otherwise (basically) inaccessible data. The observed trends clearly reflect the influence exerted by the equatorial ligands
(carboxylate versus carboxamidate), the axial ligands (solvents), and the internal “metalloligand” (Rh versus Bi) on the electronic
estate of the reactive Rh(II) center.

For a shift range on the order of 12.000 ppm, 103Rh NMR
spectroscopy is, a priori, a cardinal tool to probe the

electronic nature of a given rhodium complex. It allows even
small electronic and geometric changes in the coordination
sphere to be detected, which are difficult, if not even
impossible, to assess otherwise.1−4 Its exceptional responsive-
ness to the chemical environment notwithstanding, 103Rh
NMR is not nearly as routinely used by practitioners as one
might assume. An extremely low gyromagnetic ratio in
combination with often unduly long relaxation times5 offsets
the inherent advantages of 103Rh as an I = 1/2 nucleus of 100%
natural abundance.6−8 2D inverse detection techniques based
on polarization transfer, most notably HMQC experiments, are
the currently best way to overcome this massive hurdle
(Scheme 1); they mandate, however, that a sensitive nucleus
(1H or 31P) is (directly) coupled to the Rh-center, which in
turn limits the types of complexes that can be covered.1−4

Because dirhodium tetracarboxylate complexes lack these
requirements, such “paddlewheel” compounds have basically
defied scrutiny by 103Rh NMR spectroscopy despite their
paramount importance in (asymmetric) carbene chemistry and
beyond.9−21 Not even the 103Rh chemical shifts of bare
unquenched [Rh2(OAc)4] (1) or [Rh2(OTfa)4] (6) are

known,22−27 which are the parent members of this series and
the starting points for the preparation of innumerous chiral
variants by ligand exchange. Outlined below is a convenient
NMR experiment that applies to these and other rhodium
complexes that were previously beyond reach. A combined
experimental and computational approach helps to interpret
the now available shift data and in so doing provides insights
into the electronic nature of these valuable catalysts.28−30

The key to success was the adaptation of a proton-detected
triple resonance experiment to the current problem, which
draws its high sensitivity from the initial excitation and the final
detection of 1H (Scheme 1).31 After extensive testing, a pulse
sequence introduced by Mobley and co-workers was found to
give the best results (Figure 1).32−35 In the essence, intensive
nuclei enhancement by polarization transfer (INEPT) is used
for a first magnetization transfer from 1H to 13C as the relay
atom, followed by a heteronuclear multiple quantum
correlation (HMQC) transfer from 13C to 103Rh.36

[Rh(acac)3] was chosen for the initial tests because the early
literature explicitly stated that the 103Rh shift of this compound
can only be determined by direct observation.7 The triple
resonance experiment clearly proves this wrong; it was
optimized for magnetization transfer from the protons to the
CO signal (δC = 188.8 ppm, JC,H = 4 Hz) and from 13C to
103Rh (JC,Rh = 1.1 Hz).38 The spectrum shown in Figure 2 was
recorded in 4 min with a 10 mM solution in CDCl3 using
nonuniform sampling in the indirect dimension; this result is
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Scheme 1. Established and New Methods for the
Determination of 103Rh Chemical Shifts

Communicationpubs.acs.org/JACS

© 2021 The Authors. Published by
American Chemical Society

12473
https://doi.org/10.1021/jacs.1c06414

J. Am. Chem. Soc. 2021, 143, 12473−12479

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabio+P.+Calo%CC%81"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Giovanni+Bistoni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexander+A.+Auer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Markus+Leutzsch"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alois+Fu%CC%88rstner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.1c06414&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c06414?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c06414?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c06414?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c06414?goto=supporting-info&ref=pdf
https://pubs.acs.org/toc/jacsat/143/32?ref=pdf
https://pubs.acs.org/toc/jacsat/143/32?ref=pdf
https://pubs.acs.org/toc/jacsat/143/32?ref=pdf
https://pubs.acs.org/toc/jacsat/143/32?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c06414?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c06414?fig=sch1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacs.1c06414?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


deemed remarkable in view of a T1-relaxation time of 39 s (at
9.4 T and 310 K).5 The known temperature-dependence of the
resonance (1.6 ppm/K) could be easily verified.1,37

The situation in [Rh2(OAc)4] is slightly more involved
because the magnetization will be transferred from one C atom
to two chemically equivalent Rh centers. In contrast to a
mononuclear complex where the magnetization transfer
efficiency of the HMQC step is Δ2 = 1/(4 × JCRh), the
optimal delay for an IS2 system is theoretically Δ2 = 1/(8 ×
JCRh).

39 In our case, however, best results were obtained with
Δ2 = 1/(12 × JCRh) (see the Supporting Information). Under
these conditions, excellent spectra were recorded with 10−15
mM solutions of isotopically unlabeled [Rh2(OAc)4] in [D3]-
MeCN with a ≤15 min acquisition time regardless of whether
the magnetization transfer pathway I or II was chosen (Figure
3).40 Once again, the strong temperature-dependence of the
signal (1.33 ppm/K) was easily proven.41

Because acetonitrile acts as kinetically labile ligand to the
axial coordination sites on the dimetallic cage of 1, the effect of
different solvents was evaluated (Scheme 2A). The recorded

data suggest that [D8]-THF and [D6]-acetone as supposedly
weaker donors than MeCN cause a “deshielding” of the signal,
whereas the analogous (catalytically inactive) adduct 1·PPh3
has a notably lower shift.42−44

Next, the influence of the bridging carboxylate ligands was
studied more systematically. To this end, all possible
(heteroleptic) dirhodium acetate and trifluoroacetate com-
plexes (1−6) were prepared and analyzed (Scheme 2B).45,46

The recorded data provide a dramatic illustration of the
sensitivity of 103Rh chemical shifts to changes in the periphery
of the nucleus; remote fluorination entails incremental
deshielding over a range of no less than 380 ppm. Qualitatively,
increased electrophilicity at the rhodium seems to come along
with higher δRh; to scrutinize this aspect, this particular set of
complexes was chosen for a detailed computational analysis
(see below).
Numerous other dirhodium tetracarboxylate complexes

could be analyzed equally well (Figure 4). The recorded δRh

Figure 1. H(C)Rh pulse sequence. The phase cycling scheme is as
follows: x = pulses without a defined phase; Φ1 = x, x, x, x, −x, −x,
−x, −x; Φ2 = y; Φ3 = x, −x; Φ4 = x, x, −x, −x; Φrec = x, −x, −x, x.
Gradient ratios are as follows: for concentrated samples, G1 = 75%, G2
= 32%, and G3 = 14.2%; for diluted samples, G1 = G2 = 80%, G3 =
5.1%, gmax = 51.3 G/cm, Δ1 = 1/(4 × JCRh); Δ2 = 1/(4 × JCRh) for
monomeric Rh complexes, Δ2 = 1/(12 × JCRh) for dinuclear Rh(II)
paddlewheel complexes.

Figure 2. (a) 13C{1H} NMR signals of Rh(acac)3. (b) H(C)Rh
spectrum of Rh(acac)3 (10 mM). (c) 103Rh chemical shift of
Rh(acac)3 at temperatures between 223 and 323 K; the left axis shows
the 103Rh chemical shift referenced according to IUPAC recom-
mendations (saturated Rh(acac)3 in CDCl3 (δ = 0 ppm), Ξ(103Rh) =
3.186447%), and the right axis uses the commonly applied reference
(Ξ(103Rh) = 3.16%)).37

Figure 3. (a) 13C{1H} NMR signals of [Rh2(OAc)4] (1) in CD3CN.
(b) Magnetization transfer pathways. (c) H(C)Rh spectra (15 mM)
using pathway I or II.

Scheme 2. Two Different Test Sets Showing the Influence of
the (A) Axial and (B) Equatorial Ligands
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shifts can be correlated with the pKA values of the parent
acids,47 which capture their donor strengths. Yet, all data fall
into a fairly “narrow” shift window (especially if one disregards
the highly fluorinated derivatives 5 and 6), which indicates that
the electronic character of the dirhodium core barely changes.
One can hence safely conclude that peripheral modifications of
the paddlewheels, as practiced in asymmetric catalysis, will
hardly change the electronic nature of the catalyst and the
derived selectivity-determining transition state.
The “modest” shift range of the tetracarboxylate complexes

is best appreciated by a comparison with dirhodium
paddlewheels comprised of one or more N-based ligands
(Scheme 3A).48 The arguably most instructive example is the
heteroleptic complex 16, since the incorporation of a single
−NH group sets the signals of the now chemically different Rh

sites >1000 ppm apart. This finding has implications for
catalysis, as a chiral relative of 16 was recently shown to be
uniquely effective in asymmetric cyclopropanation reactions of
α-stannyl(silyl) α-diazoesters.49 Indirect evidence suggested
that these reactions proceed at the rhodium face carrying the
protic −NH group, which according to the shift data is the
(much) less electrophilic site; this conclusion clearly mandates
further scrutiny. In any case, 103Rh NMR makes it
unambiguously clear that carboxylate- and carboxamidate-
based paddlewheel complexes are very distinct types of
catalysts in electronic terms.48

A similar conclusion must be drawn for heterobimetallic
[BiRh]-paddlewheel catalysts.50−53 They are known to afford
much more electrophilic carbene complexes and perform
particularly well in asymmetric cyclopropanation reac-
tions.53−56 That the 4d orbitals of the Rh(+2) center will
sense the incorporation of the sixth-row main group element
bismuth as a “metalloligand” is obvious; shift differences of
again up to 1000 ppm showcase the magnitude of the effect
(Scheme 3B).46

Case studies are known in the literature in which the shift of
rhodium complexes (or derived reactive intermediates) could
be correlated with catalytic performance, but the number is
conspicuously small.2,57−63 With the technical problems in
recording pertinent 103Rh NMR spectra come the challenges in
interpreting the data, as many different parameters play roles
that often prove difficult to disentangle1−3 even by computa-
tional means.64−66 Arguably, however, dirhodium tetracarbox-
ylate complexes in general and the comprehensive subset 1−6
in particular are ideally suited for this type of analysis. They all
are comprised of the same rigid “lantern” core, and changes in
the bite angles and the Rh−O distances are small and
secondary interactions within the ligand sphere minute. Hence,
the incremental shift changes when going from [Rh2(OAc)4]
(1) to [Rh2(OTfa)4] (6) basically reflect electronic rather than
geometric changes. A qualitative comparison was therefore
deemed legitimate, and a quantitative analysis of the relevant
shielding tensors was facilitated because the principal axes
coincide in all cases.
Contingent upon the careful optimization of the geometries,

the computed shift values reproduce the experimental values
remarkably well (Table 1).67−71 Differences of no more than
0−36 ppm (on a scale of 12.000 ppm) imply that the chosen
level of theory provides an accurate description of complexes

Figure 4. Additional 103Rh chemical shift data (298 K, referenced to
Ξ(103Rh) = 3.16%) and correlation with the pKA of the parent
carboxylic acids.

Scheme 3. 103Rh Chemical Shifts of Carboxamidate-Based
and Heterobimetallic Complexes

Table 1. Comparison between Computed and Experimental
103Rh Chemical Shiftsa,b

complex δexp δcalc q HOMO LUMO ΔE
1 0 0 −0.504 −0.1882 −0.0601 0.1281
2 78 80 −0.492 −0.1953 −0.0709 0.1244
3 161 152 −0.48 −0.2053 −0.0790 0.1263
4 184 169 −0.48 −0.2030 −0.0828 0.1202
5 269 275 −0.467 −0.2133 −0.0906 0.1227
6 382 346 −0.455 −0.2238 −0.0997 0.1241

aThe shift of compound 1 (δRh = 7301 ppm) served as a reference.
bGeometry optimization is as follows: B3LYP-D3/def2-TZVPP,
CPCM (MeCN)). NMR shifts are as follows: GIAO-ZORA-
TPSSh/decontracted SARC-ZORA-TZVPP (Rh), def2-TZVPP
(other nuclei), CPCM(MeCN); q is the Löwdin atomic charges at
Rh; and ΔE is the HOMO − LUMO gap.
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of this type. Based on this solid foundation, a more detailed
analysis is possible and warranted.
As shown above, increasing the fluorination of the acetate

ligands causes deshielding. The reduced donor ability of the
fluorinated ligands renders the complexes increasingly electro-
philic; indeed, the computed 103Rh chemical shifts can be
correlated with the partial charge at Rh (Table 1). Although
this picture is intuitive and may provide rough guidance for the
practitioner, it isat leastoversimplified. Note that the
computed energy of the LUMO decreases when going from 1
to 6, as expected, but the energy of the HOMO drops to a
similar extent such that ΔE remains essentially constant. The
HOMO − LUMO gap alone does obviously not explain the
observed results.
NMR shifts are neither primarily determined by the charge

at the metal nor solely by the frontier orbitals. Rather, a
chemical shift is an anisotropic property (even though solution
NMR spectroscopy provides only the isotropic shift (δiso = (δ11
+ δ22 + δ33)/3). Computational methods allow the individual
components of the shielding tensor σ (δii = σiso,ref − σii) to be
deconvoluted; it is the paramagnetic term (σ = σdia + σpara) that
largely determines the shift of a transition metal nucleus.72

The paramagnetic contributions arise from magnetically
induced admixture of electronically excited states into the
electronic ground state by the angular momentum operator
(L̂i) as described by the Ramsey equation (see the Supporting
Information).73 Deshielding in the direction σii,para depends on
which orbitals ϕocc and ϕvir can be coupled via L̂i and on their
relative energies: the smaller the energy gap, the larger the
effect.
For complexes 1−6, the dominant contributions to σii,para

stem from interactions of the key frontier orbitals (Figure 5).

As expected, all MOs are delocalized over both Rh centers.
Due to symmetry, the only nonzero contributions to the σzz,para
component stem from the coupling of the virtual orbitals with
the HOMO − 2 (dxy), which is delocalized over the ligands on
both axes. As a consequence, σzz,para is always affected by
fluorination, irrespective of the position of the halogen atoms.
The largest contributions to σyy,para originate from the coupling
of the virtual orbitals with the HOMO − 1 (dxz) orbital, which
is mostly delocalized over the ligands on the x-axis. Similarly,
the largest contributions to σxx,para originate from the coupling
of the virtual orbitals with the HOMO (dyz) orbital, which is
mostly delocalized over the ligands on the y-axis. Hence, σyy,para
and σxx,para mainly respond to fluorination on the perpendicular

x- and y-axes, respectively. Figure 6 illustrates this effect, as
only δzz,para shows a near linear correlation with the total

chemical shift and increases with the increasing fluorination; in
contrast, δyy,para is roughly constant for 1, 2, and 4, all of which
are nonfluorinated along the x-axis, while δxx,para is basically
constant for complexes 4, 5, and 6, which are fully fluorinated
along the y-axis. Analysis of a given shielding tensor hence
provides information about the donor strength of the ligand at
the perpendicular position of the lantern core.
The subtleties within this series notwithstanding, one will

hardly go wrong in assuming that the ≈880 ppm shift
difference between [Rh2(OAc)4] (1) and [BiRh(OAc)4] (21)
bears witness of a drastically different electronic character
(Scheme 3). An accurate assessment requires the same kind of
analysis as outlined above for the (partly) fluorinated
complexes; qualitatively, however, the massive upfield shift
suggests that the Rh center, which is the catalytically relevant
site of 21,53,56 is (much) less electrophilic. The situation in the
heteroleptic species 16 is similarly intuitive; because of its
relevance, however, a more detailed profiling is subject to
ongoing studies. Likewise, we are using the H(C)Rh triple
resonance experiment for investigations into other previously
uncompliant rhodium complexes, including (highly) reactive
intermediates.74−77 Pertinent results will be reported in due
course.
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Figure 5. Relevant molecular orbitals of 1 (the associated irreducible
representation in the C2v molecular point group and the Rh d orbital
associated with each MO are shown in brackets).

Figure 6. (Top) Principal axis of the shielding tensor of Rh. (Bottom)
The paramagnetic contribution to each principal component of the
shielding tensor for complexes 1−6.
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