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Abstract: Diffusion tensor imaging (DTI) studies have revealed group differences in white matter between
patients with obsessive-compulsive disorder (OCD) and healthy controls. However, the results of these stud-
ies were based on average differences between the two groups, and therefore had limited clinical applicabil-
ity. The objective of this study was to investigate whether fractional anisotropy (FA) of white matter can be
used to discriminate between patients with OCD and healthy controls at the level of the individual. DTI
data were acquired from 28 OCD patients and 28 demographically matched healthy controls, scanned using
a 3T MRI system. Differences in FA values of white matter between OCD and healthy controls were exam-
ined using a multivariate pattern classification technique known as support vector machine (SVM). SVM
applied to FA images correctly identified OCD patients with a sensitivity of 86% and a specificity of 82%
resulting in a statistically significant accuracy of 84% (P � 0.001). This discrimination was based on a distrib-
uted network including bilateral prefrontal and temporal regions, inferior fronto-occipital fasciculus, superior
fronto-parietal fasciculus, splenium of corpus callosum and left middle cingulum bundle. The present study
demonstrates subtle and spatially distributed white matter abnormalities in individuals with OCD, and pro-
vides preliminary support for the suggestion that that these could be used to aid the identification of individ-
uals with OCD in clinical practice. Hum Brain Mapp 35:2643–2651, 2014. VC 2013
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INTRODUCTION

Obsessive-compulsive disorder (OCD), a chronic anxiety
disorder characterized by repetitive thoughts and behav-
iors, has a lifetime prevalence of 2–3% [Kessler et al.,
2005]. In China, most OCD patients are at the moderate or
severe stages [Phillips et al., 2009] and show impaired
social and occupational functioning compared with other
anxiety or unipolar mood disorders [Torres et al., 2006].
At present there are no laboratory tests for OCD and the
diagnosis is made using a standard clinical interview
[Abramowitz et al., 2009]. The limited efficacy of tradi-
tional selective serotonin reuptake inhibitors in OCD sug-
gests that the serotonin paradigm does not fully explain
the neurobiology of this disorder [Macmaster, 2010]. There
is therefore an urgent need for a better understanding of
the pathophysiology of OCD, which could inform the
development of new effective treatments.

In recent years, the success of neuroimaging in defining
the neural correlates of OCD has raised hopes that struc-
tural or functional biomarkers for this disorder may be
found [Linden and Fallgatter, 2009]. In particular, neuroi-
maging has revealed evidence of the involvement of corti-
costriatal circuits in OCD, including reduced activation in
orbitofrontal cortex [Chamberlain et al., 2008], reduced
grey matter density in orbitofrontal and dorsolateral pre-
frontal cortices, and increased grey matter density in the
putamen [Rotge et al., 2009b]. Because these nodes of the
corticostriatal circuit are interconnected by white matter
tracts, it has been hypothesized that disruption of the con-
nections between frontal cortex and striatum may contrib-
ute to the early pathophysiology of OCD [Gruner et al.,
2012; Lim and Helpern, 2002]. Consistent with this hypoth-
esis, a recent family-based gene association study has indi-
cated an essential role for white matter abnormalities in
the etiology of OCD [Stewart et al., 2007], and neuroimag-
ing studies using diffusion tensor imaging (DTI) have
found abnormalities in corpus callosum, frontal and occi-
pital white matter [Li et al., 2011; Menzies et al., 2008b;
Szeszko et al., 2005; Yoo et al., 2007]. However, the results
of these studies were based on group-level statistics that
do not permit evaluation of the discriminative power of
these abnormalities at the individual level [Soriano-Mas
and Pujol, 2007]; these results have thus had little or no
impact on clinical practice.

In recent years, there has been an increasing interest in
the use of multivariate pattern analysis (MVPA) for ana-
lyzing neuroimaging data [Dosenbach et al.]. MVPA
involves the use of powerful pattern classification algo-
rithms to extract spatial and=or temporal patterns from
neuroimaging data, and uses this information to categorize
individual observations into different categories [Lao et al.,
2004]. Compared with traditional mass-univariate
approaches, MVPA allows inferences at the level of the
individual rather than the group, and as such has greater
clinical applicability. In addition, MVPA has the advantage
of taking into account interregional correlations, and there-

fore may be more sensitive to subtle spatially distributed
differences [Pereira et al., 2009].

In this study, we used a specific MVPA approach
known as support vector machine (SVM). In SVM the clas-
sification of individual observations into different catego-
ries has two main phases: firstly, an SVM algorithm is
trained on a well-characterised sample to establish the
hyperplane in a high-dimensional space which best distin-
guishes the different categories (in this case, patients and
controls); secondly, once the optimal hyperplane is devel-
oped from the training data, it can be applied to new
“testing” data to establish its generalizability [Noble,
2006].

Previous studies using SVM have shown that DTI
allows the identification of individual patients with Hun-
tington’s disease [Kl€oppel et al., 2008], mild cognitive
impairment [Haller et al., 2010] and Alzheimer’s disease
[Gra~na et al., 2011]. To our knowledge, however, no previ-
ous study has used SVM to investigate white matter alter-
ations in OCD, and therefore it is unknown whether this
would allow the identification of individual OCD patients.
Our aims in the present study were two-fold: first, we
examined whether the application of SVM to fractional
anisotropy (FA) values, as an index of white matter integ-
rity, would allow accurate discrimination between patients
with OCD and healthy controls; secondly, we investigated
which white matter regions contributed to such
discrimination.

MATERIALS AND METHODS

Participants

The study was approved by the ethical committee of
West China Hospital of Sichuan University, and written
informed consent was obtained from all participants.
Twenty-eight OCD patients were recruited from the Men-
tal Health Center, West China Hospital, Sichuan Univer-
sity, Chengdu, China. Diagnosis was confirmed using the
Structured Clinical Interview for DSM-IV Axis I disorders
by two experienced psychiatrists. The patients had no his-
tory of previous neurological disorders, psychosurgery,
substance abuse or dependence, and there was no evi-
dence of pregnancy or any substantial physical illness
from clinical evaluation and medical records. The Yale–
Brown Obsessive Compulsive Scale (Y–BOCS) was used to
rate the severity of OCD symptoms, whereas the 14-item
Hamilton Anxiety Rating Scale (HARS) and 17-item Ham-
ilton Depression Rating Scale (HDRS) were used to rate
anxiety and depressive symptoms respectively. Twenty-
eight healthy controls matched to the patients for age and
sex were recruited from the local community by poster
advertisement, and screened using the Structured Clinical
Interview for the DSM-Non-Patient edition (SCID-NP) to
confirm lifetime absence of psychiatric and neurologic ill-
ness, and no history of psychiatric illness in their first-
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degree relatives. All participants were reported to have no
gross abnormalities on conventional brain MRI images by
two experienced radiologists.

Image Acquisition and Preprocessing

Participants were scanned using a 3T MR imaging system
(EXCITE, General Electric) with an 8-channel phased array
head coil. Cushions restricted head movements, and partici-
pants wore earplugs. DTI images were obtained using a
single-shot echo-planar imaging sequence in 50 axial planes
with 15 noncollinear diffusion sensitization gradients (b 5

1,000 s=mm2), and a reference image with no diffusion
weighting (b0 image), using array spatial sensitivity encod-
ing to reduce susceptibility and eddy-current artifacts [Reese
et al., 2003]. Imaging parameters were: repetition time=echo
time (TR=TE) 12,000=70.8 ms; slice thickness 3 mm (no slice
gap); number of excitations 2; matrix 128 3 128; FOV 240 3

240 mm2; voxel size 1.875 3 1.875 3 3 mm3. DTI was per-
formed using axial sections parallel to the anterior–posterior
commissural line to cover the entire brain. As an anatomical
reference for normalization, high resolution T1-weighted
images were acquired using a 3D spoiled gradient recalled
(SPGR) sequence (TR=TE, 8.5=3.4 ms; 156 slices with thick-
ness 1 mm; flip angle 12�; matrix 256 3 256; FOV 240 3 240
mm2; voxel size 0.47 3 0.47 3 1 mm3).

DTI-Studio version 3.0.3 (http:==cmrm.med.jhmi.edu=)
was used to calculate parametric maps of FA value. After
images acquisition, the echo planar distortions induced by
eddy-current were corrected using an affine transforma-
tion algorithm. Image preprocessing was performed with
SPM8 software (http:==www.fil.ion.ucl.ac.uk=spm) running
in MATLAB R2011a. Each subject’s b0 image was coregis-
tered with their structural T1 image, and the same coregis-
tration parameters were applied to the FA maps (in the
same space as the b0 images). Each T1 image was normal-
ized to the SPM8 T1 template in Montreal Neurological
Institute standard space, then the normalization parame-
ters were applied to the coregistered FA images and each
voxel was resampled to 2 3 2 3 2 mm3. The normalized
FA images were smoothed using an isotropic Gaussian fil-
ter (8-mm full width half-maximum).

Support Vector Machine Analysis

SVM [Vapnik, 1995] was implemented using PROBID (Pat-
tern Recognition of Brain Image Data) software
(http:==www.brainmap.co.uk=probid.htm) version 1.04. Indi-
vidual DTI scans were treated as points located in a high
dimensional space defined by the FA values in the prepro-
cessed images. A linear decision boundary in this high
dimensional space was defined by a “hyperplane” that sepa-
rated the individual brain scans according to a class label
(i.e., patients vs. controls). The optimal hyperplane was com-
puted based on the whole multivariate pattern of FA values
across each DTI image. Specifically, a classifier is derived by
providing examples of the form <x, c> to find a hyperplane

that best separates the input space, where x represents the
input data (e.g., FA map) and c is the class label (in this case
patients vs. controls). A linear rather than a non-linear kernel
SVM was used in order to reduce the risk of overfitting the
data and to allow direct extraction of the weight vector as an
image (i.e., the SVM discrimination map). The PROBID soft-
ware allows a linear kernel matrix (measuring similarity
between all pairs of brain images) to be precomputed and
supplied to the classifier; the similarity measure is simply
the dot product between input vectors in feature space. This
approach affords a substantial increase in computational effi-
ciency and permits whole-brain classification without requir-
ing explicit dimensionality reduction [Maji et al., 2008]
(nonlinear kernels do not increase predictive accuracy [Cox
and Savoy, 2003; LaConte et al., 2005]). The linear kernel has
just one parameter (C) that controls the trade-off between
having zero training errors and allowing misclassifications;
this parameter was fixed at C 5 1 for all cases (default
value) in accordance with previous neuroimaging studies
(e.g. [Mourao-Miranda et al., 2007]). It should be acknowl-
edged, however, that the value of this parameter can have a
potentially substantial impact both on the model’s prediction
accuracy and the reproducibility of its spatial discrimination
pattern; this is an outstanding methodological issue which is
discussed in detail elsewhere [Rasmussen et al., 2012]. In the
present study, to exclude gray matter regions from the SVM
analysis, we used a binary white matter mask. A more
detailed description of the SVM can be found in the previous
reports [Pereira et al., 2009; Vapnik, 1995].

Consistent with previous studies [Gong et al., 2011;
Modinos et al., 2012], a “leave-one-out” cross-validation
method was used which involved excluding a single sub-
ject from each group and training the classifier using the
remaining subjects; the subject pair excluded were then
used to test the ability of the classifier to reliably distin-
guish between categories (i.e. patients vs controls). This
procedure was repeated for each subject pair in order to
assess the overall accuracy of the SVM [Hastie et al., 2001;
Pereira et al., 2009]. Statistical significance of the overall
classification accuracy was determined by permutation
testing [Nichols and Holmes, 2002; Ojala and Garriga,
2010]; this involved repeating the classification procedure
1000 times with a different random permutation of the
training group labels; the number of permutations achiev-
ing higher sensitivity and specificity than the true labels
was used to derive a P value. Statistical significance of
classification accuracy was determined by permutation
testing. To visualize the multivariate discriminating pat-
tern for FA maps, we show all voxels that have values
�30% of the maximum weight vector value of the discrim-
ination map [Mourao-Miranda et al., 2005].

To examine the degree to which the classification was
driven by OCD symptoms rather than other confounds
unrelated to OCD, the test margin for each subject was
correlated with the level of symptom severity measured
by the total Y-BOCS score, the obsessive and compulsive
subscale, the HARS and HDRS scores and duration of
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OCD symptoms, respectively (similar approach in previ-
ous researches [Ecker et al., 2010a,b]).

RESULTS

Demographic and Clinical Characteristics

Between the 28 OCD patients and 28 controls there were
no significant differences in sex (10 female, 18 male in both
groups), age (mean 6 SD 27.8 6 10.1 range [16–52] vs. 27.6
6 9.4 [16–46] years, P 5 0.718, paired t-test), and all partici-
pants were right-handed. Fifteen patients were drug-naive,
while the remaining 13 receiving medication for OCD (4 clo-
mipramine hydrochloride, 3 paroxetine hydrochloride, 3
fluoxetine hydrochloride, 3 sertraline) had been medication-
free for � 2 weeks. We classified patients according to the
five clinical dimensions defined by Mataix-Cols et al. [1999].
Using these criteria, patients’ predominant obses-
sions=compulsions were as follows: 20 aggressive=checking,
5 contamination=cleaning, 2 symmetry=ordering, 1 sex-
ual=religious; there were no patients with hoarding symp-
toms. For the 28 OCD patients, the total Y-BOCS was 22.7 6

3.8 (17–31), corresponding to moderate and severe OCD
symptoms, with obsessive and compulsive subscale scores of
16.3 6 3.7 (10–23) and 6.4 6 4.9 (0–14) respectively; the esti-
mated duration of OCD symptoms was 6.5 6 5.5 (1–23)
years. The HARS score was 8.0 6 3.2 (3–19), generally
accepted as normal, and the HDRS score was 9.8 6 2.6
(6–17), indicating mild depression.

Overall Classifier Performance

Figure 1A shows the result of the SVM classification
between 28 OCD and 28 controls based on FA values derived
from DTI data. The overall accuracy was 84% (standard error
0.051 and 95% confidence interval 0.777–0.977, with Receiver
Operating Characteristic curve shown in Fig. 1B), and was
highly significant at P � 0.001. This overall classification accu-
racy of the algorithm measures its ability to correctly classify
an individual as OCD patient or healthy control. The sensitiv-
ity (i.e., the probability that a volunteer with a clinical diagno-
sis of OCD was correctly assigned to the OCD category) was
86%, and the specificity (i.e., the probability that a healthy
control was correctly classified as such) was 82%.

For completeness, we repeated the analysis focusing on
the 15 drug-naive OCD patients and 15 age- and sex-
matched controls. This yielded a sensitivity of 80% and a
specificity of 80%, resulting in an overall accuracy of 80%
(P � 0.001) (Fig. 2).

Relationship between Test Margin and Level of

Symptom Severity

The correlation between the clinical measurements and
the distance from the optimal hyperplane (i.e., test margin)
was calculated for the OCD group using SPSS 16.0 soft-
ware (SPSS, Chicago, III). This revealed that the test mar-
gin was positively correlated with the total Y-BOCS scores
(r 5 0.428, P 5 0.023, two tailed): thus individuals with

Figure 1.

Classification plot (A) and Receiver Operating Characteristic (ROC) curve (B) for the compari-

son between 28 OCD patients and 28 healthy controls using FA maps from DTI data, which

yielded an accuracy of 84% (86% sensitivity, 82% specificity), statistically significant at P � 0.001.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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higher Y-BOCS scores tended to be further away from the
hyperplane while the individuals with a lower level of
impairment tended to be nearer the hyperplane. This sup-
ports the idea that the classification of these participants
on the basis of white matter values was driven by OCD
symptoms as measured by Y-BOCS. We did not find sig-
nificant correlations between the test margin for OCD
patients and any of the following measures: obsessive and
compulsive subscale, HARS and HDRS scores and dura-
tion of OCD symptoms (P > 0.05).

Discrimination Map of OCD Abnormalities

The white matter regions that contributed the most to
the discrimination between OCD patients and healthy con-
trols were identified by setting the threshold to �30% of
the maximum weight vector scores, consistent with previ-
ous studies (e.g. [Ecker et al., 2010a; Ecker et al., 2010b;
Mourao-Miranda et al., 2005]). These regions, shown in
Figure 3 and reported in Table 1, included the bilateral pre-
frontal and temporal white matter, inferior fronto-occipital
fasciculus, superior fronto-parietal fasciculus, splenium of
corpus callosum, and left middle cingulum bundle. In Fig-
ure 3, a positive value in the discrimination map (warm
color) indicates that a region contributed to the identifica-
tion of patients with OCD; this was the case mainly in the
left inferior frontal, middle frontal and left cuneus white

matter. In contrast, a negative weight (cool color) means
that that a region was contributed to the identification of
healthy controls; this was the case mainly in the right mid-
dle temporal white matter. It should be noted that this dis-
crimination map is a spatial representation of the SVM
weight vector, and does not directly quantify the informa-
tion content of each region. However, the spatial distribu-
tion of the weight vector does provide some information
about the contribution of different areas to classification
[Ecker et al., 2010a] and in this case is suggestive of a dis-
tributed pattern of relative deficit or excess of white matter
in OCD with respect to healthy controls.

DISCUSSION

This study demonstrated that patients with OCD can be
distinguished from healthy controls using FA images
extracted from DTI data with high classification accuracy.
This classification was driven by a distributed pattern of
white matter alterations which included bilateral prefrontal
and temporal white matter, inferior fronto-occipital fascicu-
lus, superior fronto-parietal fasciculus, splenium of corpus
callosum, and left middle cingulum bundle. Moreover, in
OCD patients the distance from the optimal hyperplane
positively correlated with the total Y-BOCS scores, suggest-
ing that the classification of these participants on the basis
of white matter values was driven by OCD symptoms.

Multiple white matter microstructural abnormalities in
OCD have been reported before [Li et al., 2011; Menzies
et al., 2008b; Szeszko et al., 2005; Yoo et al., 2007]. How-
ever, previous studies used mass-univariate analyses that
tend to detect only a few isolated regions with abnormal
FA at group level [Davatzikos, 2004; Soriano-Mas and
Pujol, 2007]. Here we used SVM to examine whether the
whole-brain pattern of white matter microstructural abnor-
malities could be used to discriminate between OD patients
and healthy controls at the individual level. Unlike mass-
univariate analyses, SVM takes inter-regional correlations
into account, and provides numerical indicators for group
membership without multiple comparison biases [Orr�u
et al., 2012]. Here a region’s discriminative power depends
not only on between-group differences in its absolute val-
ues, but also on any between-group differences in its struc-
tural correlations with other regions; this analytical
approach may be particularly suited to the investigation of
mental disorders such as OCD in which abnormalities are
distributed across the whole brain [Abramowitz et al.,
2009; Menzies et al., 2008a]. In the present study discrimi-
nation was based not only on frontal regions, cingulum
bundle and corpus callosum but also on parts of the occipi-
tal and temporal white matter, areas not traditionally
implicated in OCD; this demonstrates the ability of SVM to
detect subtle and distributed white matter alterations.

Previous neuroimaging studies in OCD have revealed
alteration in fronto-striatal circuits [Abramowitz et al.,
2009], thought to be important in emotional and

Figure 2.

Classification plot for the comparison between 15 drug-naive

OCD patients and 15 healthy controls using FA maps from DTI

data, which yielded an accuracy of 80% (80% sensitivity, 80%

specificity), statistically significant at P � 0.001. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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motivational aspects of behavior. Alterations within these
circuits may explain executive dysfunction, low cognitive-
behavioral flexibility and impaired decision-making which
are common in OCD [Chamberlain et al., 2008; Menzies
et al., 2008a; Rotge et al., 2009a; Saxena et al., 2001]. More
specifically, previous DTI studies of OCD have shown
increased FA in prefrontal white matter [Li et al., 2011;
Menzies et al., 2008b; Yoo et al., 2007; Zarei et al., 2011]
that is correlated with symptom severity [Zarei et al., 2011]
and is possibly related to increased myelination and neuro-
nal remodeling [Beaulieu, 2002]. These microstructural
alterations in frontal white matter may be reversible with
citalopram pharmacotherapy, suggesting a functional rela-
tionship to the pathophysiology of OCD [Yoo et al., 2007].
In addition, recent genetic studies have proposed an etiolo-
gic connection to white matter abnormalities, particularly
an association between OCD phenotype and a gene
(OLIG2) implicated in oligodendrocyte development [Stew-
art et al., 2007]. Consistent with these previous DTI studies,
we found that prefrontal white matter, especially the left
inferior and middle frontal regions, had high discrimina-
tive values, supporting the idea that microstructural abnor-
malities within fronto-striatal circuits are critically affected
in OCD.

However, fronto-striatal circuits cannot explain all of the
cognitive abnormalities in OCD. For instance, there is evi-
dence of abnormalities in other white matter regions

beyond the proverbial fronto-striatal model of OCD, nota-
bly the posterior region of the bilateral fronto-occipital and
fronto-parietal fasciculi [Menzies et al., 2008a]. The fronto-
occipital and fronto-parietal fasciculi connect the frontal
lobe to the posterior occipital and parietal cortices respec-
tively [Catani and Thiebaut de Schotten, 2008; Wakana
et al., 2004], and previous research has found involvement
of the occipital and parietal regions in the clinical phenom-
enology of OCD, including distressful, intrusive imagery
[Garibotto et al., 2010]. Neuropsychological studies of
OCD have also reported abnormalities in cognitive proc-
esses, such as decision making, that involve a network of
regions associated with working memory and visual atten-
tion, including the parietal and occipital regions [Ernst
et al., 2002; Lawrence et al., 2009]. In addition, neuroimag-
ing studies have reported significant FA differences in
occipital and parietal white matter in OCD compared to
controls [Gruner et al., 2012; Szeszko et al., 2005; Zarei
et al., 2011], which have been related to a pathophysiologi-
cal hypothesis [Goncalves et al., 2010]. Consistent with
these neuropsychological and neuroimaging findings, occi-
pital and parietal white matter contributed to the discrimi-
nation between OCD patients and healthy controls in the
present study, providing further support for the involve-
ment of these regions in OCD.

Our finding that the bilateral temporal white matter con-
tributed to the identification of OCD patients from healthy

Figure 3.

White matter regions contributing to discrimination between OCD and control groups based on

FA values. These regions were identified by setting the threshold to � 30% of the maximum

weight vector scores. Warm color (positive weights) indicates higher parameter values in OCD

than healthy controls, while cool color (negative weights) indicates higher parameter values for

healthy controls than OCD. The color bar indicates the weight vector value (wi) from the SVM

analysis.
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controls is consistent with other evidence implicating tem-
poral regions in OCD; for instance, patients with temporal
lobe epilepsy have a high prevalence of OCD symptoms
[Isaacs et al., 2004], and there is a recent report of a patient
being diagnosed with OCD following temporal-lobe hem-
orrhage [Rai et al., 2011]. Previous studies have also
reported white matter differences in the temporal regions
of OCD patients compared to healthy controls [Yoo et al.,
2007], and a significant correlation between FA values in
the middle temporal lobe and Y-BOCS [Li et al., 2011].

Although the results of present study are encouraging,
there are a number of questions that could not be
addressed. We only compared a group of patients with
OCD and a group of healthy controls, and therefore it is
unclear whether the application of SVM to DTI data
would discriminate OCD patients from patients with dif-
ferent disorders. Future studies could address this ques-
tion by including a third group of patients with an anxiety
disorder other than OCD. Furthermore, although all our
patients were drug-free for at least 2 weeks before scan-
ning, about half of them had received medication previ-
ously. However, we do not believe that medication had a

significant influence on the results for two reasons. First,
the use of selective serotonin reuptake inhibitors typically
leads to a reduction of OCD symptoms as well as a revers-
ible normalization of white matter abnormalities after
treatment [Yoo et al., 2007]. Thus, any effect of medication
on our results is likely to be expressed in terms of under-
estimation of the potential of SVM and DTI to identify
OCD patients rather than over-estimation. In addition, our
results were essentially the same when we repeated the
analysis for the drug-na€ıve subgroup of participants. We
also note that, although the OCD group in present study
was symptomatically heterogeneous, there were no
patients with hoarding symptoms. Given the evidence for
differential neural correlates for hoarding and non-
hoarding patients with OCD [Saxena et al., 2004], it would
be important to replicate our findings in future studies
with a larger group of drug-naive OCD patients with dif-
ferent symptoms.

In summary, the present study revealed spatially distrib-
uted subtle differential patterns of white matter abnormal-
ities in patients with OCD, and indicated that these
abnormalities allow accurate discrimination between OCD

TABLE 1. White matter regions contributing to discrimination between OCD and control groups. These regions

were indentified by setting the threshold to � 30% of the maximum weight vector scores (wi, weight of each cluster

centroid, the value of which indicates the relative contribution to the classification).

Talairach Talairach

White matter area x y z wi White matter area x y z wi

OCD > Controls OCD < Controls
Frontal
Left superior frontal 220 44 26 11.20
Right superior frontal 16 56 22 10.58
Left middle frontal 236 32 24 14.93
Right middle frontal 32 38 24 8.35
Left inferior frontal 242 36 6 11.88
Right precentral 44 2 36 10.82

Temporal Temporal
Left middle temporal 252 238 26 7.64 Left middle temporal 246 244 4 29.01
Right middle temporal 48 252 18 8.70 Right middle temporal 46 254 6 217.88
Left temporopolar 236 2 220 7.53 Left inferior temporal 244 256 210 210.70
Right temporopolar 46 10 224 9.17 Right inferior temporal 44 242 216 29.15
Right parahippocampal 36 224 222 7.41
Left fusiform 224 266 28 10.17
Right fusiform 24 268 210 5.41

Occipital Occipital
Left middle occipital 228 282 14 8.70 Left middle occipital 236 272 4 28.73
Right middle occipital 26 282 26 9.99 Right middle occipital 30 278 12 211.40
Right superior occipital 22 266 26 7.29 Right superior occipital 12 294 6 211.83
Left cuneus 220 262 3 13.64 Left lingual 224 254 4 212.25

Right lingual 20 248 2 211.40
Parietal Parietal

Left angular 228 262 40 10.4 Left inferior parietal lobule 230 246 44 212.53
Right inferior parietal lobule 36 256 40 9.99 Right inferior parietal lobule 28 246 48 28.59
Left posterior insula 234 26 14 6.65
Left middle cingulum bundle 28 214 34 6.94
Splenium of corpus callosum 0 226 22 8.35

r Classification of OCD Using Multivariate Pattern Analysis of DTI r

r 2649 r



patients and healthy controls at the level of the individual.
Although these results are based on a relatively small sam-
ple, they provide preliminary support for the potential
development of SVM as a diagnostic aid for OCD. Future
work could combine white matter information with addi-
tional types of neuroimaging data, such as structural and
functional MRI, in order to examine whether this leads to
higher levels of diagnosis accuracy.
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