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molecular force fields†

Tom A. Young, a Tristan Johnston-Wood, a Volker L. Deringer *b
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Predictive molecular simulations require fast, accurate and reactive interatomic potentials. Machine

learning offers a promising approach to construct such potentials by fitting energies and forces to high-

level quantum-mechanical data, but doing so typically requires considerable human intervention and

data volume. Here we show that, by leveraging hierarchical and active learning, accurate Gaussian

Approximation Potential (GAP) models can be developed for diverse chemical systems in an autonomous

manner, requiring only hundreds to a few thousand energy and gradient evaluations on a reference

potential-energy surface. The approach uses separate intra- and inter-molecular fits and employs

a prospective error metric to assess the accuracy of the potentials. We demonstrate applications to

a range of molecular systems with relevance to computational organic chemistry: ranging from bulk

solvents, a solvated metal ion and a metallocage onwards to chemical reactivity, including a bifurcating

Diels–Alder reaction in the gas phase and non-equilibrium dynamics (a model SN2 reaction) in explicit

solvent. The method provides a route to routinely generating machine-learned force fields for reactive

molecular systems.
Introduction

Molecular simulations are a cornerstone in computational
chemistry, providing dynamical insights beyond experimental
resolution.1 Realistic simulations of (bio)chemical reactions
require the inclusion of the chemical environment where they
occur (e.g. solvent and/or enzyme) and oen extended time-
scales. Therefore, generation of accurate and efficient
approaches has been central to the development of this eld.

Empirical interatomic potentials (force elds), in combina-
tion with molecular dynamics (MD) or Monte Carlo (MC)
simulations, have been widely used to sample the potential-
energy surface (PES). However, they are limited in accuracy
and transferability.2 Moreover, most of these potentials are
parameterised for isolated entities with xed connectivity and
thus unable to describe bond breaking/forming processes. In
contrast, ab initio methods provide an accurate description of
the PES, which is particularly critical for reactions in solution.
However, because of their high computational cost and unfav-
ourable scaling behaviour, they are limited to a few hundred
atoms and simulation times of picoseconds in ab initio
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molecular dynamics (AIMD) at the DFT level, and practically
impossible at the computational ‘gold-standard’ [CCSD(T)].3

Machine learning (ML) approaches have the potential to
revolutionise force-eld based simulations, aiming to provide
the best of both worlds,4–6 and have indeed begun to provide
new insights into a range of challenging research problems.7–16

The development of an ML potential applicable to the whole
periodic table mapping nuclear coordinates to total energies
and forces is, however, precluded by the curse of dimension-
ality. Within small chemical subspaces, models can be achieved
using neural networks (NNs),6,17–21 kernel-based methods such
as the Gaussian Approximation Potential (GAP) framework22,23

or gradient-domain machine learning (GDML),24 and linear
tting with properly chosen basis functions,25,26 each with
different data requirements and transferability.27 GAPs have
been used to study a range of elemental,28–30 multicomponent
inorganic,31,32 gas-phase organic molecular,13,33 and more
recently condensed-phase systems, such as methane34 and
phosphorus.35 These potentials, while accurate, have required
considerable computational effort and human oversight.
Indeed, condensed-phase NN36,37 and GAP tting approaches
typically require several thousand reference (“ground truth”)
evaluations.

Active learning (AL), where new training data is added based
on the current state of the potential, has been used for gener-
ating databases and accelerating the tting process.31,38–42

Notable examples in materials modelling include an early
demonstration of a “query-by-committee” approach in tting
© 2021 The Author(s). Published by the Royal Society of Chemistry
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a high-dimensional NN potential for elemental copper,39 the
tting of Moment Tensor Potential26 models43 to predict
elemental crystal structures38 and multicomponent alloys,40 and
the deep potential generator (DP-GEN)44,45 that provides an
interface to deep NN potential models for materials.46 AL
schemes have also been combined with GP based force elds
including GAP,47 and included within a rst-principles MD
implementation such that it allows the “on the y” tting of
force elds for a specic simulation system.48,49

Efficient approaches to generate reactive ML potentials
become even more important when exploring chemical reac-
tions in molecular systems, which oen require a description at
a computational level beyond DFT, and therefore require
reference data at the same level. Very recently, AL approaches
have started to be adopted for tting reactive potentials for
organic molecules based on single point evaluations at
quantum-chemical levels of theory. Notable examples include
the modelling of gas-phase pericyclic reactions,12 the explora-
tion of reactivity during methane combustion,50 and the
decomposition of urea in water.41

In the present work – with a view to developing potentials to
simulate solution phase reactions – we consider bulk water as
a test case and develop a strategy which requires just hundreds
of total ground truth evaluations and no a priori knowledge of
the system, apart from the molecular composition. We show
how this methodology is directly transferable to different
chemical systems in the gas phase as well as in implicit and
explicit solvent, focusing on the applicability to a range of
scenarios that are relevant in computational chemistry.
Results and discussion

Despite GAP tting being increasingly used for inorganic
systems, we found that the same tting strategies did not easily
transfer to the description of complex molecular environments.
Even with a high correlation and low error on energies in
unseen test data, some potentials were not stable for more than
a few femtoseconds. In the following section, we therefore
outline a training strategy along with a prospective error metric
to develop robust models for gas-phase and condensed-phase
molecular systems.
A prospective error metric

The initial step in validating supervised machine learning (ML)
tends to follow the splitting of a dataset into training and test
sets, training the model, then evaluating its performance on the
test set with a squared error (RMSE/MSE) or a correlation (R2)
metric. As with model overtting, this ‘retrospective’ validation
strategy ultimately limits the applicability of these models.51–57

In an ML potential, the minimum required domain of appli-
cability is the region of conguration space likely to be sampled
during a simulation with the potential. However, this region is
not known a priori, making the choice of test data problematic if
not impossible for use in a standard train/test data split
approach. In addition, one would also like to ensure high
accuracy in regions sampled on the ground truth surface
© 2021 The Author(s). Published by the Royal Society of Chemistry
(especially for early versions of an evolving potential), but being
able to quantify this accuracy requires dynamics at the ground
truth method level in the rst place, which is much more
expensive than sampling with an efficient potential.

Using a train/test set split with high structural similarity
between the two sets can lead to highly misleadingly accuracy
whenever the potential is to be taken outside the training region
in computational practice. For example, splitting an AIMD
trajectory of water into a training and test set with an odd/even
frame split (50 : 50) and training a simple GAP model yields an
energy error on the order of 1 kcal mol�1 (Fig. S1a†). However,
simulations with this potential in the same conguration space
sample unphysical congurations within 10 fs (Fig. S1b†),
making an RMSE over a priori test data an insufficient metric in
quantifying the quality of a potential.

Considering that single-point reference energy evaluations
are reasonably cheap, a ‘prospective’ validation scheme is
possible, where the error metric operates in the conguration
space sampled in a simulation. With this in mind, we propose
a temporal cumulative error metric (sacc, eqn (1)), dened as the
time required for the cumulative error (absolute difference
between true (E0) and predicted (EGAP)) to exceed a given
threshold (ET); the larger sacc, the more robust the potential.
Note that the time for which a potential is stable in MD can far
exceed sacc, as shown in the following. Here only errors above
a lower-bound threshold value (El) contribute to the cumulative
error. The lower threshold is required to account for the
residual error that is due to the nite radial cut-off of the model.
In the following we take ET to be 10 times El, but it may be
adjusted depending on the simulation context.

sacc ¼ time : ET\
X

i˛frames

max
���E0

i � EGAP
i

��� El; 0
�

(1)

This metric has several advantages in that (a) it ensures that
a potential with high accuracy will result in stable dynamics; (b)
it allows the user to specify the level of accepted error according
to the quality of the training method, thus not penalising where
the error is within the difference between the ground truth and
the true PES (i.e. a larger threshold may be suitable for a less
accurate reference method); (c) it penalises large errors, even if
they only occur for single congurations, which is important as
such errors may lead to instabilities in the ML-driven MD
trajectory and (d) it enables a quoted accuracy to include
regions that may not be accessible to direct evaluation at the
ground-truth level (e.g. long-time behaviour). Overall, this
metric depends on the lower bound and total error, interval
between evaluations, and the simulation on which it is evalu-
ated; so while not unique, it is – crucially – prospective. We
found this metric to be essential in developing an efficient
training strategy and accurate potentials for bulk water (Fig. 1).
Water models

For bespoke ML potentials to be routinely developed for
molecular systems, one would hope to complete the data
generation, model training, and know the accuracy of the
Chem. Sci., 2021, 12, 10944–10955 | 10945



Fig. 1 Active learning of machine-learning potentials for liquid water. (a) Schematic of the active learning loop implemented for fitting GAP
models, where the GAP-MD exploration is run for n3 + 2 femtoseconds, where n (the number of evaluations) is incremented after each time the
error is evaluated. (b) Schematic illustrating the separation into inter- and intra-molecular terms (I + I) for a bulk water system; these are described
by separate GAP models (here, using the same method to obtain the reference data), and then added to give the combined prediction for
energies, E, and forces, F. (c) Learning curves for a bulk water GAP model using different training strategies. sacc with El ¼ 0.1 eV, ET ¼ 1 eV, 10 fs
interval, 300 K, from the same random minimised configuration of 10 waters in a 7 Å cubic box. Error bars quoted as the standard errors in the
mean from 5 independent repeats. The horizontal axis denotes the number of evaluations in training data generation. See Tables S1 and S2† for
detailed methods. DFTB(3ob) ground truth. Minimum sacc is shown as 0.1 fs to enable plotting on a log scale. (d) Water monomer model training
performance as characterised by sacc and RMSE over the full 3D PES; see Fig. S2† for details.
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resulting potential within a matter of hours to days. With this in
mind, here we train GAP models to simulate bulk water, aiming
to minimise the number of required ground truth evaluations
as well as the required human intervention, while maximising
stability (measured by sacc). A selection of training strategies is
discussed in the following paragraphs and their results are
outlined in Fig. 1.

We initially employed training strategies found to work well
in elemental materials by, for example, tting a combined
potential with two- and three-body GAPs. However, this
approach was found to be detrimental to the potential's
stability. This can be understood considering a water dimer
(HO–Hc/OH2); here, a two-body description that treats the two
O–Hc interactions on the same footing is a poor approximation,
in view of the different order of magnitude between the inter-
actions at their respective minima (Fig. S3†). Therefore, we
decided to proceed employing a smooth overlap of atomic
positions58 (SOAP) descriptor for an exclusively many-body
description of atomic environments (with the exception of AL-
I + I, which uses 2 + 3 body for the intramolecular component
as discussed later).

We also explored different approaches to generate the
database and their inuence on the generated potential. An
10946 | Chem. Sci., 2021, 12, 10944–10955
emerging approach to generate training data for elemental
GAPs is to initialise the database with randomised congura-
tions (with reasonable constraints, as in ab initio random
structure searching59), and to gradually explore conguration
space with evolving versions of the potential (see, e.g., ref. 60).
However, randomly placing water molecules does not in itself
afford a stable potential. A similar result is observed when the
most diverse congurations are selected using the CUR algo-
rithm60,61 (Fig. S4†) or when applying intramolecular displace-
ments, following minimisation (Fig. S4†). Selecting frames from
classical MD simulations at temperatures of 100–1000 K was
also found to be an ineffective strategy (Fig. S5†), reaching sacc
of only a few fs (“MM-MD”, Fig. 1c). This is in line with the
results reported in ref. 13. Note that this is not because the GAP
cannot t reference energies and forces from MM congura-
tions (Fig. S6†), but because of a poor conguration space
overlap with the ground truth PES (Fig. S7†). Selecting cong-
urations from an AIMD simulation at 300 K (AIMD, Fig. 1c) was
an improvement over training on random and MM-generated
congurations, with sacc � 10 fs. However, by adding addi-
tional AIMD congurations the increase in accuracy saturates
quickly even if those are obtained at higher temperatures
(Fig. S8†). Using AIMD congurations can also involve
© 2021 The Author(s). Published by the Royal Society of Chemistry
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a signicant cost (requiring thousands of evaluations). Finally,
active learning from only a few randomly generated congura-
tions provides a modest upli in accuracy (AL, Fig. 1c), with
accuracy on-par with GAP trained on AIMD congurations at
a third of the required reference data.

Only when the relevant length and energy scales of the
system are decomposed by treating intra- and inter-molecular
components separately (Fig. 1b) a potential that is stable for
picoseconds is obtained (AL-I + I, Fig. 1c). We note that this
approach is related to the hierarchical tting of GAPs34,63 and
related ML models33,64–66 using different levels of computational
approaches, and the decomposition strategy byWengert and co-
workers.67 In the present work, we employ the same ground-
truth method throughout rather than combining different
levels of theory for the input data, but as in prior studies we
describe the stronger (e.g., covalent) and weaker intermolecular
terms with separate ts that are aerwards combined to give the
nal model. The intramolecular GAP for water contains only 2-
and 3-body terms and the training data are chosen using an
evenly spaced grid over the full 3-atom PES (8 � 8 � 8 grid
points in rOH and rHH, �0.1 Å spacing, Fig. S9†). Energy and
force evaluations of this potential are a simple sum of intra- and
inter-molecular terms, but require the former to be evaluated in
an expanded simulation box to ensure no non-bonded
hydrogen atoms are present within the cut-off radius of the 2-
and 3-body descriptors on oxygen (Fig. S10†). Here the intra-
molecular PES is fairly low-dimensional, so a full and reason-
ably dense grid is available, which in turn allows us to dene an
error measure over the whole PES, where we nd the error to be
inversely correlated with sacc (Fig. 1d). Using an acceptable error
of 0.2 kcal mol�1 per H2O molecule for a description of bulk
water, which is similar to that achieved in a recent NN t of
water,36 we nd that this potential affords sacc > 10 ps with just
a few hundred ground truth evaluations (AL-I + I, Fig. 1c). To put
this value in context, we measured sacc for the fully reactive
water NN of Cheng et al.,36 which was trained on �7000 refer-
ence congurations (DFTB energy/forces) and has shown to
provide a highly accurate water model over multiple states. For
this state-of-the-art ML potential, a sacc value of 7.6 � 0.7 ps for
liquid at 300 K is obtained, comparable to the one obtained for
the new AL-based potentials of the present work (>10 ps). Of
course, direct comparison requires caution because the two
potentials are different in scope: the NN potential employs
a large reference database to develop a general water model,
whereas the present study targets robust potentials for liquid
water with minimal computational effort, in turn allowing the
user to apply similar approaches to other chemical systems (as
will be shown below).

The model tted using our approach (AL-I + I) yields radial
distribution functions (RDFs) in good agreement with the
ground-truth method, initially chosen to be DFTB, both
considering the location and intensities of the peaks corre-
sponding to the rst and second coordination shells (Fig. 2a–c).
This is despite the relatively short-range atomic cut-offs (3 Å, O
only) used. Only in the O–O pair RDF there is a slight deviation
from the DFTB ground truth, precisely where the potential is
zero outside the 3 Å cut-off radius of the SOAP descriptor.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Interestingly, for a DFT-quality GAP simply re-evaluating ener-
gies and forces on DFTB-derived active-learnt congurations is
insufficient, with the DFTB congurations being high in energy
at the DFT level (�5 eV, Fig. S11†). However, applying an active
learning strategy with a PBE reference method and a slightly
larger 3.5 Å cut-off generates excellent agreement with the AIMD
simulation from ref. 62, in only a few hours of total training
time (Fig. 2d–f). At this level of theory, the local structure of
liquid water is predicted largely correctly, with two distinct
peaks in the O–H RDF, corresponding to rst and second
solvation shells with the largest deviation from the ground truth
again in the O–O pair around the descriptor cut-off. The real
signicance, of course, is in moving to more accurate ground-
truth methods, for which a full MD simulation would not be
straightforward: indeed, using the same method, a hybrid DFT-
quality water model can be generated within a few days, which
would be inaccessible with other methods (the generation of the
GAP model required �5 days on 20 CPU cores, Fig. 2g–i). These
results suggest that the training strategy (and hyperparameter
selection) presented here is suitable independent of the refer-
ence method.

Other solvent systems

Organic reactions oen take place in solvents other than water.
Using an identical training strategy to the one described for
water, we trained GAPs for a selection of organic solvents with
various types of intermolecular interactions. To quickly
generate the reference simulation data for this proof-of-
concept, a DFTB ground truth is employed; chlorinated
solvents were not selected due to a large discrepancy between
the DFTB-generated and experimental C–Cl bond dissociation
energy (Fig. S12†). A uniform grid over the intramolecular PES is
now no longer possible; thus, AL is used to develop an initial
intramolecular potential trained using GAP-MD at 1600 K
(Fig. S13†). This temperature is used to sample higher-energy
congurations more efficiently. In all cases, only hundreds of
ground truth evaluations were necessary to generate GAPs
affording stable dynamics, with sacc values on the order of
picoseconds (Table 1, Fig. S14, ESI Section S1†). For a repre-
sentative example, the computed RDFs for acetonitrile compare
well with the ground truth (Fig. S15†). As with the water models
above, to quantitatively evaluate bulk properties training an
accurate reference method and the inclusion of nuclear
quantum effects would be necessary.34,36 Nevertheless, this
example demonstrates that the training method is applicable to
a range of chemical systems beyond water. In this sense, the
strategy presented here can be considered “transferable” as it
can be directly applied to obtain ML potentials for other
chemical systems. This should not be confused with general ML
potentials which are aimed to describe different systems.

Aqueous Zn(II)

Modelling metal ions in solution remains one of the main
challenges for general-purpose force elds.68 Historically, metal
ions have been described by tting van der Waals parameters to
reproduce RDFs and hydration free energies of aquo complexes,
Chem. Sci., 2021, 12, 10944–10955 | 10947



Fig. 2 Liquid water simulations. Active learning of bulk water models at various levels of theory. Shown here are O–O, O–H, and H–H RDFs from
NVT MD simulations of 64 water molecules in a 12.42 Å cubic box, with ground truth (black) and GAP (purple/red) simulations. (a–c) DFTB(3ob
params) ground truth, 100 ps, 300 K, rSOAP

c (O)¼ 3 Å. (d–f) DFT(PBE) reference RDF data extracted from ref. 62, 30 ps, 330 K, rSOAP
c (O)¼ 3.5 Å. (g–i)

DFT(revPBE0-D3) GAP, 30 ps, 330 K, rSOAP
c (O) ¼ 4.0 Å.

Table 1 Average number (N) of total ground truth evaluations (over 5
repeats quoted with a standard error in the mean) required to obtain
a potential with sacc > 3 ps, where ET¼ 1 eV, El¼ 0.1 eV, 300 K. All SOAP
descriptors used 3.0 Å cut-offs; they are centred on the stated atomic
species, and include all atoms within the neighbourhood of those
atoms (including hydrogen). See Table S3 for more detailed
parameters

Solvent
SOAP descriptors
centred on Nintra Ninter

Acetonitrile C, N 269 � 12 120 � 60
Methanol C, O 221 � 13 292 � 49
Acetone C, O 566 � 80 359 � 29
Pyridine C, N 249 � 36 243 � 11
Ammonia N 38 � 40 109 � 24

Fig. 3 Zn(aq) simulation. Zn–O radial distribution function averaged
from 1 ns of cumulative (10 � 100 ps) NVT MD simulations of Zn(II) in
aqueous solution at 300 K, with the experimental modal Zn–O
distance shown in black. Experimental (X-ray diffraction) Zn–O
distances from ref. 69, octahedral first hydration shell. The shaded area
denotes the range of experimental second hydration shell (ref. 69 and
cited within). GAP trained as those in Table 1 using a PBE/400 eV
ground truth, intra-Zn(H2O)6 used a O-centred SOAP rc ¼ 3.0 Å and

Chemical Science Edge Article
which are expected to be transferrable to more chemically
complex environments. However, while simple, these models
have oen led to unstable simulations or poorly describe
structural properties.68 Considering these challenges and their
relevance in biomolecular modelling, we decided to use our
strategy to generate a GAP for aqueous Zn(II) ion as a represen-
tative system. Here the system was decomposed into
a [Zn(H2O)6]

2+ cluster and the remaining water molecules. A
strategy identical to the one described for water was used,
training the intermolecular interactions separately with a 4.0 Å
intermolecular cut-off for the oxygen atoms. Using this poten-
tial, MD simulations were propagated at 300 K reproducing the
experimental69 coordination number (CN ¼ 6), and Zn–O
distances of both the rst (2.08 Å) and second hydration shells
without further optimisation (Fig. 3).
10948 | Chem. Sci., 2021, 12, 10944–10955
The accuracy of the local structure compared to experiment
in the rst and second solvation shell indicates that this parti-
tioning is effective at capturing both strong dative M–OH2

interactions and weaker hydrogen bonding effects. From
random points in the conguration space of [Zn(H2O)6]

2+ and
20 water molecules (intermolecular distances >1.7 Å, 10 Å cubic
box), sacc reached 0.5 ps (El ¼ 0.8 kcal mol�1 per H2O, 20 fs
interval). Note this value is far short of the 100 ps simulations
inter rc ¼ 4.0 Å.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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performed to generate the RDF and illustrates that a potential
may be ‘stable’ and not sample any high energy regions for t[
sacc. Here, the potential for the Zn–water cluster was trained on
almost 1000 congurations, suggesting that tens of atoms per
component may be the upper limit in dimensionality for which
a model can be trained within a day.

Metallocage dynamics

With a method capable of generating high-quality potentials for
modestly sized chemical systems, we next demonstrate the
applicability of the strategy to investigate a supramolecular
metallocage consisting of >100 atoms including metal ions. As
a representative example, we selected the [Pd2L4]

4+ metallocage
architecture (L ¼ organic pyridine-based ligand), which
occupies a prominent place in supramolecular chemistry.
Previously, we have studied this system due to its catalytic
prociency in Diels–Alder reactions employing both classical
molecular dynamics and DFT modelling.70 The different exi-
bility of two similar cage architectures was found to be key in
explaining their contrasting catalytic activity.

Taking advantage of the symmetry in the system, a repre-
sentative fragment containing one full ligand and three pyri-
dine molecules coordinated to a Pd2+ metal ion (68 atoms) was
used to t a GAP for the entire cage (138 atoms) in the gas phase.
This potential was trained in a few days (�1400 CPUh). We used
the resulting GAP to perform nanosecond MD simulations on
the whole metallocage at 300 K in the gas phase. This simula-
tion took one day and�100 CPUh to complete. For comparison,
an equivalent AIMD simulation would take around 50 years with
the reference level of theory employed here. The exibility of the
system was monitored and compared to the one obtained using
classical MD simulations in dichloromethane solvent.70

Compared to classical MD simulations, using helicity as
a measure of exibility, our potential describes the cage as
being more rigid; this suggests that the classical potential
overestimates the dynamic exibility (Fig. 4). This difference is
expected as the classical potential has no C–C^C–C dihedral
barrier, which is presumably correctly captured in the GAP. This
Fig. 4 Metallocage dynamics. Temporal twist angle q for an [Pd2L4]
2+ me

(each run for 10 ps at 300 K), GAP trained on a 68-atom [PdL(py)3]
2+ syste

500 K with a 0.2 eV error threshold for the active-learning protocol. Tim
whole 10 ps time period. PBE0-D3BJ/def2-SV(P) ground truth surface.

© 2021 The Author(s). Published by the Royal Society of Chemistry
example illustrates the general applicability of the approach to
increasingly complex systems, where the training of a simpler
but representative fragment is sufficient to capture the relevant
features of the full system.

Reaction dynamics in gas and solvent phase

The high dimensionality and ensuing exibility of ML poten-
tials make them highly suitable to study reaction dynamics – the
latter usually require many costly electronic structure calcula-
tions to obtain atomic-level descriptions of reaction mecha-
nisms, solvent effects or post-transition state (TS) dynamics.71,72

In the following section, we show that our data-efficient strategy
enables accurate reactive potentials (sacc > 100 fs) with only
a few hundreds of DFT evaluations for a set of prototypical
organic reactions.

Gas phase bimolecular nucleophilic substitution. The SN2
nucleophilic substitution reaction is fundamental in organic
chemistry and has been extensively studied using AIMD and
analytically t PES.71,73 However, even with efficient approaches
to tting PES, AIMD methods still require tens of thousands of
energy evaluations.74 Here, we generated a reactive GAP to study
the reaction between chloride and methyl chloride as a proto-
typical case oen employed to validate QM/MM reactions and
for which extensive literature exists (see ref. 75 and references
therein). By initialising active learning from the transition state
(TS), the true intrinsic reaction coordinate is reproduced to
within 1 kcal mol�1 (Fig. S16†).

Interestingly, and unlike our previous attempt to generate
a DFT-quality GAP by evaluating energies and forces on DFTB
active-learnt congurations, here, upliing a DFT-level GAP
to an accurate wavefunction-level GAP is possible. This
method allows coupled cluster-quality energy prole (Fig. 5a)
and dynamics to be propagated from the TS with just 55
energy and (numerical) force evaluations at the CCSD(T) level
(Fig. 5b and S16†). The resultant GAP is considerably more
accurate than the underlying DFT energy prole (dashed,
Fig. 5a). Active learning can also be initialised from an
association complex and the IRC learned without prior
tallocage (right) obtained from 100 independent GAP-MD trajectories
m (py¼ pyridine), representative of the wholemetallocage as shown, at
e-dependent histogram generated from 50 fs time chunks over the

Chem. Sci., 2021, 12, 10944–10955 | 10949



Fig. 5 Gas-phase SN2 reactive dynamics. Energetics of a mode Cl� + CH3Cl/ Cl� + CH3Cl SN2 reaction in the gas phase. (a) Predictions (GAP)
and ground-truth (*CCSD(T) h DLPNO-CCSD(T)/ma-def2-TZVPP) energy values on the MP2/ma-def2-TZVPP intrinsic reaction coordinate
(IRC). Shaded region bounds the ‘chemically accurate’ (�1 kcal mol�1) region. (b) Parity plots of between GAP predictions and true energies from
ten 100 fs GAP-MD trajectories initialised from the TS (300 K). Dark and light grey area bound the �1 kcal mol�1 and�2 kcal mol�1 error regions,
respectively. (c) IRC for CN� + CH3Cl/ Cl� + CH3CN but trained using uphill active learning, with nudged elastic band refinement; see Fig. S16†
for additional details.

Fig. 6 GAP dynamics on a bifurcating surface. 2D PES (B3LYP/def2-
SVP) along the forming bond distances (r1, r2) in the dimerisation of
cyclopentadiene. An example of GAP-propagated reactive dynamics
(300 K) is shown from TS1 (7N in ref. 77), which leads to reactants
(representative trajectory in orange), and from TS10 which leads to
products (a representative trajectory is shown in purple). 3D projection
is truncated at 2.5 eV above the minimum for plotting. Interpolated
surface used a cubic spline using scipy.interp2d with the raw surfaces

Chemical Science Edge Article
knowledge of the TS. For the exothermic reaction between
cyanide and methyl chloride, training from reactants and
initialising velocities such that 11 kcal mol�1 (0.5 eV) was
present in the breaking bond, the reaction is sampled in the
training (Fig. S16c†). Relaxing a nudged elastic band (NEB)
using the trained GAP over an interpolated path between
reactants and products affords an IRC within chemical
accuracy of the true prole (RMSE ¼ 0.9 kcal mol�1, Fig. 5c).
In this case, adding a NEB renement step to the training is
essential to adequately sample the product region and reach
chemical accuracy in the energy of the product, and therefore
in the predicted reaction energy (orange vs. blue lines Fig. 5c).
Here, upliing the GAP to CCSD(T) affords chemical accuracy
in the minima and TS regions, although with a more limited
accuracy in the region in between (Fig. S16d†); this is likely
due to the large differences between the PBE and CCSD(T)
surface in that region. Despite this, the uplied prole is
again considerably more accurate than the underlying DFT
(Fig. S16d†).

Post-TS bifurcating pathway in a Diels–Alder reaction. GAPs
for more complex reactions involving reactions that proceed on
a bifurcating PES can also be trained. These reactions typically
require AIMD simulations, where selectivity is determined from
the average behaviour of many trajectories leading to either
product. Other approaches have also been developed.76 We
explored the dimerisation of cyclopentadiene, for which endo
selectivity has been rationalised on the basis of bifurcating
reaction pathways.77 Once again, initiating active learning from
the literature TS (TS1, Fig. 6) and using a DFTmethod analogous
to the one used in the original work by Caramella and co-
workers we obtain a reactive potential from which 500 fs
trajectories were propagated. Interestingly, we found that
propagating the system from this TS did not afford any products
(P1 or P2, Fig. 6), with all trajectories leading to the reactant state
(Fig. S18†).

Further investigation and generation of the relaxed 2D
potential energy surface over the two possible forming C–C
bonds (r1, r2) leading to products provided a rather different
10950 | Chem. Sci., 2021, 12, 10944–10955
surface to the one suggested in ref. 77, with a at portion then
an incline as r1, r2 shorten below 2.9 Å, with a steeply exergonic
reverse reaction (intrinsic reaction coordinate, IRC, shown in
Fig. S19†). As noted by Caramella, following the IRC forwards
from TS1 the reaction proceeds to another TS10 which is similar
in energy (DE ¼ 2 kcal mol�1). By training a GAP at 500 K and
propagating GAP-MD from TS10 and sampling the area of the
PES around a valley-ridge inection point (VRI), trajectories lead
to the expected two products (e.g., purple line, Fig. 6 and S20†).
shown in Fig. S21.† All trajectories shown in Fig. S18 and S20.†

© 2021 The Author(s). Published by the Royal Society of Chemistry
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This example demonstrates that with no a priori knowledge,
apart from the structure of TS1, the topology of the bifurcating
surface can be revealed efficiently using GAP dynamics. This
strategy is completely automated, requiring training of a few
hours to days, thus providing a promising approach to routinely
examine reaction dynamics in organic molecules.

Solution phase bimolecular nucleophilic substitution. The
ability to accurately describe bond-breaking/forming paths in
the condensed-phase is crucial if this strategy is to be applied to
increasingly complex processes, such as enzymatic reactions.
Towards this goal, and having generated potentials for
condensed-phase molecular systems and gas-phase reactions,
we decided to extend our active learning strategy to explicitly
solvated reactions; once again, using the SN2 reaction between
chloride and methyl chloride as a test case. SN2 reactions have
been used as a test case for a recent ML potential, but those
studies have been limited to the gas phase and used thousands
of training points.21 Literature examples of ML potentials to
study reactions in explicit solvent are limited. Recently, Parri-
nello and co-workers reported an NN potential to study urea
decomposition in water.41 Training a model for the implicitly
solvated reaction proceeds in a similar way as for the gas phase
analogue and affords a surface close to the ground truth
(Fig. 7a).

Adopting an identical strategy to the one employed for
condensed phase systems, the intra- and inter-molecular PES
dynamics can be propagated from the TS and the effect of
explicit solvation interrogated (Fig. 7b). This only requires
knowing a priori the gas-phase TS for the training to be
complete in explicit water. Interestingly, the behaviour in
explicit water (blue, Fig. 7b) differs from the implicit counter-
part (red, Fig. 7b). This can be understood considering that in
implicit solvent reorganisation is instantaneous, which results
in oscillations in the C–Cl bond characteristic of a gas phase
reaction. In contrast, the dynamics are more complex in explicit
solvent, with a slower transition from the product channel.
Additionally, one of the 10 trajectories re-crosses the barrier
Fig. 7 Solution-phase SN2 reactive dynamics. (a) True (CPCM(Water)-P
implicit solvent, zeroed to the transition state energy. (b) Reactive GAP
solvated configurations (CPCM(Water)-PBE/def2-SVP, red) and explicitl
solvated surface (cubic interpolated, 5 : 1) underneath, with the error to
(rSOAP
c ¼ 6 Å) descriptor with the intermolecular explicit solvent using a S

© 2021 The Author(s). Published by the Royal Society of Chemistry
aer 170 fs of simulation (Fig. S22†), where the solvent has not
reorganised to accommodate the anionic chloride yet, making
the path to products shallower in energy.

The component-wise separation of the system also leads to
the possibility of training to a more accurate ab initio surface for
the gas phase reaction, in a similar way to QM/MM, but here
a ML(A)/ML(B) partition is available where A and B are two
different ground truth methods.33 Application of this kind of
hierarchical ML potential tting will be the subject of further
work.
Limitations

In its current implementation, this method is well suited for
studying systems of up to 50 atoms if training is expected to be
completed in a day, using a single node of 20 CPUs. For larger
systems, the speed will depend on the complexity of the PES,
where even using inexpensive methods thousands of training
congurations and several iterations cycles may be needed to
learn the different atomic environments. In contrast, training
can be achieved efficiently for large systems with higher
symmetry, and effectively lower dimensional PES. This is the
case, for example, for the supramolecular cage shown above,
which contains 138 atoms and can be modelled appropriately
with a GAP that has been trained using a smaller system of only
68 atoms (Fig. 4). Furthermore, the current intra + intermolec-
ular decomposition remains xed throughout the simulation
making the water potential generated initially incapable of
auto-ionisation. Re-determining the connectivity (and therefore
re-assigning the “intra” components) every few steps during the
simulation might help to address this limitation. However,
provided the model has been trained in a region where
a chemical change has occurred, the molecular components in
that region do not need to retain their connectivity. This is the
case, for example, in the SN2 reaction shown in Fig. 7, where the
connectivity changes between the two molecular units that
constitute the solute.
BE/def2-SVP, purple) and GAP predicted (orange) relaxed 2D PESs in
MD trajectories (lines) propagated from the TS, trained on implicitly

y solvated configurations (PBE/400 eV, blue). Ground truth implicitly
the GAP prediction in Fig. S23.† Intramolecular GAP used C-centred
OAP on O (rSOAP

c ¼ 3.5 Å) and Cl (rSOAP
c ¼ 4.5 Å, Fig. S24†).

Chem. Sci., 2021, 12, 10944–10955 | 10951
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Conclusions

Studying dynamic processes and the effect of explicit solvation
on chemical reactions demands a rapid method to develop
bespoke force-eld models with high accuracy. Here, we
demonstrated that within the Gaussian Approximation Poten-
tial (GAP) machine learning framework, accurate and robust
models can be developed efficiently for gas-phase and
condensed-phase molecular reactions. Our strategy starts from
a small number of randomly selected points in the congura-
tion space, from which active learning training of intra- and
inter-molecular components of the energy and forces is carried
out. The developed method is publicly available (https://
github.com/duartegroup/gap-train). We also dene a prospec-
tive error metric, which is found to be crucial in developing
robust active-learning-based potentials, whereas correlation on
a predened test set is insufficient to assess the quality of such
a potential. We illustrated the generality of this approach by
modelling bulk water, Zn(II) in aqueous solution, and chemical
reactions in the gas phase and explicit solvent, including post-
TS cyclisation and SN2 reactions. The diversity of the examples
presented here demonstrates the general applicability of the
strategy and encourages applying this approach in the model-
ling of more complex reactions in homogeneous and hetero-
geneous environments.

Methods

All Gaussian Approximation Potentials (GAPs) were trained
using the GAP and QUIP codes (singularity distribution, commit
#66c553f) and a Smooth Overlap of Atomic Positions (SOAP)58

kernel with radial cut-off values dened in gure captions all
with a smoothness (satom) of 0.5 Å; other hyperparameters
dened in Table S1.† For a single component condensed-phase
system such as water, two GAPs were tted for the intra and
intermolecular components, respectively, while for the solute–
solvent systems, such as the SN2 reaction between chloride and
methyl chloride, three GAPs were tted: one for the gas-phase
solute, a second for gas-phase solvent and a third one for the
intermolecular interactions; see Table S2,† entry 6 for details.
An example of the input script required to train a bulk water
model is shown in Fig. 8. In all systems the intramolecular water
potential was trained at the reference level on an evenly spaced
grid (512 points, rOH ˛ [0.8–1.5] Å, rHH ˛ [1.0–2.5] Å). Other
intramolecular GAPs employed SOAP descriptors with cut-offs
shown outlined in the gure captions. Intermolecular GAPs
were trained by subtracting intramolecular energies and forces
Fig. 8 Example Python input script required to train a bulk water
model from scratch at the DFTB level using four CPU cores.
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of all the dened components from the reference total energy.
Potentials for all pure condensed phase systems were trained
and applied at or close to their experimental liquid densities
using 10 solvent molecules (e.g. 10 H2O molecules in a 343 Å3

cubic box). Aqueous Zn and explicitly solvated SN2 reactions
used 20 water molecules in a cubic box with side length of 10 Å.
All les required to reproduce the examples shown here can be
found in https://github.com/duartegroup/gap-train/tree/
master/examples/paper_examples.

GAP-MD simulations were performed with ASE78 interfaced
to QUIP with the quippy wrapper using the Langevin integrator
with 0.5 fs timesteps at 300 K unless otherwise specied.
Condensed phase MD simulations were performed with three-
dimensional periodic boundary conditions following mini-
misation and equilibration for at least 20 ps. Initial congura-
tions, CUR61 selection and all learning curves were generated
with the gap-train module, which was used to run the auto-
mated tting.79 All active learning was performed using a ‘diff’
strategy, where a conguration is added to the training set if jE0
� EGAPj is larger than a threshold. With system-dependent
hyperparameter optimisation, using a threshold on the
maximum atomic variance predicted by the Gaussian process
(‘gp_var’) can result in accelerated learning (Fig. S25†). CUR
selection used SOAPs averaged over atoms in a conguration
using the Dscribe80 package (‘inner’ averaging, over entries of
the expansion coefficient vector). Intra + inter (I + I) energy and
force evaluations used an expansion factor of 10 to ensure no
intermolecular atoms were within the intra GAP cut-off. The
NumPy81 based implementation introduces a negligible
computational overhead for expanding the box (�0.1 ms per
step real time) but requires two GAP calculations on the inter
and intra components, currently carried out in serial. All
generated potentials, with the exception of the revPBE0-D3
water potential and metallocage, were trained in less than
a day on 10 CPU cores. The revPBE0-D3 water potential was
constructed without any prior data in 5 days (1 intra + 4 inter)
and used 20 CPU cores, while the metallocage fragment was
trained for 3 days also on 20 CPU cores. Explicit SN2 reaction
dynamics simulations were performed using intra components
for H2O and [Cl/CH3Cl]

�, where the latter, due to the nite
atomic cut-off employed, has the correct dissociation behaviour
when Cl� and CH3Cl are distant.

Periodic DFTB calculations performed with DFTB+82 using
3ob83 parameters, and molecular equivalents using GFN2-XTB84

in XTB v. 6.2.3. Periodic pure DFT calculations were performed
with GPAW85,86 v. 19.8.1 with the PBE87 functional and a 400 eV
plane-wave cut-off from a dzp LCAO initial guess at the gamma
point. Hybrid periodic DFT calculations with the revPBE088,89

functional combined with the D390 dispersion correction were
performed with CP2K.91

Molecular DFT, MP2 and coupled cluster [DLPNO-CCSD(T)]
calculations used for training were performed with ORCA92,93

v. 4.2.1 wrapped with autodE94 using PBE87 and PBE089 func-
tionals, (ma)-def2-SVP, def2-TZVP and ma-def2-TZVPP basis
sets.95 AIMD calculations at the DFTB level were performed with
DFTB+ with 3ob parameters83 and MM simulations were carried
out with GROMACS96,97 2019.2 with TIP3P parameters.98
© 2021 The Author(s). Published by the Royal Society of Chemistry
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To evaluate sacc on the fully reactive water NN of Cheng
et al.,36 the NN was retrained on 7258 congurations from ref.
99, which were re-evaluated at DFTB(3ob) and trained using
n2p2100 using the same parameters and symmetry functions.

Data availability

All les required to use this method and reproduce the exam-
ples presented in this manuscript can be found at https://
github.com/duartegroup/gap-train/.
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A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide,
J. Hermann, S. Irle, J. J. Kranz, C. Köhler, T. Kowalczyk,
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