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Fibroadipogenic progenitors are responsible for
muscle loss in limb girdle muscular dystrophy 2B
Marshall W. Hogarth1, Aurelia Defour1, Christopher Lazarski2, Eduard Gallardo3,4, Jordi Diaz Manera3,4,

Terence A. Partridge1,5, Kanneboyina Nagaraju1,5,6 & Jyoti K. Jaiswal 1,5

Muscle loss due to fibrotic or adipogenic replacement of myofibers is common in muscle

diseases and muscle-resident fibro/adipogenic precursors (FAPs) are implicated in this

process. While FAP-mediated muscle fibrosis is widely studied in muscle diseases, the role of

FAPs in adipogenic muscle loss is not well understood. Adipogenic muscle loss is a feature

of limb girdle muscular dystrophy 2B (LGMD2B) – a disease caused by mutations in dysferlin.

Here we show that FAPs cause the adipogenic loss of dysferlin deficient muscle. Progressive

accumulation of Annexin A2 (AnxA2) in the myofiber matrix causes FAP differentiation into

adipocytes. Lack of AnxA2 prevents FAP adipogenesis, protecting against adipogenic loss

of dysferlinopathic muscle while exogenous AnxA2 enhances muscle loss. Pharmacological

inhibition of FAP adipogenesis arrests adipogenic replacement and degeneration of dysferlin-

deficient muscle. These results demonstrate the pathogenic role of FAPs in LGMD2B and

establish these cells as therapeutic targets to ameliorate muscle loss in patients.
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A lthough composed of terminally differentiated multi-
nucleated myofibers, adult skeletal muscle maintains a
remarkable ability to regenerate from injury. This ability

depends on mono-nucleated cells that reside amongst the skeletal
myofibers and those that enter the muscle following injury. With
the ability of the satellite cells to proliferate and fuse to regenerate
damaged myofibers, they have long been identified as the primary
driver of regeneration. Accordingly, ablating the Pax7+ satellite
cells in adult mice blocks myofiber regeneration1–3. However,
there is growing evidence that myofiber regeneration involves
complex multicellular and extracellular matrix interactions
creating a regenerative niche that consists of secreted factors,
immune cells, myogenic and non-myogenic progenitors4–7.

Fibro/adipogenic precursors (FAPs) are muscle-resident non-
myogenic progenitors of mesenchymal origin that are marked by
cell surface expression of platelet-derived growth factor receptor
alpha (PDGFRα) and stem cell antigen-1 (Sca1) that proliferate
in response to injury and can undergo fibrogenic or adipogenic
differentiation8–10. Muscle injury triggers an acute myofiber
repair response, failure of which causes myofiber death and
resulting tissue infiltration by inflammatory cells11–13. These cells
clear the debris from the injury site and activate both satellite
cell and FAP proliferation14,15. A critical element in the regen-
erative process is transition of the pro-inflammatory cells to
become pro-regenerative within 2–3 days after injury16,17. This
coincides with the apoptotic clearance of FAPs and with satellite
cell fusion leading to myogenesis. Timely occurrence of the above
cellular choreography between inflammatory, fibro/adipogenic,
and satellite cells has been implicated in successful muscle
regeneration. Consequently, disrupting inflammatory infiltration
and FAP homeostasis impairs regeneration, resulting in fibrotic
and adipogenic degeneration of injured muscle8,18. This deficit
has been demonstrated in the mouse model of Duchenne mus-
cular dystrophy (mdx mice), where impaired FAP clearance
results in muscle loss and fibrosis19. Facilitating apoptotic clear-
ance of FAPs reduces muscle loss and improves mdx muscle
function in vivo19.

Adipogenic differentiation of FAPs has been implicated in
muscle loss following rotator cuff injury in mice20. While adi-
pogenic muscle replacement is prevalent in muscular dystrophies,
it remains to be determined if FAPs are responsible for this.
The dysferlinopathies represent a heterogeneous group of late-
onset muscle disease, including limb girdle muscular dystrophy
type 2B (LGMD2B), which are caused by mutations in the
dysferlin gene21–25. Lack of dysferlin compromises myofiber
repair, alters calcium homeostasis, and causes chronic muscle
inflammation21,26,27. However, these deficits do not explain
the late and abrupt disease onset, progressive nature, or specific
muscle involvement seen in patients or mouse models. Recently it
has been demonstrated that affected muscles of dysferlinopathic
patients and mouse model show adipogenic replacement28.
Unlike the myofiber repair deficit and inflammation, adipogenic
replacement is observed only in symptomatic patient and mouse
muscle28,29. Further, eccentric exercise exacerbates this pheno-
type in patients30, suggesting a link between myofiber injury and
adipogenic replacement of LGMD2B muscle. Muscle damage
and disease severity in LGMD2B patients correlate with increased
expression of another membrane repair protein Annexin A2
(AnxA2)31,32. Recently we described that dysferlin-deficient mice
lacking AnxA2 have reduced myofiber repair ability, but are
surprisingly protected from adipogenic myofiber loss33. This
suggested that loss of AnxA2 disrupts the link between injury and
adipogenic replacement of dysferlin-deficient myofibers.

Here, we study the effect of dysferlin loss on the homeostasis
of muscle-resident FAPs. We examine if altered FAP biology can
explain the late onset muscle-specific symptoms in LGMD2B

and if AnxA2 accumulation is a mediator of this process. By using
dysferlinopathic patient and mouse models, we show that FAP
accumulation and their adipogenic differentiation are key con-
tributors to this muscular dystrophy. Importantly, the presence
of extracellular AnxA2 promotes FAP proliferation and adipo-
genic differentiation, and the loss of AnxA2 or pharmacologically
inhibiting FAP adipogenesis significantly ameliorates the
dysferlin-deficient muscle pathology. This work identifies FAPs
and their adipogenic differentiation as a major contributor to
dysferlin-deficient muscle loss. By identifying approaches to tar-
get FAP proliferation and adipogenic differentiation, we provide
novel therapeutic targets for treating LGMD2B.

Results
Muscle adipogenesis determines LGMD2B onset and severity.
MRI and histological analyses have identified fatty replacement of
muscle in symptomatic dysferlinopathic patients34 and mouse
models29,35. By direct histological analysis of muscle sections
from LGMD2B patients and mouse model, we examined how this
association relates to disease severity. We obtained muscle
biopsies from LGMD2B patients who exhibited mild to severe
clinical symptoms described in Supplementary Table 1. As a first
step, we used the neutral lipid stain Oil Red O to score the adi-
pogenic status of muscle sections from these patients. While
sections of healthy muscle showed little to no oil red staining,
extensive staining was noted between the myofibers in sympto-
matic patient muscle sections, which increased with the severity
of the patient’s clinical symptoms and the extent of muscle loss
(Fig. 1a and Supplementary Fig. 1). To further examine if the
adipogenic deposits were originating from within the myofibers
we examined the localization of Perilipin-1, a protein that coats
the adipocyte lipid droplets36. No perilipin-1 staining was
detectable in healthy muscle, but patient muscles showed exten-
sive perilipin-1 labeling, which increased with disease severity and
localized exclusively in the extracellular matrix space between the
myofibers (Fig. 1b, c). Patient myofibers did not show internal
perilipin-1 labeling even when they are adjacent to lipid deposits
(Fig. 1c and Supplementary Fig. 1), suggesting extra-myofiber
origin of these lipids.

To independently assess the link between disease severity and
the extent of adipogenic replacement of muscle, we examined
muscles from 12-month old dysferlin-deficient (B6A/J) mice
(Fig. 1d). Disease severity, as indicated by the extent of damage
and regeneration (myofiber central nucleation) showed a
progressive increase between muscles in the following order:
TA, gastrocnemius, quadriceps, psoas (Fig. 1e). Labeling with
perilipin-1 showed a parallel increase in lipid accumulation
between the myofibers across these same muscles (Fig. 1d, f).
Similarly, muscle (gastrocnemius) collected from mice with
increasing age (6–18 months old) showed progressively increas-
ing adipogenic replacement marked by increased labeling with
either Oil Red O (Fig. 1i) or perilipin-1 (Fig. 1j). Interestingly,
while increased perilipin-1 staining is detected starting 12 months
(Fig. 1h), these muscles showed an increased central nucleation
starting from 6 months (Fig. 1g), suggesting that myofiber
damage and regeneration precedes their later adipogenic
replacement. Again, in the mouse muscle we observed perilipin-
1 labeling only in the extracellular matrix and not in adjacent
myofibers (Fig. 1k), suggesting that the lipid does not originate in
muscle fibers, and instead is produced by muscle interstitial cells.

FAPs cause the adipogenic loss of dysferlinopathic muscle. The
above results suggest the extent of muscle damage and regen-
eration preempts the degree of adipogenic replacement of dys-
ferlinopathic muscle. With the known proliferation of FAPs
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in the muscle interstitium following injury, and their adipogenic
potential, we examined if FAPs lead to adipogenic conversion of
LGMD2B muscle. Using PDGFRα to label FAPs, control biopsies
showed minimal interstitial PDGFRα staining, which was evident
in LGMD2B patients and increased with worsening clinical

severity (Fig. 2a, d). Analysis of mouse muscles showed a similar
interstitial accumulation of PDGFRα in B6A/J, which correlates
both to extent of disease severity across muscles at the same age
(Fig. 2b, e), and to increasing disease severity due to age of the
muscle (gastrocnemius) from 6 months onwards (Fig. 2c, f). This
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Fig. 1 Adipogenic replacement of muscle correlates with disease severity in dysferlinopathic patients and mice. Mild, moderate, and severely dystrophic
LGMD2B patient and non-dystrophic control muscle cross-section stained with a Oil Red O or for b Perilipin-1 protein. c Confocal images of LGMD2B
patient muscle sections showing that perilipin-1 marked lipid deposits (red) accumulate outside the boundaries of laminin-marked myofiber borders
(green). Scale bar= 20 µm. d 12Mo B6A/J TA, gastrocnemius, quadriceps, and psoas muscles stained for perilipin-1. Scale Bar= 100 µm. Quantification
(mean ± SD) of e myofiber central nucleation and f perilipin-1 area across 12Mo B6A/J muscles. Statistical comparisons performed via t-test between
adjacent groups, n= 4 muscles/group. Quantification (mean ± SD) of g myofiber central nucleation and h perilipin-1 area from B6A/J gastrocnemius with
advancing age/pathology, n= 4 mice/group. Statistical comparisons performed via ANOVA with Holm–Sidak multiple comparisons test for all means
with that of 12Mo WT, *p < 0.05 **p < 0.01, ***p < 0.001. i Oil Red O and j Perilipin-1 labeling of gastrocnemius from 6, 12, and 18Mo B6A/J and 12Mo
WT. Scale bar= 100 µm. k Confocal image of gastrocnemius muscle sections showing that perilipin-1 marked lipid deposits (red) localize outside the
boundaries of laminin-marked myofiber borders (green) in 12Mo B6A/J. Scale bar= 20 µm
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is a feature of the dysferlinopathic mice, and is not observed in
the healthy, wild type (WT) mice (Supplementary Fig. 2).
PDGFRα-labeled FAP increase occurred concomitantly with the
increase in central nucleation, but prior to adipogenic replace-
ment of the myofibers (Fig. 2f compared to Fig. 1f). This obser-
vation suggests that persistent myofiber injury and regeneration
causes FAP accumulation. Subsequent adipogenic differentiation
of these FAPs likely causes adipogenic replacement of the myo-
fibers, as indicated by the formation of lipid deposits in extra-
cellular matrix regions being enriched for PDGFRα-marked
FAPs (Fig. 2g).

To directly assess the role of FAPs in adipogenic replacement
of dysferlinopathic myofibers, we obtained a mixed primary cell
suspension from hindlimb muscles of 6Mo B6A/J mice. Inducing
cells with adipogenic media caused a proportion of cells to
differentiate into oil red-labeled adipocytes, such that even when
these adipocytes were found adjacent to myotubes, the myotubes
themselves were not producing the lipids (Fig. 2h, and inset). This
further supports that non-myogenic cells produce the adipogenic
material that eventually replace myofibers. To establish the
identity of these adipogenic cells we used fluorescence-activated
cell sorting to isolate PDGFRα-labeled (PDGFRα+) FAPs and
PDGFRα-unlabeled (PDGFRα−) cells from a primary muscle
cell suspension (Fig. 2k). Even upon adipogenic induction, no
adipocyte formation was observed in PDGFRα− cells (Fig. 2i).

However, PDGFRα+ cells formed adipocytes spontaneously,
which increased further upon adipogenic induction (Fig. 2j).
These results identify FAPs as the muscle interstitial cells that
contribute to the adipogenic loss of dysferlin-deficient muscle.

Adipogenic muscle loss depends on age and myofiber injury.
Based on above observations we hypothesized that age, chronic
injury, and poor repair of dysferlinopathic myofibers create a
niche that promotes progressive interstitial FAP accumulation
and subsequent differentiation into adipocytes. To test this,
we examined if injury and age of the TA (a muscle that is
minimally affected in B6A/J) can unmask the adipogenic poten-
tial of the FAPs and effect of tissue injury and age on this process.
TA muscles from 3Mo and 12Mo B6A/J mice were injured by
notexin and after allowing 4 weeks for myofibers to fully regen-
erate, the extent of adipogenic muscle replacement was scored
and compared to the uninjured 12mo B6A/J TA (Supplementary
Fig. 3). The uninjured 12Mo, and the injured 3Mo B6A/J TAs
both lack significant adipogenic replacement (assessed by
perilipin-1 staining) (Fig. 3a–c). In contrast, the injured 12Mo
B6A/J TA showed substantially increased adipogenic foci and
myofiber areas replaced by adipogenesis (Fig. 3a–c). This showed
that increasing age increases injury-triggered adipogenic repla-
cement of areas otherwise occupied by myofibers. This link is
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Fig. 2 FAP accumulation and differentiation dictates the extent of adipogenic replacement of dysferlin-deficient muscle. PDGFRα staining of FAPs in a mild,
moderate, and severe LGMD2B patient and non-dystrophic control muscle cross-sections; b muscles with increasing pathology from 12Mo B6A/J and
c gastrocnemius muscle cross-sections from 6, 12, and 18Mo B6A/J and 12Mo WT control. Scale bar= 20 µm. Quantification (mean ± SD) of muscle area
labeled with PDGFRα in d human and mouse muscle with e increasing pathology and f increasing age. n= 4 mice/group. Statistical comparisons performed
via ANOVA with Holm–Sidak multiple comparisons test for all means with 12Mo TA or 12Mo WT respectively, *p < 0.05, **p < 0.01, ***p < 0.001.
g Gastrocnemius muscle cross-section of 12Mo B6A/J co-labeled for PDGFRα and Perilipin-1. Scale bar= 50 µm. h Oil Red O staining of primary cell
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further strengthened by the observation that adipogenic repla-
cement occurs at the site of notexin injection (marked by tattoo
dye), while adjacent uninjured regions remained non-adipogenic
(Supplementary Fig. 3). These results establish muscle injury and
age enhance adipogenic replacement of dysferlinopathic muscle.

To confirm that this post-injury lipid formation was due to the
absence of dysferlin, we also injured TAs from 12Mo WT, which
showed no significant lipid formation after injury (Fig. 3d–f).
Dysferlinopathic muscle undergoes repeat bouts of injury over the
disease course, which we hypothesize leads to adipogenic
replacement of the muscle. To test this, we performed three
consecutive injuries to the TA muscle in dysferlinopathic mice,
allowing 2-week regeneration periods between the injuries
(Supplementary Fig. 3). This resulted in more adipogenic
replacement of the TA muscle than in the single injured TA
muscle (Fig. 3d–f), suggesting that repeat rounds of myofiber
injury and regeneration drive the adipogenic conversion of
dysferlinopathic muscle. To examine if this injury-dependent
adipogenic replacement was a consequence of increased FAP
accumulation caused by the injuries, we stained these muscles
for PDGFRα (Fig. 3g). Compared to uninjured B6A/J muscles
and WT muscles, there was a significant increase in PDGFRα-
labeled FAPs in injured B6A/J muscles (Fig. 3h). Injured 12Mo
B6A/J muscle accumulates significantly more FAPs than both
the 3Mo B6A/J and the 12Mo WT injured muscles, indicating
that excessive FAP accumulation after injury is a feature of
dysferlin-deficient muscle with advancing pathology, and likely
underpins the adipogenic loss of these muscles.

AnxA2 links muscle injury to FAP activation and adipogenesis.
The above link between FAP accumulation and adipogenic
replacement of dysferlinopathic muscle suggests that accumu-
lation and adipogenic differentiation of FAPs is responsible for
the decline in dysferlinopathic muscle function, and reversing
this could provide a therapy for LGMD2B. AnxA2 is a mem-
brane repair protein that is elevated upon muscle injury and
increases in LGMD2B patient muscle in a manner that corre-
lates with disease severity31,32. Previously, we showed that
deletion of AnxA2 in dysferlinopathic muscle reduces adipo-
genic replacement and improves muscle function despite no
improvement in myofiber repair33. Thus, we examined if
AnxA2 contributes to FAP proliferation/adipogenic differ-
entiation in dysferlinopathic muscle. Immunostaining for
AnxA2 showed that in dysferlinopathic mice AnxA2 level
increases with disease severity and that this increase is in the
level of AnxA2 in the interstitium (Fig. 4a, b, e). Co-labeling
with PDGFRα showed that the FAPs are enriched in the regions
with accumulation of AnxA2 (Fig. 4c, d). AnxA2 expression
increases after muscle injury, and extracellular AnxA2 can
activate inflammation via toll-like receptor 4 (TLR4)37,38. We
thus investigated if the inflammatory cells are enriched at the
sites of AnxA2 accumulation, and found this to be the case;
F4/80 marked macrophages accumulated in interstitial regions
enriched for AnxA2 (Fig. 4f), and are located adjacent to the
PDGFRα-labeled FAPs (Fig. 4g). To analyze if AnxA2 accu-
mulation is causally linked to adipogenic replacement via FAPs
we examined adipogenic replacement and FAP accumulation
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in mice lacking dysferlin and AnxA2 (A2-B6A/J). Oil Red O
and perilipin-1 labeling both reveal significantly less adipogenic
replacement of muscle in A2-B6A/J than B6A/J mice (Fig. 4h, i,
Supplementary Fig. 4 and quantified in Fig. 5d). This indicates
that extracellular AnxA2 accumulation contributes to the pro-
adipogenic niche as AnxA2 deletion arrests the adipogenic
conversion of dysferlinopathic muscle.

As we find macrophages are enriched at sites of PDGFRα
and AnxA2 accumulation, we next examined if the lack of
extracellular AnxA2 works by inhibiting muscle inflammatory
response. F4/80 staining of 12Mo gastrocnemius muscles showed
that compared to the WT mice, both B6A/J and A2-B6A/J
mice show a robust increase in macrophage infiltration (Fig. 5a, b).
The extent of macrophage infiltration in these mouse muscles
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Fig. 4 Extracellular accumulation of AnxA2 drives FAP accumulation in dysferlinopathic muscle. a AnxA2 staining in cross-sections from 6, 12, and 18Mo
B6A/J and 12MoWT mouse gastrocnemius muscle. Scale bar= 20 µm. b Quantification (mean ± SD) of total AnxA2-labeled area across the entire muscle
cross-section, n= 4 mice/group. Statistical comparisons performed via ANOVA with Holm–Sidak multiple comparisons test to compare all means with
12Mo WT, *p < 0.05, **p < 0.01, ***p < 0.001. c Quantification (mean ± SD) of d co-localization between AnxA2 and PDGFRα in 12Mo B6A/J
gastrocnemius, n= 4 mice/group. Statistical comparisons performed via ANOVA with Holm–Sidak multiple comparisons test to compare all means with
Uninjured 12Mo WT, *p < 0.05, ***p < 0.001. Confocal images from 12Mo B6A/J gastrocnemius co-labeled for e AnxA2 and laminin, f AnxA2 and F4/80,
and g PDGFRα and F4/80. Scale bar= 20 µm. h Oil Red O and i Perilipin-1 labeling of gastrocnemius cross-sections from 12Mo B6A/J and A2-B6A/J. Scale
bar= 50 µm
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is in line with the extent of myofiber injury, indicated by the
number of centrally nucleated myofibers in B6A/J and A2-B6A/J
mice as compared to WT mice (Fig. 5c). In contrast to the
higher injury and inflammation of A2-B6A/J muscle (as
compared to the WT), FAP (PDGFRα) accumulation and lipid
(perilipin-1) formation were comparable between the A2-B6A/J
and WT muscle (Fig. 5d, e). This raises the possibility that
the beneficial effect of the lack of AnxA2 may be by way of its
effect on FAP proliferation and adipogenic differentiation. To
examine the effect of AnxA2 on FAP accumulation and on
preventing their adipogenic differentiation, we first quantified
FAP accumulation using PDGFRα labeling. While B6A/J mice
showed increasing accumulation of FAPs with age, muscles in
the A2-B6A/J mice showed fewer FAPs, and their numbers

did not increase with age (Fig. 5f, g). This indicates that lack
of AnxA2 prevents FAP accumulation, contributing to the
suppression of adipogenic replacement of dysferlin-deficient
muscle.

We next examined if AnxA2 can also contribute to the
adipogenic fate of the FAPs in dysferlin-deficient muscle. For this
we isolated FAPs from 12Mo WT, B6A/J and A2-B6A/J muscle
and quantified their spontaneous adipogenesis in vitro. A small
proportion of WT FAPs undergo spontaneous adipogenesis
after 14 days in culture, but B6A/J FAPs show significantly higher
rates of adipogenesis (Fig. 6a, b). The spontaneous adipogenesis
of B6A/J FAPs suggests these cells are committed to adipogenesis
prior to extraction, which may be caused by the pro-adipogenic
niche in dysferlinopathic muscle. The lack of spontaneous
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Fig. 5 Presence of AnxA2 is required for adipogenic conversion of dysferlinopathic muscle. a F4/80 staining of gastrocnemius of 12MoWT, B6A/J and A2-
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10438-z ARTICLE

NATURE COMMUNICATIONS | _(2019) 10:2430_ | https://doi.org/10.1038/s41467-019-10438-z | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


adipogenesis in A2-B6A/J FAPs could be caused by the lack of a
pro-adipogenic niche or restricted adipogenic potential of the
FAPs in the absence of AnxA2 (Supplementary Fig. 4). As
adipogenic replacement of muscle is enhanced with age, to
allow for the niche cells to reach their maximal potential we
isolated the niche (PDGFRα−) and FAP (PDGFRα+) cells from
24Mo B6A/J and A2-B6A/J muscles. These FAP and niche cells
were then mixed in a 1:1 ratio (20,000 cells total; 10,000 FAPs)
from the same or different genetic background and their
spontaneous adipogenesis was quantified as the extent of oil red

staining/20,000 FAPs. Compared to the B6A/J niche, the A2-
B6A/J niche restricted the spontaneous adipogenesis of B6A/J
FAPs (Fig. 6c, d). Thus, the absence of AnxA2 in the niche cells
reduces the adipogenicity of the dysferlinopathic FAPs. To
directly test if it is the AnxA2 or another factor secreted by the
niche cells that influences FAP adipogenesis we treated a purified
population of B6A/J FAPs (20,0000 FAPs) with 100 nM AnxA2
and their spontaneous adipogenesis was quantified as the extent
of oil red staining/20,000 FAPs. Compared to the AnxA2
untreated FAPs, treatment with purified AnxA2 alone caused a
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Fig. 6 AnxA2 drives FAP adipogenesis and injury-triggered lipid formation in dysferlinopathic muscle. a Oil Red O staining and b quantification of
spontaneous adipogenesis of 20,000 FAPs each, isolated from 12Mo WT, B6A/J and A2-B6A/J after 10 days in culture, n= 3 replicates/genotype. Scale
bar= 50 µm. c Oil Red O staining and d quantification (normalized to 20,000 FAPs) of spontaneous adipogenesis from a 1:1 mixed culture of 24Mo B6A/J
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of spontaneous adipogenesis of 20,000 24Mo B6A/J FAPs left untreated or treated with 100 nM recombinant AnxA2. Scale bar= 50 µm. g Perilipin-1
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>2-fold increase in the spontaneous adipogenic differentiation of
these dysferlinopathic FAPs (Fig. 6e, f).

Taken together, the above results show that AnxA2 produced
by the B6A/J muscle niche cells can potentiate the adipogenic
differentiation of B6A/J FAPs in vitro. We next examined if this
was also true in vivo. For this we used the AnxA2-naive A2-B6A/J
mice and notexin injured their muscle with or without the
addition of 10 µg purified AnxA2 at the site of injury. The
presence of exogenous AnxA2 at the site of muscle regeneration
in these otherwise AnxA2-deficient muscles resulted in increased
accumulation of the PDGFR+ FAPs as well as perilipin-1 labeled
adipogenic deposits (Fig. 6g–j). This provides direct evidence
supporting that extracellular AnxA2 is not only necessary, but
also sufficient for driving FAP-mediated in vivo adipogenic
conversion of the regenerating dysferlinopathic muscles.

Blocking FAP differentiation arrests adipogenic muscle loss.
Our data from the A2-B6A/J model suggests that restricting the
adipogenic conversion would preserve the dysferlinopathic
muscle and is thus a potential therapeutic target. To test this, and
to independently confirm the benefit of inhibiting FAP adipo-
genesis for dysferlinopathy, we used a drug to inhibit the

adipogenic differentiation of FAPs. Batimastat is a small molecule
drug that has previously been shown to restrict adipogenesis of
both cultured adipogenic precursors39 and WT mouse FAPs40.
To test the ability of batimastat to prevent the spontaneous adi-
pogenesis of B6A/J FAPs we treated 40,000 FAPs isolated from
12Mo B6A/J mice with 10 µM batimastat starting from 3 days in
culture. Using Oil Red O, we quantified the extent of adipogenic
differentiation of these FAPs after 14 days in culture in vitro
(Fig. 7a). We find that treatment with batimastat resulted in
reduced spontaneous adipogenesis of the B6A/J FAPs (Fig. 7b).

We next tested whether this effect of batimastat to repress FAP
adipogenesis can improve muscle histopathology in vivo. 12Mo
B6A/J mice were treated for 10 weeks with batimastat (2 mg/kg i.
p. 3× weekly). As B6A/J gastrocnemius muscle showed significant
adipogenic replacement starting from the age of 12Mo (Fig. 1i),
we assessed for the extent of adipogenic loss in this muscle
(Fig. 7c). Compared to the untreated mice, muscles from
batimastat treated mice showed significantly reduced perilipin-1
labeled area (Fig. 7d). To determine if this reduction in
adipogenic replacement was due to an effect on just FAP
differentiation or also on FAP proliferation, we quantified FAP
accumulation by PDGFRα labeling and saw no effect of
batimastat treatment on FAP number (Supplementary Fig. 5).
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Fig. 7 Batimastat blocks FAP adipogenesis and reduces adipogenic loss of dysferlinopathic muscle. a Oil Red O staining and b quantification (normalized
to 20,000 FAPs) of spontaneous adipogenesis from 40,000 FAPs each, isolated from 12Mo B6A/J, after 10 days in culture (n= 3 replicates/group).
Cells were treated with 10 µM batimastat starting day 3 in culture. Scale bar= 50 µm. c Perilipin-1 staining of 14Mo gastrocnemius muscle sections after
10 weeks of batimastat treatment. Scale bar= 100 µm. d Quantification of perilipin-1 stained area in gastrocnemius muscle, n= 3 muscles/group.
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Scale bar= 100 µm. f Quantification of injury-triggered lipid formation in notexin injured TA muscles corresponding to panel (e), n= 6 muscles/group.
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Similarly, batimastat treatment of 12Mo B6A/J mice did not
decrease the extent of myofiber central nucleation (Supplemen-
tary Fig. 5). Thus, inhibition of adipogenesis by batimastat is not
due to reduced FAP numbers or improved myofiber repair. To
further confirm the ability of batimastat to prevent dysferlino-
pathic muscle from injury-triggered FAP adipogenesis, we
employed the repeat notexin-induced TA injury approach which
induces significant adipogenic replacement of the muscle (Fig. 3d,
e). Compared to the untreated mice, TA muscles from batimastat
treated mice showed a nearly 40% reduction in perilipin-1
positive area following repeat notexin injury (Fig. 7e, f). Again,
this reduction was due to restriction of adipogenic differentiation
of the FAPs and not due to an effect on their proliferation, as
batimastat treatment did not reduce the FAP accumulation
caused by repeat notexin injuries (Supplementary Fig. 5). Given
that FAP numbers are unaffected by batimastat treatment, we also
examined whether batimastat treatment causes cells to adopt a
fibrogenic fate by blocking their adipogenic differentiation.
However, we did not observe a change in intra-muscular fibrosis
as a result of batimastat treatment in either the gastrocnemius or
injured TA (Supplementary Fig. 5). Taken together, the above
results both confirm the essential nature of FAP adipogenesis for
the adipogenic conversion of dysferlinopathic muscle, and
highlight the potential of batimastat to arrest the progressive
and even late stage adipogenic replacement of dysferlinopathic
muscle.

Discussion
Myofiber loss and the associated muscle weakness is a feature of
many muscular dystrophies. Thus, in the search for innovative
therapies, it is important to elucidate the cellular mechanisms
that link the initial genetic defect to disease onset and progres-
sion. In LGMD2B, the absence of dysferlin in myofibers inhibits
sarcolemmal repair21, disrupts proper calcium homeostasis at
the t-tubules27,41,42, and alters the response of innate immune
cells43,44. Restoration of dysferlin expression in myogenic cells45

and blockade of innate immune activation46 reduce pathology in
dysferlin-deficient mice, indicating that both the myofiber and
inflammatory cell-specific deficits contribute to disease symptoms
in dysferlinopathy. However, these deficits fail to explain the
abrupt and late onset of disease in patients and the observation
that adipogenic replacement is a feature of symptomatic dysfer-
linopathic muscle28,29,35. Here, we provide evidence that disease
onset and progression in dysferlinopathy is not driven solely by
the myofiber and inflammatory cell-specific defects, but by
creation of an extracellular niche resulting in proliferation and
adipogenic differentiation of muscle-resident FAPs.

From early in the disease, the primary myofiber defects lead
to persistent myofiber damage. AnxA2, a dysferlin interacting
protein that accumulates at the injured membrane and aids in
its repair is released at the site of plasma membrane injury47,48.
This AnxA2 released at the site of injured myofibers can trigger
muscle inflammation, which in acute injury facilitates myofiber
regeneration49,50. However, in LGMD2B patients AnxA2 levels
are chronically increased in a manner that correlates with disease
severity31,32. Given that AnxA2 expression is ubiquitous, AnxA2
can also be produced by myofibers or other cells present in the
injured muscle, including the FAPs, endothelial and inflamma-
tory cells. AnxA2 released chronically in the extracellular matrix
of dysferlinopathic muscle creates a niche which favors increased
proliferation and subsequently, adipogenic differentiation of
FAPs (Fig. 8). Consistent with this hypothesis, we show that
AnxA2 is a critical component of the pro-adipogenic FAP niche
in dysferlinopathic muscle, as deletion of AnxA2 both decreases
extracellular matrix FAP accumulation and prevents their

commitment to adipogenesis (Figs. 4 and 5). The presence of
AnxA2 expressing niche cells in the muscle increases FAP adi-
pogenesis and purified AnxA2 in regenerating muscle is capable
of increasing FAP accumulation and adipogenesis in regenerating
dysferlinopathic muscle (Figs. 6 and 7). These in vitro and in vivo
analyses independently confirm an active role of AnxA2 in the
adipogenic conversion of dysferlinopathic muscle.

In addition to the direct action of AnxA2 on FAPs, it may also
act indirectly via inflammatory or other cell types. In support
of such a role of AnxA2 we find that dysferlinopathic muscle
lacking AnxA2 shows reduction in the extent of macrophage
infiltration (Fig. 5). This could be due to the ability of AnxA2 to
function as an agonist for innate immune response38. Previously,
we showed that AnxA2 knockout in B6A/J mice down-regulates
TLR4 signaling33. Inhibiting TLR signaling by deletion of the
central TLR adapter protein Myd88 reduces pathology in dys-
ferlinopathic (A/J) mice46. Innate immune signaling has been
implicated in the dysferlinopathic symptoms44, and dysferlin-
deficient muscles show a greater abundance of pro-inflammatory
as compared to pro-regenerative macrophages51. Together, these
may contribute to delayed/impaired myogenesis52, further
enabling FAP accumulation14. Repeat rounds of myofiber injury,
chronic inflammation, and FAP accumulation as the muscle ages
may set up a feed-forward loop linking myofiber damage to the
formation of a pro-adipogenic niche over time, which in turn
contributes to myofiber damage (Fig. 8). In such a system,
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Fig. 8 FAPs control the onset and severity of disease in LGMD2B. a Healthy
and/or pre-symptomatic LGMD2B muscle contains resident FAPs. b After
myofiber injury, inflammatory cells invade and trigger FAP proliferation.
Successful regeneration involves a switch between pro-inflammatory and
pro-regenerative signaling, causing the removal of inflammatory cells and
FAPs. c In symptomatic LGMD2B muscle, there is a gradual accumulation
of extracellular AnxA2, which prolongs the pro-inflammatory environment,
causing excessive FAP proliferation. This cellular niche becomes pro-
adipogenic over time, allowing for differentiation of FAPs and the
adipogenic conversion of muscle. d Blocking aberrant signaling due to
AnxA2 buildup blocks FAP accumulation and thus preventing adipogenic
loss of dysferlinopathic muscle. Similarly, use of a MMP-14 inhibitor
(Batimastat) inhibits FAP adipogenesis offering a potential drug-based
therapy to prevent adipogenic loss of dysferlinopathic muscle
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adipogenic accumulation becomes the nucleating event that
results in clinical onset, and an abrupt decline in muscle function
in patients. Thus, while dysferlinopathy is driven by a myofiber-
specific deficit, it is the impaired cellular interactions between
myofibers, inflammatory cells, and FAPs that is causative for
disease initiation and severity. This view of the disease opens up
previously unrecognized avenues to intervene, as has been rea-
lized in DMD where inhibition of TGFβ-induced FAP accumu-
lation reduces muscle fibrosis and leads to therapeutic benefits19.

Use of mdx mice shows that aberrant FAP accumulation and
differentiation drives disease pathogenesis in DMD19. While these
FAPs primarily exhibit fibrogenic fate via TGFβ signaling, in vitro
they also exhibit adipogenic potential19,53. Their adipogenic
potential diminishes with age, advancing pathology, and by the
use of HDAC inhibitors53,54. This contrasts with the in vivo
increase in adipogenic fate of FAPs we observe in dysferlinopathic
mice. This difference between the dystrophin (mdx) and dysferlin
(B6A/J) mouse models suggests spontaneous fibrogenic com-
mitment of the mdx and adipogenic commitment of B6A/J FAPs.
However, the mechanism by which FAPs can choose between
these fates remains elusive. Inhibition of MMPs is known to
decrease the conversion of 3T3-L1 and primary rat preadipocytes
into adipocytes39. Analyses of the FAPs show that pharmacolo-
gical inhibition of matrix metalloprotease (MMP)-14 represses
C/EBPδ and PPARγ in FAPs by way of cilial hedgehog signaling
and this reduces the adipogenic fate of FAPs40. Adipogenesis
of dysferlinopathic muscle has been linked with an increase in
C/EBPδ and PPARγ mRNA in the muscle28. Both of these are
essential transcription factors in adipocyte differentiation, and
MMP-14 is suggested to be one of the extracellular signals that
triggers adipogenic differentiation of FAPs. MMP-14 is released
by myofibers and is critical to successful myogenesis during
muscle regeneration55. Interestingly, MMP-14 expression in the
dysferlin-null SJL mouse quadriceps increases by 3-fold between
2-month old (presymptomatic) and 9-month old (symptomatic)
muscles56. Similar analysis of SJL mice has identified that the
levels of AnxA1 and AnxA2 increase as these mice transition
from 2 to 8 months of age57. Consistent with the putative role for
MMP-14 in adipogenic conversion of dysferlinopathic muscle, we
show that pharmacological inhibition of MMP-14 (by batimastat)
reduces FAP adipogenesis in vitro and ameliorates injury-
triggered lipid formation in vivo (Fig. 7). This suggests that
gradual loss of FAP ciliation and/or repression of the Hh pathway
may contribute to pro-adipogenic niche formation in dysferli-
nopathic muscle. Batimastat treatment has also been shown to
reduce fibrosis and increase muscle function in mdx mice58,
which is suggestive of an anti-fibrotic effect on FAPs in
dystrophin-deficient muscle. Because batimastat broadly inhibits
MMPs, it is not clear whether this is due to specific inhibition of
MMP-14 or other MMPs upregulated in mdx muscle58. But, it is
clear that more insight into the mechanisms by which FAPs
choose between fibrosis and adipogenesis and therapies targeting
these pathways are of great interest in treating muscular dystro-
phies and other degenerative muscle diseases.

AnxA2-mediated MMP secretion has been shown to cause
joint destruction in rheumatoid arthritis59, suggesting AnxA2/
MMP interactions may play a role in FAP-dependent adipogen-
esis in dysferlinopathic muscle. AnxA2 has also been shown to
influence Hh signaling via the AnxA2 receptor in endothelial
cells58, providing additional mechanisms by which AnxA2 and
MMP-14 may be linked during adipogenic niche formation in
dysferlinopathic muscle. Such a role of AnxA2 is consistent with
our previous study showing that loss of AnxA2 uncouples the
repair defect of dysferlinopathic myofibers from the eventual
adipogenic replacement of the muscle33, identifying AnxA2 and
MMP-14 as therapeutic targets for LGMD2B. This represents a

significant advance towards the development of the therapy for
this disease, which currently lacks any effective or approved
therapy. Unlike other inflammatory muscle diseases, where sup-
pression of inflammation with corticosteroids is effective, treat-
ment of dysferlinopathic patients with glucocorticoids has been
without success60, which may be due to the role of conventional
corticosteroids in inducing myofiber damage and activating FAP
adipogenesis61,62. Further, the use of tyrosine kinase inhibitors
prevents excessive FAP proliferation in DMD mouse model19,20,
has toxicity associated with their long-term use required for
LGMD2B. Our identification of inhibiting adipogenesis in dys-
ferinopathic muscle by targeting FAPs by MMP-14 inhibitors
(batimastat) also opens avenues for the use of other candidate
drugs like promethazine, which also inhibits FAP adipogenesis63.
In principle, the direct manipulation of PDGFRα splicing by
morpholinos may also be beneficial by preventing FAP pro-
liferation64. Irrespective of the precise therapeutic approach that
would be efficacious, our study identifies the accumulation
and adipogenic differentiation of FAPs as a central target to
prevent the precipitation of cellular deficits into the abrupt
onset of disease in dysferlinopathies. Moreover, such therapies
would be complementary to the ongoing efforts to restore dys-
ferlin expression in terminally differentiated myofibers.

Methods
Patient biopsies. Patient biopsies were obtained under informed consent and was
approved by the Ethics Committee of Hospital de la Santa Creu i Sant Pau de
Barcelona. Frozen muscle biopsies from LGMD2B patients with 2 confirmed
mutations in dysferlin were used. These were classified mild, moderate, and severe
based on their clinical phenotype (Supplementary Table 1) for analysis. As a
control, frozen muscle biopsies were obtained from young adults with no known
neuromuscular conditions and without any histopathological features to serve as a
comparison.

Animals. All animal procedures were conducted in accordance with guidelines
for the care and use of laboratory animals, and were approved by the Children’s
National Medical Center Institutional Animal Care and Use Committee. C57BL/6J
(WT) and B6.A-Dysfprmd/GeneJ (B6A/J) mice were obtained from the Jackson
Laboratory (Bar Harbor, ME) and maintained as homozygous colonies for the
purpose of this study. A2-B6A/J mice were generated as part of our previous
study33, and are maintained in-house. All animals were maintained in an indivi-
dually vented cage system under a controlled 12 h light/dark cycle with free access
to food and water. Mice were used at the timepoints indicated in the study ±
2 weeks.

Immunohistochemical analysis of muscle sections. Frozen sections 8 µm thick
were cut from human biopsies and the midbelly of mouse muscles. Lipid was
visualized using an Oil Red O staining kit (American MasterTech, #KTORO)
according to manufacturer’s instructions. Immunofluorescence was performed by
fixing sections in chilled 10% neutral buffered formalin, blocking with 5% BSA
and incubation with primary antibodies against perilipin-1 (1:250, Sigma, #P1873),
PDGFRα (1:250, Cell Signaling, #3174S), Annexin A2 (1:250, Santa Cruz,
#SC-9061) and F4/80 (1:500, Serotec, #MCA497). For co-labeling anti-PDGFRα
(1:100, R&D Systems, #AF1062) was used. Staining was visualized using relevant
secondary antibodies conjugated to AlexaFluor 488 and/or 568 (1:500, Thermo-
Fisher). Myofiber membranes were marked using AlexaFluor 488-conjugated
wheat germ agglutinin (1:500, ThermoFisher, #W11261) and coverslips were
mounted using ProLong Gold with DAPI (ThermoFisher, #P36941).

Microscopy and image analysis. Microscopy was performed using an Olympus
BX61 VS120-S5 Virtual Slide Scanning System with UPlanSApo 40×/0.95 objective,
Olympus XM10 monochrome camera or Allied vision Pike F-505C color camera,
and Olympus VS-ASW FL 2.7 imaging software. Confocal images were acquired
using an Olympus FV1000 Confocal Microscope with UPlanFLN 40×/1.30 oil
objective and Olympus FV-ASW version 4.2 imaging software. Perilipin-1
quantification was performed by thresholding the image to exclude non-specific
staining and then calculating the area of each lipid deposit encircled by perilipin-1
(excluding those in the epi- or perimysium) using MetaMorph software (Molecular
Devices). The total area encircled by perilipin-1 was calculated for all lipid deposits
across the muscle and expressed relative to the total cross-sectional area. PDGFRα
and AnxA2 positive area was calculated using CellSens software (Olympus) by
thresholding to remove non-specific staining and calculating the total positive
area (again, excluding any epi- or perimysial staining) relative to the entire
muscle cross-section.
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Isolation and in vitro adipogenesis of FAPs. FAPs were isolated from the hin-
dlimb muscles of 6Mo B6A/J mice in a modified protocol from previously pub-
lished studies8,10. Mice were euthanized and the tibialis anterior, extensor
digitorum longus, gastrocnemius, soleus, quadriceps, and psoas were immediately
dissected. Non-muscle tissue including tendon, nerve, and overlying fascia were
carefully removed, and muscles were minced finely in a sterile dish and incubated
in Collagenase II (2.5 U/ml, ThermoFisher, #17101015) in PBS for 30 min at 37 °C.
The resulting slurry was washed with sterile PBS before further digest in Col-
lagenase D (1.5 U/ml, Sigma Aldridge, #COLLD-RO) and Dispase II (2.4 U/ml,
Sigma Aldridge, #D4693) in PBS for 60 min at 37 °C. Resulting slurries were passed
through 100 and 40 µm strainers and primary cells were resuspended in 1 ml PBS
with 2% FBS and 2 nM EDTA. 300 µl of the primary cell suspension was reserved
for plating and the remaining was stained with anti-PDGFRα-APC (1.0 µg per 106

cells in 100 µl, Biolegend, #135908) and isotype control (1.0 µg per 106 cells in 100
µl, Biolegend, #400512) for FACS. Cells stained with isotype control were used as a
control for gating positive and negative events. Cells stained with anti-PDGFRα-
APC were then sorted on an Influx cell sorter (Becton Dickinson, #646500) using
two-way sorting to separate positive and negative PDGFRα-expressing cells for
further analysis (Supplementary Fig. 6).

The freshly isolated primary cell, PDGFRα− and PDGFRα+ populations were
plated in Matrigel-coated Nunc Lab-Tek chamber slides (ThermoFisher, #154534)
at a density of 20,000 cells/well. Cells were cultured in DMEM (Lonza, #12-604F)
supplemented with 20% fetal bovine serum, 1% penicillin, and 2.5 ng/ml bFGF
(BioLegend, #579604) for 3 days. Adipogenic differentiation was induced by
exposure to DMEM with 10% FBS, 0.5 mM IBMX (Sigma Aldridge, #I5879), 0.25
µM dexamethasone (Sigma Aldridge, #D2915), and 10 µg/ml insulin (Sigma
Aldridge, #I0516) for 3 days. Following this, cells were cultured in adipogenic
maintenance media (DMEM with 10% FBS and 10 µg/ml insulin) for 3 days.
Uninduced cells were not exposed to the adipogenic differentiation media, but
instead cultured for 6 days in the adipogenic maintenance media, with the media
changed after 3 days. At the beginning of day 10, cells were fixed for 30 min in
chilled, neutral buffered formalin before Oil Red O staining to visualize lipid. For
studies involving AnxA2 treatment, FAPs were isolated and plated as described
above. From day 3 onwards, cells were continuously treated with 100 nM
recombinant AnxA2 (RayBiotech, #230-30023) until being fixed for oil red staining
on day 10.

Notexin injury. Single injury was performed by carefully shaving the anterior
hindlimb before intramuscular injection of 40 µl notexin (5 μg/ml, Latoxan,
#L8104) into the tibialis anterior using a 0.3 ml ultrafine insulin syringe (BD
Biosciences, #324906). Immediately prior to injection, the needle was dipped in
green tattoo dye (Harvard Apparatus, #72-9384) to mark the needle track. The
contralateral leg was left uninjured as a control. Mice were allowed to recover for
28 days before the animal was euthanized and muscles collected for analysis. For
repeat injuries we performed 3 separate intramuscular notexin injections, each
14 days apart, and allowed 28 days of recovery following the final injury before
tissue collection. Using the superficial mark on the skin from the tattoo dye, we
attempted to perform each injury as close to the site of the previous injury as
possible so as to repeatedly injure the same myofibers each time. For AnxA2-
notexin studies, 10 µg recombinant AnxA2 (RayBiotech, #230-30023) was added to
40 µl notexin (5 μg/ml, Latoxan, #L8104) and injected into the mid-belly of the
right tibialis anterior. The contralateral (left) tibialis anterior was injected with 40
µl notexin only for comparison. Again, these muscles were harvested for analysis
28 days after injury.

Batimastat treatment. For in vitro studies, PDGFRα+ FAPs were isolated from
12Mo B6A/J muscle as described above, and plated in Matrigel-coated Nunc Lab-
Tek chamber slides at 40,000 cells/well. Cells were cultured in DMEM (Lonza, #12-
604F) supplemented with 20% fetal bovine serum, 1% penicillin, and 2.5 ng/ml
bFGF (BioLegend, #579604) for 3 days. After which, cells were treated with 10 µM
batimastat (Sigma-Aldridge, #SML0041) added to the adipogenic maintenance
media for 6 days. At the beginning of day 10, cells were fixed for 30 min in chilled,
neutral buffered formalin before Oil Red O staining to visualize lipid.

For in vivo studies, 12Mo B6A/J mice were treated thrice weekly with
batimastat (Sigma-Aldridge, #SML0041), 2 mg/kg i.p. for 10 weeks. At the end of
the treatment period, the effect of batimastat on disease pathology was evaluated by
quantification of perilipin-1 marked lipid area in the gastrocnemius and compared
to untreated controls. In addition, we tested injury-triggered adipogenesis using the
repeat notexin injury protocol described above and in Supplementary Fig. 5.
During the 10-week treatment period, 12Mo B6A/J mice were subjected to 3
intramuscular notexin injections into the TA, each 2 weeks apart, beginning on day
2 and ending on day 29. After 10 weeks of treatment, injury-induced lipid
formation was quantified by perilipin-1 area in the injured TA and compared
between batimastat treated and untreated controls. For both experiments,
batimastat was first dissolved in DMSO, before being reconstituted in sterile 5%
saline for treatment.

Statistical analysis. Data were analyzed using Prism GraphPad software. The
precise statistical test employed varied depending on the nature of the analysis, and

is listed in the legend for each figure. To visualize the distribution of data, we
plotted the individual data points for each plot in Supplementary Figs. 7 and 8.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its Supplementary Information.
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