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Gut microbes are present in large concentrations on the human intestinal mucosal surface and play important roles 
in health and disease of the host. Numerous groups of gut microbes are associated with immunological and metabolic 
diseases and in maintaining health status of the host. Among these health- and disease-associated gut microbes, 
Bacteroides, Clostridium and Bifidobacterium appear regularly in the list. Scientific and clinical evidence available 
to date indicates that diet is a major driving factor for the establishment of the gut microbiome. Slow digestible 
carbohydrates (human milk glycan, inulin and fructooligosaccharide), insoluble complex carbohydrates and 
protein diets favor the growth of Bacteroides, Clostridium and Bifidobacterium. Fat on the other hand suppresses the 
number of Bacteroides, Clostridium and Bifidobacterium; whereas polyphenols in general suppress Bacteroides and 
Clodtridium but enhance the Bifodobacterium. The implication is that dietary habits could be a major determinant 
of health and disease susceptibility. Dietary strategies could be an effective means of potentially inducing changes in 
intestinal microbiota and are certainly achievable, thus facilitating correction of intestinal microbiome aberrations or 
imbalances to improve our health. Most of the physiological and functional interactions between individual dietary 
components and the concoction of foods in a meal and gut microbiota have not yet been well studied. A concerted 
effort is required to acquire better understanding of their interaction in order to rationally maintain our intestinal 
microbiome homeostasis and general health through dietary intervention.
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GUT MICROBES AND HEALTH

Gut microbes play important roles in health and disease 
of the host for the obvious reasons that they are present 
in large concentrations, closely associated with the host 
mucosal surface and interact with the host.

It has been widely demonstrated in animal and clinical 
studies that gut microbiota are involved in maturation and 
regulation of host immunity and gut functions. Capsular 
antigen of the human commensal Bacteroides fragilis 
triggers T cell-dependent immune responses that can 
affect both the development and homeostasis of the host 
immune system [1–3]. Colonization of the intestinal tract 
by Lactobacillus and Bifidobacterium exerts a barrier 
effect and protects the host against pathogens [4–6]. 
Escherichia coli, Klebsiella pneumonia and Streptococcus 
viridans on the other hand significantly increase intestinal 
permeability. An increase in permeability can lead to 
inappropriate immune responses, resulting in diseases 

like Crohn’s disease [7], Celiac disease and associated 
type 1 diabetes mellitus [8].

It has been reported that disruption of the microbiome 
balance can result in overgrowth of Gram-negative enteric 
bacteria such as Pseudomonas and Staphylococcus 
aereus and a lower level of Bifidobacterium, Eubacterium 
rectale/Clostridium coccoides group and Bacteroides-
like MIB, resulting in a higher incidence of systemic 
infection [9] and metabolic disorder [10].

Certain intestinal bacteria such as Bacteroides, 
Enterobacteriaceae and Clostridium are able to produce 
mutagens in the presence of dietary precursors, through 
the actions of β-glucuronidase and nitroreductase [11]. 
Free radical-producing Enterococcus faecalis, has a 
positive correlation with human adenomas [12].

Additionally, certain lactic acid bacteria, such as 
Lactobacillus rhamnosus and Lactobacillus acidophilus, 
produce bactericidal substances such as bacteriocins, 
lactic acid and acetic acid [13]. Lower intestinal pH also 
increases inhibitory activities of other organic acids. 
Bacterial metabolites such as hydrogen peroxide can also 
be cytotoxic to other bacteria [5, 14]. Bifidobacterium 
produces antimicrobial agents that inhibit Gram-positive 
and Gram-negative organisms [15].

Bacterial fermentation of dietary fiber and slowly 
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digestible carbohydrates forms a range of bacterial 
metabolites, including short-chain fatty acids (SCFAs), 
typically acetate, propionate and butyrate. These represent 
additional energy sources for the host, which would 
otherwise not available. Acetate is mainly metabolized in 
the peripheral tissues and is lipogenic, whereas propionate 
is transported to the liver and is gluconeogenic. Butyrate 
is the preferred energy source for the colonocytes and has 
a role in regulating host gene expression [16, 17].

Methanogens comprise up to 10% of all anaerobes 
in the colons of healthy adults [18–20]. The most 
common methanogenic archaeon found in the gut is 
Methanobrevibacter smithii, which can reduce CO2 with 
H2 to methane, allowing an increase in transformation 
of nutrients into calories [21]. The colonization of 
Methanobrevibacter in anorexia nervosa patients has 
been suggested to be an adaptive attempt towards 
optimization of food transformation in very low calorie 
diet intake by these patients. The hosts, however, do pay 
a price in harborng Methanobrevibacter, as it is related to 
constipation and diverticulosis [22, 23].

The two most abundant bacteria phyla found in healthy 
individuals are the Bacteroidetes and Firmicutes [24, 
25]. The relative abundance of the two phyla in healthy 
adults appears to be relatively constant, although they 
do not always comprise the same species. This suggests 
multiple representatives of the functional groups [26]. The 
existence of dominant groups of bacteria presumably acts 
to conserve the metabolic functions essential to gut health, 
and indeed, a functional gene core has been identified 
in the gut metagenome [27]. Overall, a balanced gut 
microbiota composition confers benefits to the host, while 
microbial imbalances are associated with metabolic and 
immune-mediated disorders (as summarized in Table 1).

It is interesting to note that Bacteroides among the 
Bacteroidetes, and lactic acid bacteria (Bifidobacterium) 
and Clostridium among the Firmicutes consistently 
appear in diseases involving intestinal microbiome 
aberrations (in Table 1), and their aberrations could be 
either higher or lower in abundance. These again support 
the notion that microbiome homeostasis contributes to 
gut health and disease.

There is increasing clinical evidence demonstrating 
that these gut microbiota-linked diseases could be 
prevented and reverted through microbial (probiotic) 
intervention. Probiotics are live microorganisms that 
when administered in adequate amounts confer a health 
benefit in the host [55]. In clinical studies providing a 
selected Bifidobacterium or Lactobacillus to mothers 
with a family history of atopic diseases 2-4 weeks before 
delivery and to the newborn for 6 months, the incidences 

of atopic diseases was successfully reduced by half in the 
infants, and the beneficial effect was still evident after 
seven years [56, 57]. Lactobacillus, Bifidobacterium, 
Streptococcus and Escherichia coli showed a protective 
effect against inflammatory bowel disease in human 
studies [58, 59]. Lactobacillus and Bifidobacterium 
improve the clinical conditions in patients with irritable 
bowel syndrome [60]. In a study on mutagenicity of beef 
consumption, Lactobacillus casei intake was shown 
to reduce mutagenicity in urine. This was attributed to 
reduction in the population of pro-mutagen- forming 
intestinal bacteria [61]. In patients who underwent 
surgical treatment for superficial bladder cancer, intake 
of Lactobacillus prolonged the recurrence- free period 
[62, 63]. These studies suggest that intestinal microbiota 
are directly involved in the causation of these diseases, 
and demonstrate the prospect of balancing gut microbiota 
for prevention and treatment of these diseases.

Consumption of Lactobacillus-fermented milk resulted 
in an increase in Lactobacillus and Bifidobacterium 
counts accompanied by a decrease in Clostridium 
counts [64]. Other fermented foods, such as Japanese 
natto and miso, also affect intestinal microbiota. 
Consumption of these foods resulted in increased levels 
of Bacillus and Bifidobacterium and decreased levels of 
Enterobacteriaceae and Clostridium [65].

The probiotic approach, though effective in amending 
the gut microbiome, is a reactive approach nonetheless, 
as the gut environment of a diseased individual probably 
favors the proliferation and establishment of aberrant 
disease-causing microbes. Maintaining intestinal micro-
biome homeostasis is arguably a desirable approach in 
disease prevention. To achieve intestinal microbiome 
homeostasis, it is necessary to understand factors that 
influence microbiome composition.

The composition of the gut microbiota is influenced 
by endogenous and external factors, such as microbes 
acquired at birth, diet, host physiology, drug intake and 
disease [66]. Of these factors, the diet is considered a 
major driver for changes in gut microbiota diversity, as 
it provides nutrition and alters the microenvironment for 
microbes. It could be safely assumed that the distinct 
differences in microbiota of the adult and infant types are 
the responses to the host physiological stage and to their 
different diets. Dietary strategies could be an effective 
means of potentially inducing changes in intestinal 
microbiota and are certainly achievable, thus facilitating 
correction of intestinal microbiome aberrations or 
imbalances to improve our health.
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DIETS AFFECTING THE COMPOSITION OF THE 
GUT MICROBIOME

It was estimated that about 40% of the microbial 
genes present in each human individual are shared 
with at least half of the human individuals in the same 

geographical cohort [27]. This suggests the existence 
of a functional core (core microbiome). The functional 
core may contain shared metabolic functions (e.g., 
degradation of carbohydrates, production of vitamins) 
as well as sequential pathways that would, respectively, 
restrict or expand functional diversity. Several recent 

Table 1.	 Examples of aberrations in the gut microbiota linked to diseases

Gut bacteria Level change Health effect References

Immunological dysfunction
Type 2 diabetes

Bacteroides, Proteobacteria High [28]  
Firmicutes, Clostridium, Bifidobacterium Low [28, 29]  

Inflammatory bowel disease (IBD)
Sulphate-reducing bacteria, Escherichia coli High [30–32]  
Clostridium IXa, IV (F. prausnitzii) groups, Bacteroides, 
Bifidobacterium

Low [30, 32]  

Ulcerative colitis pouchitis (a form of IBD)
Clostridium, Eubacterium, Firmicutes, Verrucomicrobia High [33, 34] 
Lactobacillus, Streptococcus, Bacteroides, Proteobacteria Low [33, 34] 

Crohn’s disease (a form of IBD)
Bacteroides vulgatus, Enterobacteriaceae,  Escherichia coli, 
Klebsiella pneumonia and Streptococcus viridans

High [7, 35–37]

Lactobacillus, Bifidobacterium Low [7, 35–37]  
Coeliac disease

Bacteroides-Prevotella, Escherichia coli, Klebsiella 
pneumonia and Streptococcus viridans

High [38, 39]  

Bifidobacterium, Clostridium histolyticum, C. lituseburense, 
F. prausnitzii

Low [38] 

Rheumatoid arthritis
Segmented filamentous bacteria High [29] 
Bifidobacterium, Bacteroides-Prevotella group, 
Bacteroides fragilis subgroup, E. rectale-C. coccoides 
group

Low [40] 

Autism
Clostridium histolyticum group (Clostridium cluster I & II), 
Bacteroides

High [41, 42]  

Bifidobacterium Low [43]  
Obesity/metabolic disorder

Lactobacillus, Faecalibacterium prausnitzii, Staphylococcus 
aureus, Methanobrevibacter smithii, Prevotella

High [20, 44–48]  

Bacteroides, Sulphate-reducing bacteria, Bifidobacterium Low [44, 47, 49, 50] 
Anorexia nervosa

Methanobrevibacter smithii High [44]  
Metabolic dysfunction
Colorectal cancer/ adenomatous polyposis

B. fragilis, B. thetaiotaomicron, B. ovatus, B. uniformis, 
Clostridium leptum, C. coccoides subgroups 
Enterobacteriaceae, Enterococcus faecalis

High [11, 51–53] 

Bifidobacterium Low [54]  
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reviews have discussed evolutionary and functional 
aspects of microbial diversity in the human intestine 
[67–69]. The aim of this paper was to extend and exploit 
new insights, so as to provide better understanding of 
the responsiveness, variability and resilience of the gut 
microbiome community with regard to dietary intake and 
host physiology.

Carbohydrates and sugars
Slow digestible oligosaccharides
The most studied dietary components affecting human 

health and the gut microbiome are the slowly digestible 
complex carbohydrates, such as oligosaccharides, which 
are termed prebiotics [70]. They are slowly digestible by 
human digestive enzymes but fermentable by some gut 
microbes, thus selectively stimulating the proliferation 
and/or activity of selected gut bacterial populations.

The first natural slowly digestible oligosaccharides we 
encounter are the human milk glycans (HMG), which 
enrich the gut microbiota that are able to metabolize 
complex carbohydrates [71]. The ability of certain 
Bifidobacterium strains (in particular B. infantis) to 
efficiently use HMG suggests that production of milk 
oligosaccharides by the mother may be a strategy to ensure 
the presence of this group of bacteria in the infant gut 
[72]. The consumption of HMG by Bacteroides species 
[73] suggests that milk glycans may attract different 
groups of mutually benefiting microbes to the infant 
intestine. The colonization of Bacteroides in our intestinal 
tract is an example of the highly evolved microbe-host 
interactions in establishing gut microbiome homeostasis. 
The appearance of Bacteroides thetaiotaomicron in 
the human gut induces the production of fucα1,2Galβ-
containing glycans, which serves as a selective carbon 
substrate for the bacterium [74].

Consumption of Jerusalem artichoke inulin was 
reported to increase the fecal Bifidobacterium level and 
to cause a small though significant increase in the level 
of the Lactobacillus/Enterococcus group [75]. Besides 
the Bifidobacterium, two groups of butyrate-producing 
bacteria, namely Faecalibacterium prausnitzii and a 
group of clostridial cluster XIVa bacteria, were found to 
increase following inulin/fructooligosaccharide (FOS) 
supplementation in a human intervention study, [26, 76]

During a feeding trial in which each subject consumed 
a GOS-containing product, the fecal microbiota 
composition was significantly altered and showed an 
increase in the abundance of Bifidobacterium [77]. The 
enrichment of Bifidobacterium was generally at the 
expense of Bacteroides.

Simple sugars
Digestible carbohydrates are eventually broken down 

into constituent simple sugars. Adhesion of microbes to 
the gastrointestinal surface is considered a prerequisite for 
their colonization and modulation of local and systemic 
physiological (immunological, hormonal) activities of 
the host and for competitive exclusion of pathogens [78]. 
The sterospecific adhesion-receptor interaction involves 
sugar moieties on the intestinal surface and sugar-binding 
adhesins on the microbial cell surface [79–81]. Sugars 
in food may interfere with the adhesion of intestinal 
microbes, both probiotics and pathogens, to the intestinal 
surface [82, 83], leading to an altered intestinal microbiota 
profile.

The Prevotella human enterotype is associated with 
a high intake of carbohydrates and simple sugars, 
indicating an association with a carbohydrate-based diet 
typical of agrarian societies [84]. Changes in microbiome 
composition were detectable within 24 hours of initiating 
controlled feeding [84]. Self-reported vegans were also 
found to be in the Prevotella enterotype.

Insoluble complex carbohydrates
Plant products are high in slowly digestible and 

nondigestible carbohydrates. Consumption of 2 apples 
a day among Japanese resulted in a significant increase 
in fecal bifidobacteria and clostridia (including the 
pectinase-positive C. perfringens) after a week [85]. 
The effect was attributed to apple pectin. Similarly, fecal 
bifidobacteria and lactobacilli were found to increase 
significantly during the consumption of kiwifruit (2 a 
day), and the effect was obvious within a day [86]. The 
effects were, however, temporary, and the microbiota 
profile returned to that of the baseline upon cessation of 
consumption [85, 86].

The energy sources that support the microbial 
community of the large intestine are dietary components 
that resist degradation in the upper intestinal tract, 
together with endogenous products such as mucin. 
Anaerobic metabolism by the microbiome community 
in the colon produces short-chain fatty acids together 
with CO2, H2 and CH4 [87]. These fermentation products 
have significant effects on the gut environment and on 
the host, as energy sources, regulators of gene expression 
and cell differentiation and anti-inflammatory agents. 
Butyrate, for example, is considered to play a particularly 
important role as an energy source for colonocytes and in 
the maintenance of gut health [88, 89].

In an animal study and an in vitro gastrointestinal 
tract model, cereal cellulose and insoluble non-
starch polysaccharides (NSP) were found to increase 
Ruminococcus flavefaciens-like and Clostridium 
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xylanolyticum-like phylotypes. The cereal amylose 
content increased the abundance of Clostridium 
butyricum-like phylotypes, whereas the amylopectin and 
starch contents increased the abundance of Clostridium 
ramosum-like phylotypes, members of Clostridium 
cluster XIVa and Bacteroides-like bacteria [90–93].

In a human study, the abundance of Ruminococcus 
bromii and Eubacterium rectale/Roseburia groups 
showed significant responses to nondigestible 
carbohydrates [25]. In a separate study, decreasing 
nondigestible carbohydrate intake significantly decreased 
both the detectable numbers of the E. rectale/Roseburia 
group and butyrate production [94]. This strong positive 
correlation between numbers of the E. rectale/Roseburia 
group, butyrate detection and nondigestible carbohydrate 
intake is supported by other human studies [95] and in 
vitro studies [96].

It was reported that a Japanese diet containing a high 
level of dietary fiber led to lower counts of anaerobic 
bacteria such as Clostridium, Bacteroides and Bacillus 
subtilis, and higher counts in Bifidobacterium and 
Fusobacterium [97, 98]. A slightly different observation 
was reported by Finegold et al. [99] in a study comparing 
the Japanese diet (containing soybean, radishes, cabbage, 
fish, seaweed and green tea) and Western diet (high in 
meat); they concluded that the Japanese diet resulted in 
an intestinal microflora with lower counts of Bacteroides, 
particularly B. fragilis; higher counts of some facultative 
or aerobic organisms such as Lactobacillus, E. coli, 
Proteus, Klebsiella, Staphylococcus, Streptococci and 
Clostridium; some Gram-positive anaerobic bacilli such 
as Eubacterium; and some Ruminococcus species.

The African diet consists mainly of cereal (millet, grain, 
sorghum), legumes (black-eye peas) and vegetables and 
is generally high in starch, fiber and non-animal protein. 
African children showed a significant enrichment in 
Bacteroidetes and depletion in Firmicutes, with a unique 
abundance of bacteria from the genus Prevotella and 
Xylanibacter [100]. The latter is known to contain a set 
of bacterial genes for cellulose and xylan hydrolysis that 
is not found in EU children.

Bacteroides plays an essential role within the distal 
gut in the degradation of the fiber consumed by the 
adult host. Bacteroides use a series of membrane protein 
complexes, termed Sus-like systems, to catabolize plant 
cell wall glycans in our diets [101]. It is hypothesized 
that by providing HMG, the mother ensures the presence 
of this group of bacteria in the infant intestine, allowing 
the smooth transition from milk to solid vegetable foods 
in the postweaning diet. Plants were the main source of 
foods for humans during the first 40 over million years of 

human history, that is, before they became omnivorous.
The major nondigestible carbohydrate in wheat is 

arabinoxylan (represents 50% of the dietary fiber); 
it is selectively degraded in the colon by xylanases 
and arabinofuranosidases, producing Bifidobacteria 
(B. animalis spp lactis), Roseburia and Bacteroides-
Prevotella [102].

A consequence of the fermentation of nondigestible 
carbohydrates in the proximal colon is the production 
of organic acids and lowering of lumenal pH [103]. 
Assuming that the increased dietary intake in general of 
an obese individual resulted in a reduced colonic pH, this 
pH change could be an important factor in the observed 
community shift, as different microbes have varying 
optimal pHs for growth and activities. In a 4-week 
short-term weight loss program, short-term decreases 
in Roseburia and Bifidobacterium were observed in 
response to reduced carbohydrate intake, but no change 
was observed in Bacteroides [94]. The proportion of 
Bacteroides only increased gradually during a 52-week 
weight loss period. This may imply the involvement of 
some longer-term physiological mechanism (pH change) 
rather than a short-term response to diet in the abundance 
of gut Bacteroides.

Fat and fatty acids
Obesity is a major health concern in developed 

countries. A high-fat (HF) diet in an animal model was 
found to modulate the dominant intestinal bacterial 
population; Bacteroides-like bacteria were significantly 
reduce, and so were the E. rectal-C. coccoides group and 
Bifidobacterium [10, 104]. The polyunsaturated fatty acid 
component of fat appears to be a determinant factor for the 
adherence of intestinal bacteria to the mucosal surface and 
their growth [105]. In animal models, an HF diet induced 
pro-inflammatory cytokines such as IL-1, IL-6 and TNF-a, 
favoring hyperinsulinemia and excessive hepatic and 
adipose tissue lipid storage, leading to metabolic disorder 
(type 2 diabetes and insulin resistance) [106–110]. The 
relationship between HF feeding and the development of a 
low-grade inflammatory tone and metabolic disease have 
been attributed to reduced numbers of Bifidobacterium 
and a higher plasma endotoxin (Gram-negative bacteria-
derived lipopolysacchaide) concentration.

Protein
The quantity and quality of protein constituents in 

food are clearly different in Western and Eastern diets. 
In an early study based on culturally dependent methods, 
consumption of meat among human subjects increased 
the counts of fecal Bacteroides, Bifidobacterium, 
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Peptococcus and anaerobic Lactobacillus species [111]. 
A recent study by Kabeerdoss et al [112] using molecular 
techniques for comparison of the fecal microbiota of 
lacto-vegetarian and omnivorous young women showed 
that Clostridium cluster XIVa bacteria (also referred 
to as the Clostridium coccoides group) and butyrate-
producing bacteria, specifically Roseburia–E. rectal, 
were significantly more abundant in the fecal microbiota 
of omnivores [112]. Functional attributes that have been 
identified for Clostridium cluster XIVa species include 
acetogenesis [113], utilization of aromatic compounds 
from the diet [114], metabolism of linoleic acid [115] and 
degradation of mucin [116].

Bacteroides enterotype has been proposed to be 
associated with a diet high in animal protein, a variety of 
amino acids and saturated fats [84, 100], which suggests 
that meat consumption as in a Western diet characterized 
this enterotype. The high protein and fat enterotype 
appears to be stable; a 10-day dietary intervention 
(low-fat, high-fiber diet) did not result in alteration of 
enterotypes [84]. This, however, casts uncertainty on 
the direct association of Bacteroides and a high animal 
protein and saturated fat diet. Residual proteins that enter 
the large intestine are fermented by Bacteroides and 
Clostridium [117] into a range of products depending on 
the amino acid composition. For example, branched-chain 
amino acids yield branched chain fatty acids, including 
isobutyrate and isovalerate. In the presence of typical 
colonic concentrations of SCFAs, growth of human 
colonic Bacteroides was found to be strongly inhibited at 
a pH of 5.5 (acidic), whereas many Firmicutes, including 
the most abundant butyrate producers, were less affected. 
The effect of diet on Bacteroides could be pH dependent.

Nonnutritive dietary components
Antibacterial foods such as Capsicum annuum (red 

pepper) and Allium sativum (garlic) have been shown to 
inhibit Bacillus cereus, B. subtilis, and C. tetani, [118] 
and Helicobacter pylori [119].

Our dietary intake of polyphenols ranges between 
0.15 and 1 g/day [120]. The predominant polyphenols in 
foods and beverages are flavonoids, consisting mainly of 
catechins, proanthocyanidins, anthocyanidins, flavonols 
and flavones. A significant portion of dietary polyphenols 
is not absorbed, and those absorbed into the body are 
metabolized in the liver, excreted through the bile as 
glucuronides and accumulated in the ileal and colorectal 
lumen [121].

Phenolic compounds from olives [122], tea [123], 
wine [124] and berries [125–128] have demonstrated 
antimicrobial properties. Tea polyphenols have been 

shown to inhibit the growth of Bacteroides, Clostridium 
(C. perfringens and C. difficile), E. coli and Salmonella 
typhimurium [123]. Wild blueberries (Vaccinium 
angustifolium) have been reported to increase the 
proportion of Bifidobacterium and Lactobacillus 
acidophilus population after 6 weeks of consumption, 
but showed no effect on Bacteroides, Prevotella, 
Enterococcus and C. coccoides [125, 128].

The effects of polyphenols are related to the chemical 
structure of the compounds and bacterial species. Caffeic 
acid generally exerted a more significant inhibitory 
effect on microbial growth than epicatechin, catechin, 
3-O-methylgallic acid and gallic acid [123]. Another in 
vitro study showed that (+)-catechin increased the counts 
of the C. coccoides–E. rectale group and E. coli, but 
inhibited those of C. histolyticum [129]. The effects of 
(−)-epicatechin were less pronounced in increasing the 
growth of the C. coccoides–E. rectale group.

Interestingly, the growth of beneficial bacteria 
(Bifidobacterium and Lactobacillus) was relatively 
unaffected or favored by dietary polyphenols [122, 129]. 
Resveratrol, a potent antioxidant found in wine, favored 
the growth of Bifidobacterium and Lactobacillus [124] 
and abolished the expression of virulence factors of 
Proteus mirabilis for invasion of human urothelial cells 
[130]. Anthocyanins from berries have also been proven 
to inhibit the growth of pathogenic Staphylococcus, 
Salmonella, H. pylori and B. cereus [126, 127]. 
Phenolics, and flavonoids may also reduce the ability of 
L. rhamnosus to adhere to intestinal epithelial cells [131].

Polyphenols are widely found in plant products (fruits, 
vegetable, tea leaves). Humans were largely herbivorous 
for the first 4 million years or so of history. Polyphenol-
tolerant and degrading gut microbes must have evolved 
to be commensal; polyphenols thus serve the function as 
a gate stopper for microbes (pathogens) that enter the gut 
occasionally.

STARVATION

Undernourishment in general leads to an abundance 
of enteric pathogens, such as Campylobacteraceae 
(35-fold more compared with healthy control subjects), 
Helicobacteraceae (12-fold) and Bacteroidaceae (4-
fold) [132]. On the other hand, Enterobacteriaceae, 
Shewanellaceae, Thermotogaceae, Eubacteriaceae, 
Streptococcaceae, Methanosarcinaceae and Thermoprotei 
were reduced by half.
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GENERAL CONCLUSION

Diet is clearly a major determining factor of the gut 
microbiome. The response of the gut microbiota to 
dietary impact is often rapid; alteration was observed 
within 24 hours. The enterotype is, however, determined 
by long-term dietary habits in terms of the proportion and 
type of carbohydrates, protein and fat. Few nonnutritive 
dietary components have been studied; polyphenols show 
potential as moderators of gut microbiome homeostasis. 
Nonnutritive dietary components should be the focus in 
future study of the dietary effects on the gut microbiome.
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