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Abstract
This paper provides an analysis of the effect of the COVID-19 outbreak on the crude
oil price. Using a newly developed air mobility index andApple’s driving trends index,
we assess the effect of human mobility restrictions and social distancing during the
COVID-19 pandemic on the crude oil price. We apply a quantile regression model,
which evaluates different quantiles of the crude oil price. We also conduct an extreme
value modeling, which examines the lower tail of the crude oil price distribution. We
find that both the air mobility index and driving trends index significantly influence
lower and upper quantiles of the WTI crude oil price. The extreme value models
suggest that there is a potential risk of a negative crude oil price for a sudden extreme
fall of air mobility.

Keywords COVID-19 · Oil price · Apple mobility trends · Airline complex
network · Granger causality · Quantile regression · Extreme value theory

1 Introduction

Understanding the real-time fuel demand is very important for many reasons. Energy
merchantswant to get a trading edge fromall possible resources such as thermal images
from cameras on pipelines, satellite data tracking worldwide oil tankers, and so on.
Another way of quantifying the real-time demand is by tracking the transportation
sector which accounts for the largest share of US petroleum consumption. In 2019,
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the transportation sector accounts for 68% of all petroleum consumption in the USA.
Moreover, finished motor gasoline accounts for about 45% of total US petroleum
consumption (US Energy Information Administration). Human mobility trends intro-
duced by Apple Inc. [2] in mid-April can also be used to understand on-the-spot
gasoline consumption data as it captures user activity in searching for directions on
smartphones.

In the last one year, many projects have been developed to assess the effect of
the COVID-19 pandemic on the oil price. Corbet et al. (2020) [42] analyze volatil-
ity spillovers and volatility co-movements among energy-producing, extracting, and
transporting corporations’ stock prices over and evaluate how the COVID-19 pan-
demic creates negative WTI oil price. Akhtaruzzaman et al. [78] and Mugaloglu et
al. [79] investigate different financial oil price risk exposure during the COVID’19
pandemic. Narayan (2020) evaluate the importance of COVID-19 infections and oil
price news in influencing oil price. In the last several years an increasing number of
studies have also been undertaken to evaluate different determinants, of crude oil price.
Among such recent results, Ratti andVespignani (2016) [34], Kollias et al. (2013) [73],
and Colgan (2013) [71] analyze the effect of supply, demand, and geopolitical events
on the crude oil price. Dey et al. (2020) [13] evaluate the effect of supply, demand,
and geopolitical events on extreme crude oil price based on a non-stationary extreme
value model.

Indeed, one of the key determinants of crude oil price is demand, and crude oil
demand is highly influenced by human mobility. Since the outbreak of the COVID-19
pandemic, governments and officials have been implementing containment measures
aimed at reducing the spread of the virus, including social distancing and restrictions
to human mobility. However, there is no study has been conducted on how mobility
restrictions and social distancing during COVID-19 influence crude oil price. In this
paper, we introduce and formalize the notion of temporal airline network to understand
the impact of mobility restrictions and social distancing on airline flight volumes. A
larger flight volume corresponds to higher oil demand. We develop an air mobility
index based on the number of edges of an airline network to evaluate the dynamics of
daily US flight volumes. We also use the Apple driving index [2] to quantify driving
trends during the COVID-19 pandemic. A low score of the two indices indicates that
people follow the government’s guidelines on mobility restrictions more and practice
more social distancing. Conversely, a high score of the two indices implies lower
mobility restrictions and less social distancing.

The objective of this study is to understand the impact of the Apple driving trend
index and the newly developed air mobility index on the crude oil price. For this
purpose, first, we evaluate the Granger causality of driving trends and air mobility on
the crude oil price. Second, we investigate the effect of driving trends and air mobility
on the different quantiles of the crude oil price based on the quantile regression model.
Third, we assess the tail of the crude oil price using an extreme valuemodel. Generally,
extreme valuemodels focus on the upper tail of the distribution. However, we study the
lower tail of the crude oil price and analyze different determinants of extreme lower
crude oil price based on non-stationary extreme value model as discussed in Dey et
al. (2020) [13].
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The rest of the paper is organized as follows. In Sect. 2 we introduce different
measures of mobility restrictions and social distancing. In Sect. 3 we describe the
data. We discuss the two methods, namely, quantile regression and extreme value
theory, used in the study in Sect. 4. We report the findings and describe the results in
Sect. 5. Finally, we conclude in Sect. 6.

2 Quantification of Mobility Restrictions and Social Distancing

To control the spread of COVID-19 different governments have been implementing
a variety of mobility restrictions and social distancing measures [8, 20, 32, 37]. To
quantify the impact of such control measures on human mobility behavior we utilize
the two following mobility indices.

2.1 Apple’s Driving Trend Index

The Apple driving trend represents a relative driving volume of Apple users compared
to a baseline volume on January 13, 2020. Our study considers a weekly average of
the Apple driving trend between January 13, 2020, and August 25, 2020, as a measure
of mobility. We name this measure as Apple driving trend index (ADI ). We normalize
ADI in week t by adjusting the average ADI and corresponding standard deviation
as

Ht = ADIt − μADI

σADI
, (1)

where μADI and σADI are the mean and standard deviation of ADI between January
13, 2020, and August 25, 2020.

2.2 Air Mobility Index

In our study, we consider daily flight volumes in the USA as a measure of air mobility.
To evaluate daily flight volumes, we introduce a complex network analysis. We define
a graph G = (V , E) as a model for an airline network, with node set V and set
of edges E ⊂ V × V such that (u, v) ∈ E represents an edge from node u to v,
u, v = 1, 2, · · · , n. Here, the nodes represent the US airports and if there is a direct
flight between two nodes (i.e., airports) they are connected by an edge. Here |V | is the
number of nodes and |E | is the number of edges in the network. The elements of the
n × n-symmetric adjacency matrix, A, of G can be written as

Ai j =
{
1, if (i, j) ∈ E

0, otherwise.
(2)

We assume that G is undirected, i.e., for all euv ∈ E , euv ≡ evu .
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(a) US airline network on Feb 2, 2020. (b) US airline network on May 3, 2020.

Fig. 1 Impact of COVID-19 on US airlines. Red points represent nodes (airports) and green lines represent
edges. a Shows normal US airline network with 340 nodes and 18,805 edges. b Represents reduced US
airline network with 319 nodes and 4,980 edges

A temporal network is a network structure that changes in time, which can be
represented with a time indexed graph Gt = (V (t), E(t)), where, V (t) is the set of
nodes in the network at time t , E(t) ⊂ V (t) × V (t) is a set of edges in the network
at time t [12, 14, 19]. Here, t is either discrete or continuous. To quantify the impact
of COVID-19 on flight volumes which necessarily determines the jet fuel demand,
we construct two temporal airline network (Gt ) for two different time scales. First,
we develop a weekly airline network (Gt

w) in each week Sunday day (t) between
January 13, 2020, and August 25, 2020: Gw = {G1

w, . . . ,GT
w }, where T = 32. We

consider the airline network on each Sunday is an average representation of that week.
The number of nodes (|Vw

t |), number of edges (|Ew
t |), and degree distribution are

evaluated in each Gt
w. Figure 1 illustrates the US flight volumes on Feb 2, 2020, and

on May 3, 2020.
Second, we construct a monthly airline network (Gt

m) on 15th of each month (t)
between January 2000 and August 2020: Gm = {G1

m, . . . ,GT
m }, where T = 248. We

consider the airline network on 15th of each month is an average representation of that
month. Similarly as Gw, we evaluate the number of nodes (|Vm

t |), number of edges
(|Em

t |), and degree distribution in each Gt
m .

In our study, we consider the number of edges in an airline network at time t as a
measure of air mobility. We name the metrics as air mobility index (AMI). Therefore,
we define the weekly and monthly air mobility index as AMIw

t = |Ew
t | and AMImt =

|Em
t |, respectively. Similar to Eq. 1, we normalize AMIw and AMIm as

Kw
t = AMIw

t − μAMIw

σAMIw
and Km

t = AMImt − μAMIm

σAMIm
, (3)

where μAMIw , μAMIm and σAMIw ,σAMIm are the mean and standard deviation of
AMIw and AMIm , respectively.

2.3 COVID-19 andMobility Trend

We study the impact of COVID-19 variables (C), e.g., weekly US new cases, weekly
US new deaths on USmobility dynamics, and social distancing.We standardized each
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Fig. 2 Time plots of normalized weekly average of COVID-19 variables (new cases and new deaths in the
USA) and normalized weekly average mobility metrics from January 2020 to September 2020

COVID-19 variable as

Ot = Ct − μC

σC
, (4)

where Ct is a COVID-19 variable (weekly US new cases, weekly US new deaths) in
week t , μC and σC are the mean and standard deviation of the corresponding variable
between January 13, 2020, and August 25, 2020.

Figure 2 shows the time plots of the normalized weekly average of COVID-19 new
cases and deaths in 2020, along with the two mobility indices, i.e., weekly driving
trend and weekly air mobility in 2020. Notice that in the first gray region, between
late March and middle of May, when the COVID-19 new cases and deaths jump, the
driving trends and air mobility collapse. However, in the second gray region, between
the middle of July and the end of August, even though there are surges in new cases
and deaths, driving trend and air mobility increase gradually. That is, initially a sudden
increase in COVID-19 new cases and deaths negatively influence the driving trend and
air mobility, but after a certain period, high COVID-19 new cases and deaths do not
cause lower driving and decrease air mobility.

3 Data

The WTI crude oil price ($ per Barrel) is obtained from the US Energy Information
Administration ([45].We computeweekly average ofWTI crude oil price, P ′, between
January 13, 2020, and August 25, 2020. We normalize weekly WTI crude oil price P ′

t
in week t as

Pt = P ′
t − μP ′

σP ′
, (5)
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where, μP ′ and σP ′ are the mean and standard deviation of P ′ between January 13,
2020, and August 25, 2020.

Apple mobility data are obtained from Apple mobility trends reports [2]. The air
mobility index is based on two types of data: airline On-Time Performance Data and
airport coordinate data. The flight data are obtained from the Bureau of Transportation
Statistics (BTS) [5]. And, US airport coordinate data are obtained from a geospatial
data management platform named Koordinates [27]. We obtain US COVID-19 data
from Our World in Data [31].

4 Methodology

We evaluate the impact of driving trends and air mobility on WTI crude oil prices.
First, we apply the quantile regression methodology to evaluate the effects of driving
trends and air mobility volume onWTI crude oil price. Second, we quantify the left tail
or extreme lower quantiles of the WTI crude oil price associated with the COVID-19
pandemic with nonstationary extreme value models.

4.1 Causality

To assess potential predictive utilities of driving trends and air mobility on WTI crude
oil price, we use the concept of linear Granger causality [65]. Clearly, nonlinear
Granger causality tests [80–82] are another alternative. However, these nonlinear tests
require substantially large data than available in our study.

The Granger causality test evaluates whether one time series, X , is useful in fore-
casting another, time series, Y . In particular, Granger causality investigates whether
given information on the past of Y the past of X can deliver any new information that
can be used for predicting future Y . To evaluate the causality of X to Y we fit two
models, where one model includes X and the other does not include X (base model).
Then the predictive performances of these two models are compared to assess causal-
ity of X to Y using an F-test, under the null hypothesis of no predictive effect in X to
Y (i.e., X does not Granger cause Y ), Var(et ) = Var(ẽt ).

yt = α0 +
d∑

k=1

αk yt−k +
d∑

k=1

βk xt−k + et , (6)

versus the base model

yt = α0 +
d∑

k=1

αk yt−k + ẽt . (7)

If Var(et ) is significantly lower than Var(ẽt ), then x contains additional informa-
tion that can improve forecasting of y, i.e., X is said to Granger cause Y , which can
be denoted by GX�Y , where � represents the direction of causality [16].
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4.2 Quantile Regression

Quantile regression is a generalization of linear regression. Whereas the classical least
squares regression estimates the conditional mean of the response variable, quan-
tile regression estimates the conditional median and other quantiles of the response
variable. That is, quantile regression constructs a set of regression lines for different
quantiles of the conditional distribution of the dependent variable. Unlike least squares
regression, quantile regression does not depend on the particular parametric assump-
tion for the dependent variable and it also avoids constant variance assumption [21,
25, 28, 30].

We can model a τ th quantile of a response variable y given a particular value of
the predictor variable, X = x, as

QY (τ |x) = β0(τ ) + β1(τ )x1 + β2(τ )x2, (8)

where τ ∈ (0, 1), Y stands for weekly WTI crude oil price (P), X1 is driving trend
(H ), and X2 is air mobility (Kw) [29].

The parameters can be estimated by solving the equation

V̂ (τ ) = argmin
b

n∑
i=1

ρτ (yi − xTi b),

where,

ρτ (z) =
{

τ z, if z ≥ 0,

(τ − 1)z, if z < 0.

4.3 ExtremeValueModel

Extreme value models evaluate the tail of a distribution and they have a wide range
of applications in climate and atmospheric science to industrial risks, geosciences,
finance, economics, and insurance [6, 7, 9, 11, 15, 33, 35, 40].

For a sequence of independent random variables, Y1,Y2, ..., Yn , with a common
distribution function G, let Mn = max {Y1,Y2, ...,Yn} be the maximum of the pro-
cess over n time units (i.e., block) of the observations. For {an > 0} and {bn} then
Pr {(Mn − bn) /an ≤ z} → G(z) as n → ∞, where G is a non-degenerate function.
According to the Fisher and Tippett extremal theorem [22], G belongs to the fam-
ily of generalized extreme value (GEV) distribution. The distribution function of a
non-stationary GEV model can be written as

F (z;μ(t), σ (t), ξ(t)) = exp

{
−

[
1 + ξ(t)

( z − μ(t)

σ (t)

)− 1
ξ(t)

]}
, (9)

The GEV parametersμ(t), σ(t), and ξ(t) are functions of time or/and other covari-
ates. The t denotes the time (e.g., months, year, etc.) over which the maximum is
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chosen. More detail on the non-stationary GEV model can be found in can be found
in [10, 13]. The r -year return level, i.e., the level expected to be exceeded once every
r year, can be defined as

zr = μ(t) + σ(t)

ξ(t)

[(
− log

(
1 − r−1

))−ξ(t) − 1

]
. (10)

The return period of a particular extreme event is the inverse of the probability that
the event will be exceeded in any given year, i.e., the r -year return level is associated
with a return period of r -years.

If μ(t) = μ, σ(t) = σ and ξ(t) = ξ , the non-stationary GEV model becomes
stationary GEV model. We can estimate the GEV model parameters using maximum
likelihood estimation (MLE). The concept of return period and return level is used to
quantify the likelihood of extreme events.

In our study, we are interested in modeling the lower tail of theWTI crude oil price,
P , to evaluate the impact of social distancing and mobility restrictions (i.e., ADI and
AMI ) on it. That is, we focus on the minima of WTI crude oil price over blocks
rather than its maxima. The same GEV model settings can be applied here based on
the relation,

M ′
n = min {Y1,Y2, ...,Yn} = −max {−Y1,−Y2, ...,−Yn} . (11)

By rearranging, we find

− M ′
n = −min {Y1,Y2, ...,Yn} = max {−Y1,−Y2, ...,−Yn} . (12)

Therefore, to evaluate the lower tail of WTI crude oil price we use the GEV model
on negative block minima of WTI crude oil price [23].

5 Results

In this section, we evaluate the effect of mobility restrictions and social distancing
due to COVID-19 on WTI crude oil price. To quantify mobility restrictions and social
distancing we use Apple’s driving trend index and the newly proposed Air mobility
index.

Figure 3 depicts the dynamics of WTI crude oil price, Apple’s driving index, and
air mobility index from January 2020 to September 2020. It is clear from the figure
that the driving trends and air mobility significantly decreased in March and April
of 2020, primarily due to the surge of COVID-19 and related stay-at-home orders at
different states in the USA during that period. Although the driving trend increased
significantly after restrictions eased, air mobility did not increase much primarily
because of people’s tendency to avoid public transportation. WTI crude oil price
gradually increased after lockdown and other restrictions were relaxed.

Now we investigate the potential causality of driving trends and air mobility on the
WTI crude oil price. Table 1 presents a summary of theGranger causality tests.We find
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Fig. 3 Time plots of normalized
weekly average crude oil price
($ per Barrel) and normalized
weekly average mobility metrics
from January 2020 to August
2020

Table 1 Granger Causality among annual WTI crude oil price (Y ) and different exogenous variables. The
p-value values of the corresponding F-test are given

Causality Lag 1 Lag 2 Lag 3

Driving trend � Y 0.10∗ 0.10∗ 0.26

Air mobility � Y 0.02∗∗ 0.19 0.10∗

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10

that driving trends and air mobility have significant predictive impacts on WTI crude
oil price in more than one lag. That is, driving trends and air mobility significantly
influence crude oil price formation.

We also develop a quantile regression model for each of the quantiles τ =
(0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99) based on Eq. 9. We are particularly interested
in the lower and upper quantiles of the WTI crude oil price. Table 2 summarizes the
outputs of the quantile regression models.

We find that both driving trends and air mobility significantly affect lower and upper
quantiles as well as the median of the WTI crude oil price. The coefficients of driving
trends and air mobility are all positive. Therefore, a decrease (increase) in driving
trends or air mobility leads to a decrease (increase) in τ th quantiles of the WTI crude
oil price, where τ ∈ (0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99). Notice that the coefficient
of driving trends tends to gradually decrease from the lower quantiles to the upper
quantiles. On the other hand, the coefficient of air mobility tends to gradually increase
from the lower quantiles to the upper quantiles. Figure 4 depicts the regression lines
of WTI crude oil price for different quantiles.

Now we turn our analysis to evaluate the crash of WTI crude oil price resulting
from the COVID-19 pandemic based on the extreme value model. We study monthly
minimum crude oil price (Y) for the last twenty years from 2000 to 2020 and model
left tail, i.e., extreme lower quantile of the WTI crude oil price. However, due to the
unavailability of Apple’s driving trends index, we only use monthly air mobility Km

as a covariate in the extreme value modeling. Figure 5 shows the time plot of monthly
minimum crude oil price and monthly air mobility (on the 15th of every month) in the
USA from January 2000 to August 2020.

We experiment a set of non-stationary extreme value models, Y ′
t ∼ GEV (μ(t),

σ (t), ξ(t)), where Y ′
t = −Yt , Yt is the monthly minimum crude oil price in month t .

We assess the different combinations of time trends and covariate (air mobility) effect
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Table 2 Estimates of quantile regression models for crude oil price with standard errors

Quantile (τ )

0.01 0.05 0.10 0.50 0.90 0.95 0.99

Constant (β0) −0.649∗∗∗ −0.649∗∗∗ −0.568∗∗∗ −0.071 0.405∗∗∗ 0.585∗∗∗ 0.585∗∗∗
(0.041) (0.097) (0.114) (0.185) (0.102) (0.144) (0.074)

Driving trends (β1) 0.846∗∗∗ 0.846∗∗∗ 0.786∗∗∗ 0.527∗∗∗ 0.559∗∗∗ 0.273∗ 0.273∗
(0.034) (0.081) (0.090) (0.178) (0.151) (0.229) (0.169)

Air mobility (β2) 0.298∗∗∗ 0.297∗∗ 0.229∗ 0.358∗∗ 0.514∗∗∗ 0.617∗∗∗ 0.617∗∗∗
(0.077) (0.145) (0.170) (0.199) (0.085) (0.088) (0.039)

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

Fig. 4 Normalized WTI crude oil prices regression models for different quantile levels

Fig. 5 Monthly minimum crude oil price and monthly air mobility from January 2000 to August 2020

on themonthlyminimum crude oil price.We select two best models based on (smaller)
Akaike Information Criterion (AIC) [1] and Bayesian information criterion (BIC) [36]
values. Table 3 describes the selected models along with a baseline stationary model.
Model 1 allows a linear time trend in the location parameter. In Model 2 the location
parameter depends linearly on time trend and air mobility. There is a time trend in the
log-scale parameter in both models.
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Table 3 Different stationarity/non-stationary models with corresponding AIC and BIC

Model Model descriptions AIC/BIC

Model 0 Y ′
t ∼ GEV (μ, σ, ξ) AIC = 2285.212

(Stationary) BIC = 2295.751

Model 1 Y ′
t ∼ GEV (μ(t), σ (t), ξ) AIC = 2164.935

μ(t) = β0 + β1t B IC = 2182.503

log σ(t) = γ0 + γ1t

Model 2 Y ′
t ∼ GEV (μ(t), σ (t), ξ) AIC = 2129.58

μ(t) = β0 + β1t + δKm BIC = 2150.66

log σ(t) = γ0 + γ1t

Table 4 Estimated parameters of nonstationary GEV models described in Table 3, standard errors are in
parenthesis

β̂0 β̂1 δ̂ γ̂0 γ̂1 ξ̂

Model 1 −22.11 −0.387 1.974 0.010 −0.606

(0.651) (0.014) (0.056) (< 0.001) (0.0443)

Model 2 −27.965 −0.298 −5.190 2.035 0.008 −0.631

(0.909) (0.015) (0.974) (0.053) (< 0.001) (0.049)

Table 4 shows the estimated parameters of Model 1 and Model 2. Notice that,
we model negative block minima of WTI crude oil price (−Yt ) and in Model 2 the
covariate air mobility has a negative effect on monthly minimumWTI crude oil price,
where the estimated value of δ is -5.190, with a standard error of 0.974. That is an
increase in air mobility results in an increase in overall WTI crude oil price.

Figure 8 in Appendix represents the goodness of fit plots of the two models. We
find that the Quantile–Quantile (Q-Q) plots for both Model 1 andModel 2 are approx-
imately 45-degree line. The density plot of the empirical data suggests that a mixture
model would be more adequate. However, since we are mainly interested in modeling
the tail (lower) of the distribution, we prefer to consider GEV models. The observed
versus fitted density plots suggest a good fit for both Model 1 and Model 2.

Nowwe evaluate the return level ofWTI oil price zr (i.e., the extreme lower quantile
of WTI crude oil price which is expected to fall below on average once every r year)
using Eq. 10. Notice that, Model 1 return levels depend on time t . However, Model 2
return levels depend on time t as well as on monthly air mobility. Table 5 provides
WTI oil price return levels for two scenarios of the covariates. First, we compute return
levels for covariates values in a normal period (January 2016) and then we compute
the return levels based on covariates values in a COVID-19 pandemic period (April
2020).

Based on Model 1, for t corresponds to January 2016, the 10-year return level is
42.042, that is, the crude oil price is expected to fall below 42.042 once every 10 years.
However, for t corresponds to April 2020 (a day in the COVID-19 pandemic period)
this return level fall dramatically to 27.826. Similar outputs are seen for 20, 50, and
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Fig. 6 Return levels of
minimum crude oil prices for
different return periods, based
on Model 1

Fig. 7 Return levels of
minimum crude oil prices for
different return periods, based
on Model 2

100 years return levels. The minimum crude oil price in April 2020 was 6.65 and we
find that the 100-year return level is 4.687. Therefore, based on Model 1, we can say
that the minimum oil price in April 2020 is a 100-year event, which is also clear in
Figure 6.

Now we compute return levels based on Model 2, where we include monthly air
mobility as an additional covariate. We find that for the covariates (t and Km) values
in January 2016 the 10 years return level is 12.687. And this value slumps to 12.687
for covariates values in April 2020. That is, lower air mobility increases the risk of
occurring a very low oil price. We also find that Model 2 predicts 50-yr return and
100-yr return levels as −1.801 and −4.615, respectively. Therefore, there is a risk
of occurring a negative oil price −1.801 in every 50 years, and a negative oil price
−4.615 in every 100 years, if there is very low air mobility, i.e., Km = 8643 (with
a time trend t = 244). Therefore, a COVID-19 like a pandemic, which significantly
impacts human mobility (i.e., air mobility), can create a negative oil price every 50
years. (For a similar analysis on how COVID-19 influences to occur negative oil see
[42].)

For the values of t and Km in April 2020, the 10 and 20 years return levels are
12.687 and 4.517, respectively. Therefore, lower air mobility ( Model 2) makes the
minimum oil price in April 2020 a 20-year event. Figure 7 depicts how a very low oil
demand (i.e., oil demand in April 2020) causes frequent lower oil prices.

123



22 Page 14 of 17 Journal of Statistical Theory and Practice (2022) 16 :22

6 Conclusion

In this paper, we evaluate mobility restrictions and social distancing as determinants
of crude oil price collapse during the COVID-19 pandemic. We develop a new air
mobility index based on a temporal network to quantify air mobility. Our analysis
also demonstrates the impact of the lower driving trends on crude oil prices based on
Apple’s driving trends index. Based on quantile regressionmodeling, we find that both
driving trends and air mobility significantly affect all quantiles of the WTI crude oil
price. On the basis of extreme value modeling, we find that there is a risk of occurring
a negative oil price if there is very low air mobility.
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Appendix

see Fig. 8.

(a) Q – Q plot for Model 1. (b) Density plot, Model 1.

(c) Q – Q plot for Model 2. (d) Density plot, Model 2.

Fig. 8 Diagnostic plots for Model 1 and Model 2
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