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Introduction: The Food and Drug Administration Center for Biologics Evaluation

and Research conducts post-market surveillance of biologic products to ensure

their safety and effectiveness. Studies have found that common vaccine exposures

may be missing from structured data elements of electronic health records (EHRs),

instead being captured in clinical notes. This impacts monitoring of adverse events

following immunizations (AEFIs). For example, COVID-19 vaccines have been regularly

administered outside of traditional medical settings. We developed a natural language

processing (NLP) algorithm to mine unstructured clinical notes for vaccinations not

captured in structured EHR data.

Methods: A random sample of 1,000 influenza vaccine administrations, representing

995 unique patients, was extracted from a large U.S. EHR database. NLP techniques

were used to detect administrations from the clinical notes in the training dataset [80%

(N = 797) of patients]. The algorithm was applied to the validation dataset [20% (N =

198) of patients] to assess performance. Full medical charts for 28 randomly selected

administration events in the validation dataset were reviewed by clinicians. The NLP

algorithm was then applied across the entire dataset (N = 995) to quantify the number

of additional events identified.

Results: A total of 3,199 administrations were identified in the structured data and

clinical notes combined. Of these, 2,740 (85.7%) were identified in the structured data,

while the NLP algorithm identified 1,183 (37.0%) administrations in clinical notes; 459

were not also captured in the structured data. This represents a 16.8% increase in

the identification of vaccine administrations compared to using structured data alone.

The validation of 28 vaccine administrations confirmed 27 (96.4%) as “definite” vaccine
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administrations; 18 (64.3%) had evidence of a vaccination event in the structured data,

while 10 (35.7%) were found solely in the unstructured notes.

Discussion: We demonstrated the utility of an NLP algorithm to identify vaccine

administrations not captured in structured EHR data. NLP techniques have the potential

to improve detection of vaccine administrations not otherwise reportedwithout increasing

the analysis burden on physicians or practitioners. Future applications could include

refining estimates of vaccine coverage and detecting other exposures, population

characteristics, and outcomes not reliably captured in structured EHR data.

Keywords: natural language processing, clinical notes, vaccine safety, vaccine adverse events, electronic health

records

INTRODUCTION

Vaccines are one of the most effective prevention tools

available to support, promote and protect public health (1).
One analysis estimated that routine childhood vaccinations

prevented over 42,000 early deaths and 20 million cases

of diseases in a cohort of children in the United States
(U.S.) (2). Meanwhile, during the 2019–2020 influenza season,
the Centers for Disease Control and Prevention (CDC)
estimated that vaccination prevented an estimated 7.5 million
influenza illnesses, 3.7 million influenza-associated medical
visits, 105,000 influenza-associated hospitalizations, and 6,300
influenza-associated deaths (3). Vaccinations are also an effective
tool for responding to pandemic events, and the accelerated
timeline for vaccine research and development in response to
COVID-19 has been a major success of the pandemic response
effort (4).

Although vaccines are rigorously evaluated for safety prior
to licensure, there is the possibility of adverse events following
immunizations (AEFIs) occurring with exposure post-licensure
in a larger general population, compared to limited exposure
in the pre-licensure clinical trials. For instance, while pre-
licensure vaccine trials may include up to several thousand
patients, licensed vaccines are distributed and administered to
a much larger cohort, at which time potentially rare AEs may
be discovered (5–7). There may also be insufficient follow-
up time in the clinical trial or the clinical study patients
may not reflect the diversity and heterogeneity of the general
population. Therefore, rigorous post-market vaccine safety
surveillance studies that are powered to detect rare AEs are
needed to address some of the limitations of randomized clinical
trials (7, 8).

The U.S. Food and Drug Administration (FDA) Center
for Biologics Evaluation and Research (CBER) is responsible
for ensuring the safety, purity, potency, and effectiveness of
biological products (9). This includes vaccines, allergenics,
blood and blood products, as well as cells, tissues, and gene
therapies for the prevention, diagnosis, and treatment of human
diseases, conditions, or injury. To aid in this responsibility,
CBER established the Biologics Effectiveness and Safety (BEST)
Initiative with the aim of building data assets, analytics, and
infrastructure for an active, large-scale, efficient post-market

surveillance system for evaluating the safety and effectiveness
of biologic products and developing innovative methods to
support this initiative. Electronic health records (EHR), which
have become nearly ubiquitous in U.S. clinical practice, have
been leveraged to support post-market vaccine safety surveillance
(7, 10–13). However, because EHRs are primarily developed
for patient care and administrative purposes, their secondary
use for research and surveillance can pose challenges (14).
For instance, structured data elements—which are relatively
easy to extract, store and analyze—have been leveraged by
academics, practitioners, and regulators for surveillance and
research purposes, while unstructured data—which includes a
wealth of information found in patient clinical notes—remain
relatively under-utilized because traditional analysis techniques
are not able to easily extract information from the text contained
in the clinical notes (14).

There are known issues associated with relying only
on structured data to identify vaccine administration
events, since some important vaccinations (e.g., influenza
vaccines) are administered outside of EHR networks (e.g., in
pharmacies, grocery stores, workplaces, and other settings)
which often are not captured in the structured EHR data
(15, 16). A 2014–2015 influenza season study found that
non-medical settings accounted for 42.3% of influenza
vaccinations among adults (16). This poses a challenge
for detecting AEFIs given that many existing algorithms
require evidence of a vaccine administration event in the
form of structured EHR data. It is also a challenge for
accurately monitoring regional or state level vaccination
coverage—as relying only on EHR data could result in
underestimates due to vaccines received outside of the
EHR network—and accurate estimates are dependent on
synthesizing data from multiple sources (e.g., EHR networks,
state registries) (16).

Natural language processing (NLP) is one approach that
can be used to improve the accessibility and usability of
unstructured data found in EHRs (14, 17–23). NLP is situated
at the intersection of computer science, artificial intelligence
(AI), and linguistics, relying on machine learning techniques
and rule-based algorithms to read, decipher, and make sense of
(natural) human languages in order to make it of use to end-
users (21, 22, 24). NLP includes the development of algorithms
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to automatically extract and structure information from free-
text and/or semi-structured data sources (17, 18, 21, 22, 25).
The application of NLP techniques for extracting information
in biomedical data sources, such as EHRs, has been explored
in a range of medical sub-specialties (18, 26–31). One notable
study illustrated the feasibility of using NLP in a hospital EHR
for pharmacovigilance purposes (28). The authors developed
an NLP algorithm to identify medical outcomes which could
be considered adverse drug events (ADEs) for seven different
drugs/drug classes. Qualitative evaluation of the NLP algorithm
suggested that previously unidentified ADEs could be detected in
the EHR using the algorithm. The study provided a framework
for the development of high-throughput and prospective
systems, which could identify drug safety profiles throughout the
entire market life of a therapeutic product (28). In a different
study, an NLP algorithmwas developed to identify local reactions
associated with the tetanus diphtheria-acellular pertussis (Tdap)
vaccine as reported in the Vaccine Safety Datalink database (31).
The NLP algorithm achieved high accuracy, while demonstrating
the potential of NLP to decrease the need for time-consuming
and costly manual chart review and validation for vaccine safety
studies (31).

Although there is research focused on the application of
NLP techniques to improve the detection of outcomes (AEFIs
and ADE), there is limited research focused on applying these
techniques to improve the detection of vaccine administration
data. Accurate vaccine administration data is important for
monitoring regional vaccination coverage, and a necessary
component to link vaccine exposure to an AEFI. This study
describes the BEST Initiative’s innovative and exploratory work
developing an NLP algorithm to improve the accuracy of
detection of vaccine exposure data in a large EHR database in
the U.S.

METHODS

Study Sample
The EHR data were sourced from an academic health system
in Eastern United States with access to service data for
over 5.4 million patients in the U.S. A population-level
data characterization showed that, of the roughly 4 million
patients seen from 2014 to 2019, nearly 500,000 received
vaccine administrations, including 85,000 influenza vaccine
administrations which were identified as such using this health
system’s proprietary codes. We chose this sampling approach
under the assumption that the records of patients with coded
evidence of vaccinations would be more likely to contain textual
documentation of vaccinations than patients without coded
documentation. We randomly sampled 1,000 influenza vaccine
administrations (1.2% of total influenza vaccinations recorded in
the EHR) and extracted all associated patient data for 2014–2019.
This resulted in a dataset of 995 unique patients who have at
least one, but maybe more, vaccinations in structured data. This
dataset was used to develop and validate the NLP algorithm. The
data were randomly divided into two datasets based on unique
patients: a training dataset, which contained 80% (N = 797)
of the patients, and a validation dataset, which contained the

remaining 20% (N = 198) of the patients. The validation dataset
was withheld from the NLP algorithm development process. A
sample of vaccines detected by the algorithm in the validation
data set was selected for clinical review to assess the performance
of the algorithm. The goal of this study was to build a proof-
of-concept algorithm that was highly accurate in detection
vaccine administration in clinical notes. The validation set size
was chosen to allow us to detect a PPV of ∼90% (estimated
PPV), with 95% Wilson confidence intervals (95% CIs) range
of max 10% around the PPV estimate. Due to the study’s
small sample size and to avoid overshoot, where the commonly
used Wald CI would exceed possible values (i.e., >100% PPV),
the PPV confidence interval will be calculated using Wilson
method (32).

Algorithm Development and Clinical
Review
All analyses were developed and implemented using custom
Python scripts (33). Standard NLP techniques were used to
mine unstructured data (24, 34). Briefly, clinical notes from
the training dataset were processed and fed into an NLP
rule-based matching algorithm, to identify evidence of vaccine
administration. Two clinicians served as subject matter experts
(SMEs) during the development and validation of the NLP
algorithm, guiding the selection of the keywords and vaccine
type term sets for the rule-based matching algorithm, supporting
the iterative manual review of cases in the training dataset
to improve the algorithm performance, and verifying vaccine
administration in patients’ medical charts. The clinician reviews
of the patients’ medical charts including both structured and
unstructured data served as the gold standard for this study to
assess whether the NLP algorithm was successfully identifying
patients that had a vaccine administered. Clinical verification
of vaccine administration was blinded. Table 1 summarizes the
steps taken to create the NLP algorithm.

Figure 1 illustrates a hypothetical example of a vaccine
administration note, with corresponding time and date, detected
by the NLP algorithm created via the process described in
Table 1. This figure presents the process after the notes are
filtered by type (i.e., Step 1 is complete). The past tense verb
of “received” was identified to indicate vaccine administration.
With the identification of this verb, the algorithm then searched
for a vaccine-derivative (e.g., vaccine, shot) within five tokens.
The algorithm then identifies “vaccine” within five tokens of
“received.” The number of tokens was selected upon manual
review and assessment of the performance of various counts
of tokens. The next step in the algorithm is to identify the
vaccine type by searching the four tokens preceding the vaccine-
derivative, which in this case is “flu.” See Table 1: Step 5 for a
more detailed description of our approach to matching vaccine
types and dealing with the lack of a standardized name for a
reported vaccine administration. Finally, the algorithm searches
for an administration date, either absolute or relative. The
example presented in the figure is an absolute date of 10/2019.
We tested existing date-expression mappers for this purpose
but found that they did not perform well on some of the
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TABLE 1 | Vaccine administration evidence algorithm steps.

Step Description

1. Filter unstructured notes by type Medical notes are often characterized by their type (e.g., Discharge Summary, Surgical History). In this case, certain note

types were filtered out because the study team judged certain note types to have a reduced probability of containing

free-text documentation of vaccinations based on manual review of a sample of our training set. Examples include notes

populated with semi-structured interview questions like “Received Flu Vaccine: No” or patient education notes that discuss

vaccinations in the hypothetical and might read “...after this procedure, do not receive a flu shot for at least a month...”.

2. Tokenize Filtered Set of Notes In order to process the filtered set of notes, we used a simple tokenize algorithm (SpaCy)1, to segment the text from the

filtered notes into single words.

3. Create simple part of speech

tagging to identify presence of

vaccine administration

Using the list of words produced by the tokenizer algorithm, we tagged verbs which indicated vaccine administration. The

identification of a past tense verb (“got,” “received,” “given,” or “had)” assisted in identifying true instances of vaccination

rather than vaccine education materials (Full list can be found in Supplementary Material)

4. Using NLP rule-based matching to

search for vaccine derivative in vicinity

of verb

If a desired verb was found, the algorithm searched for evidence of a vaccination (e.g., vaccine, shot, vaccination) within five

tokens, where a token is a continuous string of characters between a space or punctuation marks.

5. Using NLP rule-based matching to

search for and identify vaccine type

The algorithm used the preceding four tokens of the vaccination term to search for the vaccine type (e.g., influenza, flu, hep

b, hepatitis b). It then looked for the mapped term that is the most complete match of the four preceding tokens (e.g.,

“pneumococcal 13” maps to “pneumococcal 13-valent” rather than more generic “pneumococcal)”. The table of the

mappings to vaccine types was developed from an initial list from clinicians SMEs augmented by potential alternative names

found in a manual review of a sample of training cases. The final table can be reviewed in Supplementary Material. If a

name was not found, the vaccine was added as “vaccine” with no specified type (e.g., if note read “patient received

vaccinations today)”.

6. Find or derive date of vaccine

administration

The algorithm searched for an absolute date (ex. 1/12/19, 1/19) or relative date (yesterday, last week, today) within five

tokens of the vaccination term. A table of the different date formats and relative date tokens used can be found in

Supplementary Material. We built the list of date formats and selected five tokens as the window from the vaccination

term based on a developer’s manual review of a sample of cases from our training dataset. Relative dates were derived

based on the date of the note entry. Vaccinations were only included when an associated absolute or relative date was

found. Manual reviews demonstrated that, without absolute or relative dates, mentions of vaccinations were much less likely

to represent actual vaccination events. As this was a POC algorithm, the algorithm is limited in the permutations of date

formats it can identify and could be improved by the ability to recognize phrases like “3 days ago” or “3 weeks ago”

among others.

1https://spacy.io/usage/processing-pipelines

FIGURE 1 | NLP algorithm example, steps 2 through five.

notes so created our own Regex formula to detect dates in the
patient records.

Each NLP detected vaccination event was linked to a known
administration event in the structured data to identify those
that were successfully captured in the structured data and those
that were not. To conduct the match, we first searched for
vaccine administrations a month before or after the derived
date flagged by the NLP algorithm. Of the administrations
found within a month, we compared the name of the vaccine
administration with the standardized name of the vaccine. The
cut-off of 1 month was selected as an inclusive interval to
allow matches when patients had slightly inaccurate recall of
an earlier vaccination and its date. If the standardized name
was contained within the record name, we considered it a
match (e.g., Standardized Name: “Influenza,” Record Name

“Influenza, inactivated virus”-see Supplementary Material for
more information).

Algorithm Validation/Performance
Assessment
The final NLP algorithm was applied to the validation dataset
(N = 198). Full medical charts for 28 vaccine administrations
detected using the NLP algorithm—selected randomly from
among the convenience sample of flu-vaccinated individuals—
were provided to and reviewed by the clinical SMEs. Review was
stopped after 28 vaccines were reviewed because we were already
able to show that within a 95% Wilson CI, our algorithm had
at least >80% PPV which we felt was adequate to demonstrate
that this POC algorithm showed promise. For additional research
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on this algorithm, we would suggest reviewing additional cases
to decrease the confidence interval range and obtain a more
specific estimate of PPV. For the validation process, a semi-
automated chart review tool was developed to reduce the time
needed to conduct chart reviews and to improve the accuracy of
the abstracted data. The tool populates relevant patient data into
a centralized location and includes a timeline view and enhanced
clinical note search functionality, allowing for rapid review of
cases by clinicians. Clinicians were instructed to review charts to
confirm a vaccine exposure but were blind to which cases had
no structured vaccine administration data, which vaccine was
administered and whether the NLP algorithm detected a vaccine
exposure or not.

Upon reviewing the structured and unstructured chart
data, the clinicians determined the likelihood that a true
vaccine administration with the correct accompanying date was
identified. The likelihood was categorized using the following
Likert scale: Definite, Probable, Possible, Doubtful, Ruled Out,
Not Determined (35). This scale was adapted from the Adverse
Drug Reaction (ADR) Probability Scale to suit the context of this
work. The results of review of the 28 vaccine administrations
selected from our validation set were used to estimate the positive
predictive value (PPV) of the algorithm. The clinicians reviewed
all cases independently, and no conflicts arose.

Finally, in order to understand how the algorithm might help
expand detection of vaccinations, after validation of the NLP
algorithm, the NLP algorithm was applied to the entire sample
of 995 patients, in order to quantify vaccine administrations that
were not recorded in the structured EHR data elements. Vaccines
identified by the NLP algorithm were linked programmatically
to vaccines identified in the structured data using the relevant
logic, based on vaccine type and administration date reported.
The percent change in vaccine administration identified using the
NLP algorithm compared to using structured vaccination data
alone will be calculated using the formula below:

N Vaccine Administrations Detected

by NLP algorithm in Clinical Notes

N Vaccine Administrations Captured

in Structured Vaccination Records

× 100 (1)

RESULTS

Sample Population
Table 2 presents details of the 995 patients selected for the
development of the algorithm, as well as details about their
vaccine administrations. The majority (54.3%) of patients
were 18–65 years of age, most (54.6%) were female, and a
plurality (45.9%) were of Caucasian/white race/ethnicity. This
was similar to the distribution in the EHR dataset overall. Among
the 995 patients, there were 2,740 vaccine administrations
identified in the structured data, of which 1,706 (62.3%) were
influenza vaccinations.

Validation
Among the 28 vaccine administrations reviewed by clinicians, 27
were determined to be “definite” while one was “possible” (data

TABLE 2 | Characteristics of the sample population and broader EHR population,

2014–2019.

Sample distribution EHR distribution

Patient characteristic N = 995 N = 6,831,127

Age (median, IQR) 51.37 (26–63) NA

Age-group (Per cent, %)

<18 19.70 10.14

18–65 54.27 64.63

65+ 22.61 25.21

Unknown 3.42 0.03

Sex (Per cent, %)

Male 45.63 41.51

Female 54.27 58.42

Other/unknown 0.10 0.07

Race (Per cent, %)

Asian/Pacific 2.11 1.77

Black/African American 41.61 34.48

Caucasian/White 45.93 42.14

Other 10.25 21.61

Structured vaccination data (n)

Vaccine administrations 2,740 NA

Influenza vaccine administrations 1,706 NA

Medical encounters 2,068 NA

Age was calculated from the start of the study period (January 1, 2014). Patients born

within the study period were automatically added to the <18 group.

NA, Not available.

not shown). This would equate to a PPV of 96.4% with a Wilson
95% Confidence Interval range of 82.3% to 99.4% associated with
the NLP algorithm. A total of 18 (64.3%) had linked evidence to
a vaccination event in the structured vaccination data, while 10
(35.7%) were found solely in the unstructured clinical notes.

Full Sample Results
Figure 2 illustrates the vaccine administrations identified in the
structured data and unstructured notes. Among 995 patients,
a total of 3,199 vaccine administrations were identified in the
structured vaccination data and the unstructured clinical notes.

The NLP algorithm detected 1,183 vaccinations (37.0%), of
which 724 (22.6%) were also reported in the structured data.
The remaining 459 (14.4%) were captured in the clinical notes
only. This represents a 16.8% increase in vaccine administration
identification compared to using structured vaccination data
alone, as calculated below:

459 Vaccine Administrations Detected

by NLP algorithm in Clinical Notes

2, 740 Vaccine Administrations Captured

in Structured Vaccination Records

× 100 = 16.8% (2)

Among the 459 vaccines captured only in the clinical notes, 129
(28.1%) were influenza vaccinations.
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FIGURE 2 | Vaccine administrations identified in structured vaccination data

and unstructured notes.

DISCUSSION

The application of rule-based NLP techniques to extract
information from unstructured data in biomedical sources,
including EHRs, has the potential to improve both surveillance
and research (14, 17–20, 20–23). In the present analysis, we
developed and applied a simple NLP algorithm to extract vaccine
administration data from the clinical notes in a large academic
health system’s EHR. The NLP algorithm identified an additional
459 vaccine administrations (complete with type and date)
compared to structured data alone, resulting in a 16.8% increase
in exposure identification of all types of vaccine administration
we search for, including both flu and other types of vaccines.
This demonstrates that our algorithm can accurately identify
vaccine exposures from the unstructured data, including ones
captured in the structured data and those that would otherwise
go unidentified.

Furthermore, a rapid validation exercise of 28 NLP-identified
vaccine administration events produced a PPV of 96.4% (Wilson
95% CI range: 82.3–99.4%), validating the utility of the NLP
algorithm to accurately detect vaccine administrations in the
unstructured clinical data with minimal false positives. Most
studies applying NLP techniques to immunization data have
focused on the detection of outcomes related to AEFIs. However,
identification of a vaccine administration event is a necessary
step in the AEFI detection process, and past studies have
suggested that a substantial proportion of certain vaccine

administrations (e.g., 42.3% of adult influenza vaccinations
during the 2014–2015 influenza season) occur outside of medical
settings (16). These administrations would not be captured in
the structured EHR data, suggesting that improving exposure
detection capabilities would contribute to enhancing AEFI
surveillance and monitoring. Specifically, leveraging an NLP
algorithm could support the detection of a proportion of
vaccinations received outside the health provider’s EHR, but
which have been reported in the unstructured clinical notes,
which can help increase reporting of adverse events in cases
where the patient receives care in a different location than they
received their vaccination. NLP data extraction techniques could
also be used to supplement traditional vaccination coverage
surveillance methods using structured data in order to address
vaccine administration data gaps among those who receive
vaccines outside EHR coverage areas (15, 16, 36).

Given that the developed NLP algorithm is not specific to
vaccine type, it can be easily adapted with minimal modification
to other vaccines and EHR systems to improve the quality of
vaccine data and mitigate the effect of missing data in EHRs
due to vaccine administrations outside of the EHR network
(i.e., in non-medical settings). For instance, for those who
have a documented influenza vaccine, the algorithm could be
adapted to detect severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) vaccine administrations from clinical notes.
SARS-CoV-2, which causes COVID-19, may result in a disease
presentation similar to that of influenza. The work presented
here may be particularly applicable to COVID-19 vaccine
identification for safety and effectiveness studies, administration
of COVID-19 vaccines outside traditional medical settings
may be particularly common and fee-for-service records such
as administrative claims data may not be available in a
timely manner.

This study was designed as a proof-of-concept to determine
if rule-based NLP techniques can be applied to enhance
identification of vaccination exposure data to those with a
previously recorded vaccination in EHR databases. While we
demonstrated the utility of using NLP techniques to identify
additional vaccination events not available in structured data
alone, further study of its application in distinct EHR systems and
with larger samples would help quantify the extent of the benefit.
Other limitations include resource constraints, which resulted in
the validation of a small sample of the NLP-identified vaccination
events, and the estimated PPV may not be generalizable to
other EHR systems. A full external validity study is required to
assess performance in additional detail. Further, our approach
of identifying and assessing a cohort of flu-vaccinated patients
(as identified in the structured data) may have reduced the
generalizability of our findings, as the selected records may have
been more likely to contain vaccine information. We also did
not set out to provide an estimate of the extent of missingness in
structured EHR data, and the algorithm performance assessment
did not include metrics such as sensitivity, specificity, and
negative predictive value; this is because the main goal was to
create a precise algorithm with minimal false-positives, even if
the NLP pipeline missed some legitimate cases that would have
otherwise been identified in the structured notes. We did not
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review all cases in the test set to enable calculation of these
metrics, though recognize that this could be an avenue for
further study.

Other avenues for future research include enhancements to
the algorithm to better capture common abbreviations and
misspellings relevant to vaccine administrations and other date
expressions not currently included in the NLP algorithm (e.g.,
“vaccine administration X days ago”). Additional enhancement
to identify the setting in which each vaccine administration
occurred would also be of value to determine whether vaccines
were administered in a medical or non-medical setting.
Adaptations for use with other vaccine types, such as COVID-
19, would also be of value. The NLP techniques could also be
leveraged to improve data reported to Vaccine Adverse Event
Reporting System (VAERS) by allowing participating clinics to
identify both vaccinations events and AEFIs more accurately.
Underreporting of AEFIs to VAERS may hinder identification
of AEFIs associated with FDA-licensed vaccines, and this effort
would support a long-term goal of the BEST Initiative to improve
the post-licensure vaccine safety monitoring system used by FDA
and CDC (37).
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