
Heliyon 5 (2019) e02083

Contents lists available at ScienceDirect

Heliyon

www.elsevier.com/locate/heliyon

Comparative study on Radio Refractivity Gradient in the troposphere using 

Chaotic Quantifiers

J.S. Ojo, A.O. Adelakun ∗, O.V. Edward

Department of Physics, Federal University of Technology, Akure, Ondo state, Nigeria

A R T I C L E I N F O A B S T R A C T

Keywords:

Atmospheric science

Electrical engineering

Radio Refractivity Gradient

Meteorological parameters

Internal activities

Chaotic Quantifiers

Complexity

Complexity and nonlinear trend in the internal activities of the troposphere has been a great factor affecting 
the transmission and receiving of good quality of signals globally. In lieu of this, prediction of chaos and 
positive refractivity gradients for line-of-sight microwave radio paths is necessary for designing radio systems. 
Complexity in the troposphere due to changes in meteorological parameters can lead to the strong negative 
gradient (or super-refraction) which afterward lead to interference between terrestrial links and satellite earth 
stations. In this paper, a comparative study on the degree of complexity of Radio Refractivity Gradient (RRG) 
using Chaotic Quantifiers (CQ) such as Phase Plot Reconstruction (PPR), Average Mutual Information (AMI), 
False Nearest Neighbor (FNN), Lyapunov Exponent (LE), Tsallis Entropy (TS) and Recurrence Plot (RP) are 
discussed extensively. The RRG data (2011-2012) used in this work were obtained for 0 m to 100 m, from 
the archives of Tropospheric Data Acquisition Network (TRODAN) from five different stations namely; Akure 
(Geo. 7.299◦N, 5.147◦E), Enugu (Geo. 6.46◦N, 7.55◦E), Jos (Geo. 9.90◦N, 8.86◦E), Minna (Geo. 9.58◦N, 6.55◦E) and 
Sokoto (Geo. 13.01◦N, 5.25◦E). The chaotic quantifiers are used to investigate the degree of complexity in the 30 
minutes interval atmospheric data from the selected locations which is specified into rainy, dry and transition 
season months. The parallel and short diagonal lines observed depicts the evidence of chaos. However, the 
observed result shows that the RRG is higher during the rainy season than the dry season. In other words, the 
information is valid for the proposed data analysis, since the LE is actually directly proportional to the TE. Also, 
the results further show that the rainy season months exhibit higher chaoticity than the dry season months, 
which is equivalent to high radio refractivity gradient observed across the selected stations.
1. Introduction

Global radio link fading has been an issue in recent years in mi-

crowave communication services [1]. In Nigeria, different activities 
emerging from meteorological parameters and hydrometeors has been 
some of the major factors affecting radio propagation. Atmospheric 
meteorological parameters such as relative humidity, temperature, pres-

sure, and water vapor density increase the complexity of the tropo-

sphere and significantly has a great influence on microwave propaga-

tion above 30 MHz. They combine in many ways to affect radio wave 
propagation and the radio refractivity gradient in the tropics, particu-

larly, in the coastline [1, 2]. It is worth noting that the refractivity of the 
atmosphere will not only vary as the height changes but will also affect 
radio signals. The choice of the troposphere in this paper lies on the fact 
that the region between 0 m and 100 m has the highest concentration 
of water vapor, and makes it difficult for propagating the radio-link net-
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work. The prevalence of sea and land breezes which play a major role in 
the development and intensification of weather events also accounts for 
the high concentration of water vapor in the coastal cities [3, 4, 5, 6]. 
Refractivity gradient in 1 km interval above ground are important for 
the estimation of super–refraction and ducting phenomena, and their 
effects on radar observations and Very high frequency (VHF) the field 
strength at points beyond the horizon cannot be undermined [7]. It is 
a well-known fact that refractivity gradients can be determined either 
by the direct method using refractometers or indirectly using a fixed 
measuring methods such as TV tower, radiosonde measurement, remote 
sensing techniques, statistical and deterministic model [8]. In this pa-

per, there is still the need to further extend the research to different 
locations and compare the complexity and the chaotic trends vividly. 
This paper, therefore, assesses the complexity in the dynamical activi-

ties of the radio refractivity gradient in the troposphere using chaotic 
quantifiers. Aside from time series and phase plot reconstruction, the 
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paper also employed Average Mutual Information (AMI), False Nearest 
Neighbor (FNN), Lyapunov Exponent (LE), Tsallis Entropy (TE) and Re-

currence Plot (RP) to analyze radio refractivity gradient between 2011 
and 2012 using Atmospheric data. Unlike previous research, where the 
focus is mainly on a single station “Akure” in Nigeria using different 
heights [8, 9], while the present research actually covers selected sta-

tions across Nigeria with emphasis on rainy season, dry season and 
transition periods. The onset of the dry season, October and Novem-

ber, and the onset of the rainy season, March and April, serves as the 
rain-harmattan transition phase and it was chosen for consideration. 
The seasonal rain-harmattan transition phase, is dry and characterized

by dust-laden north-easterly wind, which pushes southward towards the 
coastal cities of West Africa due to the West African Monsoon (WAM) 
[10, 11, 12] as part of the global circulation system [13, 14] in response 
to the Madden-Julian Oscillation (MJO) [15]. Also, the reports on the 
dry and rainy season months are due to the polarizability of both non-

polar (chiefly, nitrogen and oxygen) and polar (mainly, water vapor) 
molecules, respectively [1].

2. Theory

2.1. Radio Refractivity Gradient (RRG)

Multipath fading occurs as a result of signal encountering an obsta-

cle leading to different paths before getting to the target. This problem 
leads to interference along the propagation of signals in the tropo-

sphere. The fading due to multipath may also arise as a result of 
variation in the refractive index in the atmosphere especially at the 
horizontal layers with different refractivity. The result of the large vari-

ation of the refractive index in the atmosphere is needed to determine 
the radio refractivity that affects radio wave along with the terrestrial 
radio links. The information is also vital for planning and design accept-

able radio links for satellite networks, radar among others.

Nigeria as a tropical country, witness both rainy season and dry sea-

son within a year which is usually accomplished with transition periods 
(i.e. the on-set and off-set of rainy-harmattan period). With problem at 
hand, fading or failure in the network needs to be investigated using 
CQs are expected to give better information on the internal activities in 
the troposphere. However, the radiowave propagation is usually influ-

enced by changes in the refractive index, n, of air in the troposphere. 
The refractive index, n, can be expressed in terms of radio refractivity, 
N as [1, 17]:

𝑛 = 1 +𝑁 × 106 (1)

The multiplication factor in equation (1) was used because the refrac-

tive index, n, for air deviates from unity by at most a few parts per ten 
thousand [16]. Radio refractivity, (N), which is the sum of the dry and 
wet parametric values, can be expressed as [17]:

𝑁 = 77.6 𝑃
𝑇 2 + 3.73 × 105 𝑒

𝑇 2 (2)

The Clausius-Clapeyron relationship between water vapor pressure, 
e (hPa), saturation vapor pressure, 𝑒𝑠 (hPa) and relative humidity, H 
(%), can, therefore, be deduced from equation (2) as:

𝑒 = 𝐻

100
𝑒𝑠 (3)

where

𝑒𝑠 = 𝑎 exp[
𝑏𝑡

𝑡+ 𝑐
] (4)

The parameters in (4) are derived as 𝑎 = 6.1121, 𝑏 = 17.502, 𝑐 =
240.97. T is the atmospheric temperature in K, dry atmospheric pressure 
P in hPa, and t is the temperature in ◦C. Therefore, RRG in N-units/km, 
can be expressed as:
2

𝑅𝑅𝐺 = 𝑑𝑁
𝑑ℎ

(5)

𝑅𝑅𝐺 = −7.32exp(0.005577 ×𝑁𝑠)(𝑁 − 𝑢𝑛𝑖𝑡𝑠∕km) (6)

In Eqn. (5), 𝑁𝑠 are the values of radio refractivity at the ground 
surface level and the RRG-value determines the anomalous behavior 
of microwave propagation in the troposphere. The influence of RRG, 
especially at the lower part of the atmosphere, leads to propagation 
effects like super-refraction, sub-refraction, or ducting [18].

2.2. Time series and Phase Plot Reconstruction (PPR)

In nonlinear science, the physical appearance of a dynamic ensem-

ble can be represented by the nonlinear time series. However, the series 
may not actually display the internal display of the dynamics which 
implies that it may not reveal the whole process going on in the sys-

tem. A natural system like the troposphere is a very good example that 
can simply be described as an unpredictable dynamical ensemble. Due 
to the movement of different micro-ensemble assemble to form macro-

ensemble such as the troposphere, the expectation of the dynamic state 
will be complex and not in any way reliable for predicting the radio 
path in the area of communication. For example, in this work, the time 
series for the radio refractivity gradient was categorized into rainy sea-

son months such as June, July, August, and September, while the dry 
season anomalies were captured in December, January and February. 
Also, the transition periods such as March, April, October, and Novem-

ber were discussed.

The case of phase space reconstruction was based on the embedding 
theorem given as:

𝑌𝑛 = (𝑠𝑛 − (𝑚− 1)𝜏, 𝑠𝑛 − (𝑚− 2)𝜏, ..., 𝑠𝑛), (7)

where 𝑌𝑛 is the phase space vectors, 𝑠𝑛 is the time series which is a 
sequence of scalar measurement of the same quantity taken as a series 
at different portions in time t for a given time interval (𝛿𝑡). The three-

dimensional phase space reconstruction reported in this work, depends 
on the proper choice of the determinant parameters, the embedding 
dimension (m) and the delay time (𝜏), which are more important in 
phase space reconstruction [19, 20].

2.3. Average Mutual information (AMI) and False Nearest Neighbor 
(FNN)

To obtain coordinates for time-delayed phase space embedding that 
is independent as possible, there is the need to compute for a time series 
and a time-shifted version of the same time series called auto mutual 
information i.e. autocorrelation function. The expression for the AMI is 
given by:

𝐼(𝑥(𝑡), 𝑥(𝑡+ 𝜏)) =
∑
𝑖,𝑗

𝑝𝑖𝑗 (𝜏)𝑙𝑜𝑔(
𝑝𝑖𝑗 (𝜏)
𝑝𝑖𝑝𝑗

). (8)

Here, 𝑝𝑗 is the probability that 𝑥(𝑡) is in bin i of the histogram con-

structed from the data points in x, and 𝑝𝑖𝑗 (𝜏) is the probability that 𝑥(𝑡)
is in bin i and 𝑥(𝑡 + 𝜏) is in bin j. It is worth noting that only joint 
probability 𝑝𝑖𝑗 (𝜏) that depend on time delay (𝜏). Also, taking into con-

sideration that AMI likewise depends on the way the histogram width 
is constructed.

However, the method of FNN measures the percentage of closeness, 
in terms of Euclidean distances, of neighboring points of the trajectory 
in a given dimensional space, and compares it with the next dimensional 
space (i.e. reduce the fraction of FNN to the minimal). If the ratio of 
these distances is greater than a predefined threshold due to a change 
in dimension, the neighbors of the trajectory are considered as false 
neighbors. The value of the predefined threshold should be sufficiently 
large so that it will allow the exponential divergence of the chaotic 
signal. In practice, the value of the threshold is chosen between 10 to 
50 [21].
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The idea of underlying the estimation of embedding dimension us-

ing a false nearest neighbor is suggested as if two points are close to 
each other for one-dimensional time series i.e. adjacent, then they are 
neighbors [22]. With this information, the distance between the neigh-

bors can be measured by finding the difference in their magnitude. For 
example, assume we embed the time series once in two dimensions 
using time delay (𝜏), then we examine the distance between the neigh-

bors by using the corresponding coordinates of the same data points. 
If the embedding changes appreciably towards the distance between 
the neighbors, then they are dubbed false neighbors which imply that 
the data can still be embedded further. But, if there are no appreciable 
changes, then it is dubbed true neighbors and leaves the shape of the 
attractor unchanged.

The false nearest neighbor can be computed using the formula pro-

posed by Kennel et al. [22]. Considering the D-dimensional phase space 
with 𝑟th nearest neighbor of a coordinate vector 𝑦(𝑡) represented by 
𝑦(𝑟)(𝑡), then the square of the Euclidean distance (𝑅𝐷) between time 
series 𝑦(𝑡) and the 𝑟𝑡ℎ nearest neighbor is given as:

𝑅2
𝐷
(𝑡, 𝑟) =

𝐷−1∑
𝑘=0

[𝑥(𝑡+ 𝑘𝜏) − 𝑥(𝑟)(𝑡+ 𝑘𝜏)]2 (9)

With the addition of new coordinate to time series (𝑦(𝑟)𝑡), then the D-

dimensional phase space can be shifted into (D+1)-dimensional phase-

space by time-delayed embedding. Hence, Eq. (8) can be re-written as:

𝑅2
𝐷+1(𝑡, 𝑟) =𝑅

2
𝐷
(𝑡, 𝑟) + [𝑥(𝑡+𝐷𝜏) − 𝑥(𝑟)(𝑡+𝐷𝜏)]2 (10)

From Eq. (8) and Eq. (9), the distance (𝑅𝐷) between the Euclidean 
y(t) and the rth nearest neighbor can also be expressed in term of toler-

ance threshold as:

[
𝑅2
𝐷+1(𝑡, 𝑟) −𝑅

2
𝐷(𝑡,𝑟)

𝑅2
𝐷(𝑡,𝑟)

]1∕2 = |𝑥(𝑡+𝐷𝜏) − 𝑥(𝑟)(𝑡+𝐷𝜏)|
𝑅2
𝐷
(𝑡, 𝑟)

>𝑅𝑡𝑜𝑙 (11)

2.4. Lyapunov exponents and Tsallis entropy

The LE is one of the mathematical tools in investigating the state 
of any dynamical system. When the LE is positive, then the system is 
chaotic, otherwise, periodic if the LE is negative. This tool indicates di-

vergence of trajectory or expansion of volume alternatively for positive 
LE, while a negative value of LE indicates convergence or contraction 
of volume. The maximum or Largest LE (𝜆1) [23], can be expressed as:

𝜆1 = lim
𝑟→𝑖𝑛𝑓

1
𝑡
𝑙𝑜𝑔

△𝑥(𝑡)
𝑥(0)

(12)

𝜆1 = lim
𝑟→𝑖𝑛𝑓

1
𝑡

𝑡∑
𝑖−1
𝑙𝑜𝑔

△𝑥(𝑡𝑖)
△𝑥(𝑡𝑖 − 1)

(13)

TE, on the other hand, can be used to describe the dynamic complex-

ity of any natural system such as internal activities in the troposphere. 
For example, in the area of information theory, TE was inspired by the 
probabilistic description of multi-fractal geometries. The statistical tool 
then characterizes the amount of information stored by measuring the 
probability distribution or uncertainty of the system internal activities 
[24, 25, 26, 27]. The TE in term of index q can then be expressed as:

𝑆𝑞 = 𝑘
1
𝑞 − 1

(1 −
𝑊∑
𝑖=1
𝑝
𝑞

𝑖
) (14)

where W is the total number, k is Boltzmann’s constant, 𝑝𝑖 is the prob-

ability associated with the microscopic configuration. The value of q is 
real which indicate the measure of the non-extensivity of a system i.e. as 
q tends to 1, the system becomes standard extensive Boltzmann-Gibbs 
statistics. In addition, the entropy index q also characterized the degree 
of nonadditivity reflected in the pseudo-additive rule:

𝑆𝑞(𝐴+𝐵) = 𝑆𝑞(𝐴) + 𝑆𝑞(𝐵) + (1 − 𝑞)𝑆𝑞(𝐴)𝑆𝑞(𝐵) (15)
3

In addition, non-extensive case of TE was also discovered to vary 
directly as Kolmogorov-Sinai produced from LE for logistic maps and 
dynamical systems, in the threshold of chaos where 𝜆 = 0, when 𝑞 = 1
in a chaotic region. It is worthy to note that index q is not actually used 
to quantify the complexity but rather to measure the degree of non-

extensive of the system. If 𝑞 < 1, then the system is sub-extensive (or 
sub-additive) and when 𝑞 > 1, the system is super-extensive (or super-

additive). In essence, if the subsystem has special theory probability 
correlation, extensively is not valid for Boltzmann-Gibbs entropy. Such 
systems are generally referred to as non-extensive systems [28, 29, 30]. 
However, when the TE (𝑆𝑞) values is lower, then the region with lower 
complexity is revealed.

The investigation of dynamic complexity using TE has been ex-

tended to the magnetosphere [29, 30] and ionosphere [21], therefore, 
there is the need for further investigation on the complexity of RRG of 
the troposphere. The fact is that the chaotic response and weak chaos 
of TE have been investigated due to its non-extensive nature in the tro-

posphere [31, 32]. Similarly, the report on varnishing largest LE has 
been discussed extensively and its relationship to TE has been justified 
[33, 34]. Further research by Coraddu et al. [35], suggests the expo-

nential behavior for a chaotic regime where a large class of generalized 
exponential shows the same behavior.

𝑞→ 1 (16)

lim
𝑞→1

𝑒𝑥𝑝(𝜆𝑞𝑡) = 𝑒𝑥𝑝(𝜆𝑡) (17)

The work of Anastasiadis et al. [29] explored different choice of 
index q for a dynamical system, suggesting 𝜆 < 0 for periodic regime, 
𝜆 = 0 edge of chaos and 𝜆 > 0 for a chaotic region. This implies that the 
degree of complexity in the troposphere depend on the choice of index 
q.

2.5. Recurrence Plot (RP)

This is based on the RP discovery by Eckmann et al. [36] which 
basically focused on time-dependent of the dynamic systems. The recur-

rence plot visualized the state-space dynamics which has been pictured 
on phase space reconstruction. The recurrence plot can be expressed as:

𝑅𝑖𝑗 =Θ[𝜀𝑖 − ‖𝑥𝑖 − 𝑥𝑗‖], (18)

𝑖, 𝑗 = 1, .....,𝑁 (19)

where 𝑅𝑖𝑗 is the recurrence matrix, 𝜀 is a predefined threshold charac-

terizing the distance between two neighboring points, ‖.‖ is a Euclidean 
norm, N is the number of the considered state 𝑥𝑖. 𝑥𝑖 and 𝑥𝑗 are the phase 
space point at times i and j, respectively, while Θ is the Heaviside func-

tion. The qualitative picture or feature of a recurrence plot has been 
defined by Eckmann et al. [36] as typology while Marwin [37] as tex-

ture. However, a recurrence point state in phase space at the time i at 
different time j is denoted within a two-dimensional squared matrix, 
in which “black” dot represents one while white dot signifies zero. Ac-

cording to Thiel et al. [38], the “black” dot implies the returning of the 
system to a neighborhood of the corresponding point in phase space.

3. Methodology

The study area for this research covers five different tropical zones 
located in Nigeria namely; Akure (Geo. 7.299◦N, 5.147◦E), Enugu (Geo. 
6.46◦N, 7.55◦E), Jos (Geo. 9.90◦N, 8.86◦E), Minna (Geo. 9.58◦N, 6.55◦E) 
and Sokoto (Geo. 13.01◦N, 5.25◦E). The research locations lie between 
Lat. 3◦ and 15◦ and Long. 3◦ and 14◦. The data used in this research 
work were obtained from the archives of Tropospheric Data Acquisi-

tion Network (TRODAN) domiciled with the Centre for Atmospheric 
Research, National Space Research, and Development Agency, Anyigba, 
Kogi State, Nigeria. The RRG data for 0 to 100 m were obtained and 
used. In addition, the data for the five selected locations were recorded 
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Fig. 1. Typical Map of Nigeria, showing the Location of the Study areas.

in 30 minutes interval from January 1, 2011 to December 31, 2012. Fi-

nally, the data recorded cover 24 hours each day from 00:00 hours to 
23:00 hours local time at 30 minutes interval involving the dry, tran-

sition and rainy season months of the year. The rainy season months 
are between the months of May and September; the transition months 
(March, April, October, and November) and the dry season months are 
between December and February. From the daily records of data col-

lected, the values of pressure (P) in hPa, temperature (T) in ◦C and 
relative humidity (H) in % were extracted, from which radio refrac-

tivity gradients were computed and then subjected to nonlinear time 
series analysis. The geographical and climatic characteristics of the five 
selected locations across the country are as shown in Fig. 1. The appli-

cation of both LE and TE in this work reveals the anomalies or trends 
emerging from the internal dynamics of the RRG in the troposphere. 
Eqn. (11) and (12) can be used to compute for the Largest LE, where a 
positive LE represents evidence of chaos.

4. Results and discussion

In complex data analysis, the physical appearance of a dynamical 
ensemble can be represented by a nonlinear time series. The series may 
not actually reflect the internal activities of the dynamics which implies 
that it may not reveal the whole process going on in the system. In this 
section, the time series trend of the RRG for the five stations was catego-

rized into the specified seasons. A system can possess either a periodic 
waveform (i.e. equal peaks), quasi-periodic waveform, chaotic wave-

form or hyperchaotic waveform depending on their initial conditions 
which is a function of the changes in meteorological parameters at time 
t. Fig. 2 shows the typical time series with different peaks for the five 
selected stations, which reflect the information of dynamical systems. 
However, Fig. 3 reveals the PPR of the RRG for the selected month of 
each specified season i.e. the rainy (concentrated data at the center), 
dry (random-like and concentrated at the center) and transition sea-

sons. Internal dynamics of natural systems such as a hurricane, typhoon 
among others in nature are considered as hyperchaotic systems, that is, 
dynamic (unpredictable) ensemble. This is as a result of the movement 
of different micro-ensemble, assemble to form macro-ensemble such as 
the troposphere. The expectation of the dynamic state will be complex 
and not in any way reliable for the prediction of radio path in the area 
of communication.

It was observed that during the rainy season, RRG increases as a 
result of the concentrated point at the center of the phase space diagram 
(see Fig. 3a), while random-like behavior and center-like concentration 
was also noticed for the dry season (see Fig. 3b). Fig. 3c also reveals 
PPR for the transition periods.

Also, the choice of the delay time 𝜏 ≤ 12 and embedded dimension 
𝑚 ≥ 7 for FNN drops below the value 1

𝑒
i.e. the lowest value of 𝜏 , is 

considered to be true for 2011 and 2012 data (see Fig. 4a and b). The 
embedding dimension is chosen from a system with a higher dimension 
and also from the distribution of time-delayed mutual information, a 
single value that seems to be good characterization across all the sta-

tions was picked following the Wallot concept [39].
4

Fig. 4c reveals the typical AMI for the RRG data, while Fig. 5 shows 
the positive LE across the selected locations from 2011 to 2012. Like-

wise, during the rainy season months, the RRG increases as a result of 
the suppression of chaoticity in the troposphere. That is the poor qual-

ity of radio signal equivalent to the positive value of LE or divergence 
of trajectory or expansion of volume along another direction.

It can also be observed clearly that the positive LE were generated 
from the five stations (see Fig. 5), where we observed lower LE during 
the rainy season and higher LE during the dry season months. Jos and 
Minna have their lowest LEs in the month of August and November, 
respectively. They also experience their highest LEs in February and 
March, respectively. Similarly, during the transition period (i.e. March-

April and October-November), there is a sudden drop and sudden rise 
in LEs which indicate the onset or offset of rainy-harmattan periods. 
TE computed from Eqn. (13) also shows the same nonlinear trends for 
the five locations with regions of lower complexity especially during 
the rainy season months and higher complexity during the dry season 
months as depicted in Fig. 6.

For further evidence, RP was computed from Eqn. (17) which quan-

tifies the complexity of the RRG for 2011 and 2012 (see Fig. 7). The 
process is deterministic with a short line segment that depicts positive 
maximum LE. However, parallel diagonal lines and short diagonal lines 
as observed in the selected rainy months (see Fig. 7a) and dry months 
(see Fig. 7(b)) are an indication of chaos. The transition to rainy and 
dry seasons period also occurs in Fig. 7(c) and Fig. 7(d) respectively, 
where some states were far from the normal chaotic behavior as a re-

sult of the influence of meteorological parameters during the onset and 
offset periods. The complexity of RRG in the troposphere is a major 
problem that can affect path clearance of the radio signals as well as 
causing propagation effects such as sub-refraction, super-refraction, or 
ducting.

In general, it is well known that during the rainy season, an increase 
in RRG is an indication of the higher complexity of the troposphere. 
For example, in the tropical region like Nigeria, the seasonal difference 
in RRG is mainly attributed to temperature or humidity inversion at 
100 m height, while reflection in solar radiation and surface tempera-

ture might be responsible for the ground level (0 m). Other meteoro-

logical conditions such as high evaporation and passing of the cold air 
over the warm surface can equally responsible for the anomalies experi-

enced in the radio-link propagation. However, the result is a short time 
prediction as the condition may change if there are any deformity and 
various hazardous events.

5. Conclusion

In this paper, the comparative study on the complexity of radio re-

fractivity gradient using Chaotic Quantifiers have been studied for the 
2011 and 2012 seasons. The short term prediction of disorderliness dur-

ing the rainy, dry and transition months for the two years were observed 
and recorded. The aforementioned results reveal evidence of chaos with 
a higher refractivity gradient across the specified locations. Higher RRG 
signifies higher chaoticity which was observed during the rainy season 
compared to the dry season and transition periods for the five selected 
locations. The behavior of LE is actually directly proportional to the TS 
which confirms the high degree of complexity during the rainy season 
for the two years. In addition, the parallel and short lines noticed in RP 
also indicate the evidence of chaos. Also recorded surprisingly were the 
changes that occur during on-set and off-set transition periods due to 
seasonal rain-harmattan transition phase and dust-laden north-eastern 
wind. It is worthwhile necessary to investigate the effect of meteoro-

logical parameters and the hydrometeors on the troposphere in other to 
avoid fading of radio signals along with the radio communication links.
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Fig. 2. Typical time series plots for the RRG for all the stations between January 1, 2011-30 December, 2012 in Nigeria: (a) Akure, (b) Enugu, (c) Jos, (d) Minna 
and (e) Sokoto.
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Fig. 3. Typical phase plot reconstructions for the radio refractivity gradient for selected locations during the (a) rainy season, (b) dry season and (c) transition 
season.

Fig. 4. Typical plot of false nearest neighbor against the embedding dimension of radio refractivity gradient for the selected locations for (a) 2011 and (b) 2012 
season and (c) Average mutual information for RRG.
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Fig. 5. Largest Lyapunov exponents for the radio refractivity gradient for the five locations for year (a) 2011 and (b) 2012.

Fig. 6. Tsallis Entropy for the radio refractivity gradient for rainy, dry and transition periods for year (a) 2011 and (b) 2012.
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Fig. 7. Radio refractivity gradient recurrence plots for selected months during (a) rainy season, (b) dry season, (c) Transition to wet season period (March-April) and 
(d) Transition to dry season period (October-November).
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