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ABSTRACT

There is an increasing interest in complementing
RNA-seq experiments with small-RNA (sRNA) ex-
pression data to obtain a comprehensive view of
a transcriptome. Currently, two main experimental
challenges concerning sRNA-seq exist: how to check
the size distribution of isolated sRNAs, given the sen-
sitive size-selection steps in the protocol; and how
to normalize data between samples, given the low
complexity of sRNA types. We here present two sep-
arate sets of synthetic RNA spike-ins for monitor-
ing size-selection and for performing data normal-
ization in sRNA-seq. The size-range quality control
(SRQC) spike-in set, consisting of 11 oligoribonu-
cleotides (10–70 nucleotides), was tested by inten-
tionally altering the size-selection protocol and veri-
fied via several comparative experiments. We demon-
strate that the SRQC set is useful to reproducibly
track down biases in the size-selection in sRNA-seq.
The external reference for data-normalization (ERDN)
spike-in set, consisting of 19 oligoribonucleotides,
was developed for sample-to-sample normalization
in differential-expression analysis of sRNA-seq data.
Testing and applying the ERDN set showed that it
can reproducibly detect differential expression over
a dynamic range of 218. Hence, biological variation in
sRNA composition and content between samples is
preserved while technical variation is effectively min-
imized. Together, both spike-in sets can significantly
improve the technical reproducibility of sRNA-seq.

INTRODUCTION

Small RNA (sRNA) is commonly defined as the frac-
tion of the transcriptome that contains all RNA molecules
shorter than 200 nucleotides (1). This class of cellular
molecules includes for example: micro-RNA, miRNA (2);
piwi-interacting RNA, piRNA (3); transfer RNA, tRNA
(4), 5S and 5.8S ribosomal RNA, rRNA (5); small nuclear
RNA, snRNA (6) and small nucleolar RNA, snoRNA (7).
Being highly diverse in length, structure and expression,
sRNAs have been described to perform a wide variety of
functions ranging from post-transcriptional regulation (8)
and silencing of mobile genetic elements (9), to process-
ing of pre-mRNA (10) and post-transcriptional modifica-
tions (11). However, the exact function and biological rel-
evance of most known sRNA species is largely unknown.
Yet, since many sRNAs are emerging as essential regula-
tors of numerous biological processes, there is an increas-
ing desire to study their expression behavior in parallel with
that of mRNAs and long-non-coding RNA. As microar-
ray and qPCR are less suitable methods to study sRNAs,
next-generation sequencing (NGS) has quickly become the
standard technology to measure sRNA expression levels
(sRNA-seq) (12). When using sRNA-seq for sRNA expres-
sion analysis, there are currently two main challenges that
need to be dealt with: (i) how to check the size range and
distribution of isolated sRNAs between samples, given sev-
eral sensitive size-selection steps in the protocol and (ii) how
to optimally normalize data between samples given the low
complexity of sRNA types. Because both issues are essen-
tial for accurate quantification of sRNA expression differ-
ences between biological samples, they have to be addressed
properly.
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Standard sRNA-seq protocols contain some form of size
selection at one or more steps in the procedure, even when
starting from total RNA. The common protocols that are
being used to isolate sRNA for input in sRNA-seq enrich
for RNA molecules in a limited range of roughly 15–100
nucleotides. These protocols are relatively unstable, often
due to (undetected) contaminants in the samples or subtle
changes in the final ethanol concentrations, which may re-
sult in sRNA isolation over a different size range or with
a different efficiency per given size between samples. Such
variations are undesirable and could erroneously be inter-
preted as the result of differential sRNA expression. As
such, the performance of the size-selection steps has to be
checked with proper controls. The best approach would be
to design synthetic spike-in controls that cover the proto-
col’s relevant sRNA size range and add these to all samples
at the beginning of the procedure.

Expression-data normalization aims at minimizing vari-
ation that is not the result of biological effects and is thus
essential for detecting the biologically relevant differences in
gene expression (13). This is similar for both RNA-seq and
sRNA-seq, with an important difference being that sRNA-
seq involves low complexity samples in which sometimes
as few as ten transcripts make up 50% of all reads in a
sRNA sample (this study). Hence, statistical normalization
approaches that are frequently used in RNA-seq data anal-
ysis, such as global normalization using the total number
of (mapped) reads (14,15), should be applied to sRNA-seq
with the utmost caution (13,16,17). In particular when they
rely on the assumption that the number of differentially ex-
pressed sRNAs is negligible compared to the size and com-
plexity of the small transcriptome. Especially for sRNA,
scaling on the number of obtained sequencing reads can be
problematic if cellular RNA content and composition are
significantly different between tissue types or have changed
drastically as a result of the biological stimulus or condi-
tion under study (18). Under such circumstances of global
gene-expression shift, the relative quantitative comparison
of transcriptomes will be subject to substantial bias. An-
other RNA-seq normalization strategy is to use an internal
biological reference that is constant over all samples within
a given study. So far, universal internal sRNA references
have not been discovered and are unlikely to exist. Given
the low complexity and high variability in sRNA samples,
the best normalization approach would therefore be based
on an external reference that is established by adding syn-
thetic spike-ins at a constant spike-in to total RNA ratio.
This is different from the internationally accepted standard
spike-in control set (ERCC) that was primarily designed to
inspect data-normalization procedures (19) and is, as of re-
cently, cautiously being used to normalize RNA-seq data
(20). In any case, the ERCC set only contains RNA controls
that are too large (>250 nucleotides) for sRNA-seq (19), so
a new set of small spike-ins is needed for the normalization
of sRNA-seq data.

Therefore, to address these sRNA-seq issues, we devel-
oped, implemented and tested two dedicated external spike-
in sets for use in sRNA-seq experimentation: one set of
size spike-in controls to monitor size bias in the entire
sRNA-seq procedure (sRNA-seq size-range quality con-
trol; SRQC) and another set of data-normalization spike-

ins for use as an external reference in the normalization
of sRNA-seq expression data (sRNA-seq external reference
for data normalization; ERDN). In summary: with these
two spike-in sets, we are able to evaluate the quality and
size-range of the RNA size-selection and perform effective
data normalization in sRNA-seq.

MATERIALS AND METHODS

Biological materials

Adult zebrafish (strain ABxTL) were handled in com-
pliance with local animal welfare regulations and main-
tained according to standard protocols (http://zfin.org).
The breeding of adult fish was approved by the local ani-
mal welfare committee (DEC) of the University of Leiden,
The Netherlands. All protocols adhered to the international
guidelines specified by the EU Animal Protection Direc-
tive 86/609/EEC. Adult zebrafish and oocytes were flash-
frozen in liquid nitrogen and stored at −80◦C. Before freez-
ing, fish were put under anesthesia using 0.02% buffered 3-
aminobenzoic acid ethyl ester (Tricaine).

Total RNA and sRNA isolation

Whole zebrafish or isolated tissues were pulverized in liq-
uid nitrogen with a mortar and pestle, after which sRNA
isolation was performed using the miRNeasy Mini Kit (Qi-
agen). In brief, powdered tissue was homogenized in TRIzol
Reagent (Life Technologies) and 1-bromo-3-chloropropane
(BCP) was added. After centrifugation RNA partitioned to
the upper aqueous phase, which was carefully removed and
subjected to column-based sRNA isolation according to the
manufacturers’ instructions. RNA concentration was mea-
sured on a NanoDrop ND-2000 (Thermo Scientific) and
RNA integrity was examined on a 2200 TapeStation instru-
ment using R6K and High Sensitivity R6K ScreenTapes
(Agilent Technologies).

Design of the data-normalization and size-range quality con-
trol spike-in sets

A list of candidate random RNA sequences of the de-
sired length was generated using the following constraints:
maximum homopolymer length of two nucleotides, GC-
content between 40 and 60%, �G for hairpin forma-
tion >−0.5 kcal/mol at 37◦C (UNAFold: http://mfold.rna.
albany.edu/), and an E-value >10 when aligned against
the NCBI nucleotide collection (nr/nt: http://blast.ncbi.
nlm.nih.gov) using BLASTN. From these candidates 19 se-
quences of 25 nucleotides long were selected for use as ex-
ternal reference for data-normalization (ERDN) spike-ins.
For size-range quality control (SRQC) spike-ins different
sequences were selected of 10, 16, 19, 22, 25, 28, 34, 40, 50,
60 and 70 nucleotides long. The 10-nucleotide SRQC spike-
in was not checked using BLASTN because of its short size.
These sequences were obtained as single-stranded oligori-
bonucleotides with a 5′-phosphate and polyacrylamide gel
purified (Eurogentec S.A.). The oligoribonucleotides were
dissolved in 100 �M in RNase-free TE (10 mM Tris–HCl
pH 8 and 1 mM ethylenediaminetetraacetic acid (EDTA))
and stored in aliquots at −80◦C.

http://zfin.org
http://mfold.rna.albany.edu/
http://blast.ncbi.nlm.nih.gov
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Next-generation sequencing

sRNA libraries were prepared according to the manufac-
turers’ protocols using the Ion Total RNA-Seq Kit v2 (Life
Technologies). Briefly, adapters were ligated to the sRNA
and a reverse transcription reaction was performed. The re-
sulting cDNA was amplified and at the same time barcoded
with IonXpress RNA-Seq BC01-BC16 (Life Technologies).
The yield and the size distribution of the amplified cDNA
were assessed using the 2200 Tapestation with the Agilent
D1K ScreenTape (Agilent Technologies). Emulsion PCR
was performed using the Ion PI Template OT2 200 Kit on
an Ion OneTouch 2 Instrument, after which the template-
positive Ion PI Ion Sphere Particles were recovered, quanti-
fied with a Qubit 2.0 fluorometer, and enriched using an Ion
OneTouch ES (Life Technologies). Sequencing was carried
out on the Ion Proton system using an Ion PI Chip v2 and
Ion PI Sequencing 200 kit (Life Technologies) following the
manufacturers’ protocols (Revision 3.0).

Data access

All sequencing results are accessible through the European
Nucleotide Archive (http://www.ebi.ac.uk/ena/) under the
project accession number ERP007147. For detailed info see
Supplementary Data 4.

Bioinformatics analysis

Mapping NGS reads to spike-in sets. Before alignment of
the reads to the spike-in sets, all reads were trimmed to 40
nucleotides from the 3′-end using Trimmomatic 0.30 (21)
(option CROP:40). Bowtie2 (22) was used for the alignment
of the trimmed reads to the synthetic spike-in sequences.
The parameters used for alignment were -L 6 -i S,0,0.5 –
ignore-quals –norc –score-min L,-1,-0.6 -D 20. This corre-
sponds to ∼10% of mismatches allowed. Samtools (23) was
used to convert the alignment results to the BAM file for-
mat. Reads were selected only if the alignment length was
>80% of the target length using the Rsamtools package
(24).

Mapping NGS reads to sRNA. For miRNA alignment, all
reads were trimmed to 30 nucleotides and reads shorter than
15 nucleotides were discarded. Trimmed reads were aligned
to the mature zebrafish miRNA sequences from miRBase
version 20 (25–29) with Bowtie2 using the same settings as
used for spike-in sequences alignment. Only reads with per-
fect alignments were selected.

For piRNA alignment, all reads were trimmed to 40 nu-
cleotides and reads shorter than 12 nucleotides were dis-
carded. Trimmed reads were aligned to both strands of
piRNA sequences from piRNABank (30) with Bowtie2 us-
ing the same alignment score settings as used for spike-in
sequences alignment. Only reads with perfect alignments
were selected. Finally, Samtools (23) was used to convert
the alignment results to the BAM file format.

Normalization. For testing the SRQC spike-in set using
different ethanol concentrations (Figure 2A, Supplemen-
tary Figure S1.1 and Supplementary Figure S2.3) the num-
ber of reads that mapped to each size spike-in was first di-
vided by the total number of zebrafish miRNA reads for

that sample and then multiplied by the average number of
mapped miRNA reads over all samples.

ERDN-based normalization (Figures 2B, 4, 5C–F) was
performed by first calculating size factors from the ERDN
counts using the DESeq R package (31). These size factors
were then used to scale the number of reads between the
samples. By this approach all ERDN spike-ins contribute
in the normalization procedure, irrespective of their abun-
dance. For comparison, this normalization procedure was
repeated using the miRNA-mapped reads as input to cal-
culate the size factors in DESeq.

R2 calculation (Figure 4A). The levels of each fold-change
control in all eight dilutions were evaluated by individually
plotting their relative input concentration against their nor-
malized number of reads. These data should follow a linear
relationship on a log2 scale with a slope that equals the fold-
change difference between consecutive dilution mixes. The
difference between the observed and expected fold-changes
was thus assessed by linear regression with a fixed slope of
1 (log2 of the expected 2-fold changes), returning the coef-
ficient of determination (R2) as a measure of similarity.

Down-sampling raw sequence files. Down-sampled fastq
files were generated by randomly sampling 2.5, 3.0, 3.5, 4.0,
4.5 and 5.0 million of reads from the original fastq files
(starting respectively from 7 611 054, 6 343 893, 6 990 446,
6 082 600, 6 227 225 and 6 054 478 total reads) using the
Seqtk tool (http://github.com/lh3/seqtk).

RESULTS AND DISCUSSION

Development of a size-range quality control (SRQC) spike-in
set for sRNA-seq

In order to make RNA-seq libraries that are focused on
sRNA (<200 nt), library preparation protocols contain
size-selection steps at different stages in the NGS proce-
dure. For example, the size range of Ion Torrent technol-
ogy based NGS libraries is controlled by sRNA isolation
from total RNA, followed by size selection after cDNA
synthesis and after library amplification. Unfortunately, the
performance of these size-selection steps can be sample-
dependent, as well as sensitive to variation in lab handling.
This may have a significant impact on the sequencing out-
come. For this reason, we decided to design a set of external
sRNA size-range quality controls (SRQC) to allow check-
ing of the NGS size-selection steps. These controls are to
be added to total RNA as early in the procedure as possi-
ble and enable routine monitoring of a consistent size se-
lection of RNA isolation, library preparation and sequenc-
ing, from the beginning to the end of the procedure. As
the standard sRNA isolation methods followed by standard
sRNA-seq, investigate sRNA in the range of ∼10–70 nu-
cleotides, we decided to design an SRQC spike-in set that
consists of 11 synthetically-synthesized, single-stranded 5′-
phosphorylated oligoribonucleotides of increasing length
(10–70 nucleotides; Figure 1B).

The differences in sequencing efficiency between the
individual spike-ins can be considerable, so we started
by levelling-out most of these variances. At the same
time, we sought for an appropriate concentration for each

http://www.ebi.ac.uk/ena/
http://github.com/lh3/seqtk
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Figure 1. Design and testing of small-RNA size-range quality control (SRQCs) spike-in set. (A) Technical reproducibility. sRNA-seq analysis over six
independent SRQC spike-in experiments. Triangles in the dot plot represent the non-normalized read count of six technical replicates for each SRQC
(SS-10 to SS-70). (B) SRQC sequences. Size spike-ins (SS-) of 10 to 70 nucleotides long.

SRQC oligonucleotide that allows reliable measurement,
but avoids using-up too many sequencing reads. For this
purpose, an equimolar mix of all SRQC oligoribonu-
cleotides was added to identical zebrafish sRNA samples
at 9.6 × 108, 9.6 × 109 or 9.6 × 1010 total number of
spike-in molecules per �g of total RNA. Next, sRNA-seq
was performed, omitting all size-selection steps, resulting in
1.5, 1.1 and 1.4 million reads, respectively, with the num-
ber of reads mapping to each spike-in varying between
0.01 and 14.8% (Supplementary Figure S1.1A). The con-
centration of each individual spike-in was adjusted to ob-
tain similar percentages of reads for all spike-ins in the mix
(Supplementary Table S1.2). In addition, the overall con-
centration of the SRQC mix was chosen to be 1.9 × 1010

oligoribonucleotides/�g of total RNA, which will produce
sufficient reads for accurate counting, while consuming at
most 1–2% of the total number of reads in each sample.

Testing the SRQC spike-in set for sRNA-seq

It is obviously extremely important for any control to be
robust. Hence, to evaluate the reproducibility of the SRQC
spike-in set, we performed a test experiment. Zebrafish to-
tal RNA (including sRNA) was split in six equal aliquots
to which equal an amount of SRQC mix was added. On
these spiked samples, a standard sRNA-seq analysis was
performed, including all size-selection steps. The results
show that the technical reproducibility of the spiking and
sequencing procedure is high (Figure 1A). Although the
SRQC spike-in set reveals a standard sRNA-seq size range
from ∼10 to 50 nucleotides, it is evident that the sRNA-

seq procedure is optimized for sequences between 16 and 25
nucleotides long, i.e. the miRNA range (Figure 1A). Based
on these findings, we concluded that the reproducibility of
SRQC spiking and sequencing is sufficient for monitoring
the quality of the size selection in the sRNA-seq procedure.

Applying the SRQC spike-in set in sRNA-seq

Next to reproducibility, sensitivity is another important is-
sue of experiment controls. To investigate this for the SRQC
spike-in set, we designed an experiment in which we manip-
ulated the size-selectivity range of the sRNA isolation pro-
tocol. In the Ion Torrent sRNA-seq workflow (Supplemen-
tary Figure S2.1), it is recommended to first isolate sRNA
by removing large nucleic acids (>200 nucleotides) from to-
tal RNA using a low ethanol concentration in combination
with silica-based spin columns. Changing the ethanol con-
centration affects the sRNA isolation size range. Therefore,
zebrafish total RNA was spiked with the SRQC mix, split
into equal aliquots and subjected to sRNA isolation us-
ing either: standard, standard plus 6% or standard minus
6% ethanol concentrations. sRNA-seq analysis of the iso-
lated sRNA samples showed a clear effect of ethanol on the
SRQC read counts (Figure 2A). At a higher ethanol concen-
tration, an increased number of reads was observed for the
longer spike-ins, while at a lower ethanol concentration the
opposite effect was observed. In a similar fashion, we have
altered all other size-selection steps in the library prepara-
tion protocol (Supplementary Table S2.2) using alternative
ethanol concentrations. The size range profiles that were ob-
tained again demonstrated the ability of the SRQCs to de-
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Figure 2. Using SRQCs to monitor size range in sRNA-seq. (A) Monitoring size-range biases in sRNA isolation. Fold abundance here is for each size spike-in
the ratio of the observed number of reads divided by the number of reads found when using the standard ethanol concentration. (B) An example of biased
size range in sRNA-seq. Fold abundance here is for each size spike-in the ratio of the observed number of reads divided by the number of reads in the adult
male zebrafish sample.

tect size-range selection biases anywhere in the sRNA-seq
procedure (Supplementary Figure S2.3).

To test our SRQC spike-in set in a real-life scenario, we
evaluated the isolation of sRNA from two different biolog-
ical samples. It is our experience that the standard sRNA
isolation protocol performs differently when using zebrafish
oocytes as compared to somatic zebrafish tissues, presum-
ably due to impurities from the oocytes’ chorion. Hence,
total RNA from adult zebrafish (whole body) and oocytes
was spiked at a fixed SRQC/total RNA ratio and anal-
ysed by sRNA-seq. The size range that was shown by the
SRQCs revealed a marked loss of spike-ins smaller than
28 nucleotides in the sRNA fraction from oocytes com-
pared to the adult (Figure 2B). This means that scientists
who want to analyse for instance the miRNA population
of oocytes using a standard sRNA isolation protocol might
erroneously conclude that there are only few miRNAs in an
oocyte.

In conclusion, these findings demonstrate that the
SRQCs can be used to reliably detect differences in the size
selection of sRNA-seq. We recommend including SRQCs in
each sample to enable routine quality control monitoring of
the sRNA-seq procedure for undesirable size-range biases
that might occur anywhere in the RNA isolation and/or
sequencing procedures. Size-range variations between sam-
ples will result in noisy expression data, thereby frustrat-
ing the reliable identification of e.g. differentially expressed
miRNAs. Lastly, we believe that SRQCs can be useful for
all NGS platforms that rely on size-selection steps, such as
the gel-base size selection in Illumina’s TruSeq sRNA-seq
protocols.

Development of an external reference for data-normalization
(ERDN) spike-in set for sRNA-seq

Data normalization is an important element in omics exper-
imentation. Between samples there are differences in techni-
cal efficiency that result in variations in the generated data.
Correct normalization of gene-expression data is therefore

paramount for the accurate comparison of expression lev-
els. Normalization is typically performed with the premise
that the expression of the vast majority of genes does not
change. This assumption does not necessarily hold true for
the different types of sRNA because of the lower complex-
ity of the sRNA pool in comparison with a full transcrip-
tome. As an example, we investigated the quantitative diver-
sity of the miRNA pool in adult zebrafish (Figure 3D). The
10 miRNAs with the highest number of reads consumed
∼50% of all miRNA reads. For this reason, variations in
the expression of these highly abundant miRNAs between
different biological samples can have a substantial impact
on the total miRNA pool, thus ruling out normalization
strategies that are merely based on the (total number of)
miRNA reads. In this scenario, normalization would ideally
be performed using transcripts that are invariant in expres-
sion across all samples and that span the entire range of ex-
pression levels. For this purpose, we designed a dedicated set
of small-RNA external-reference data-normalization spike-
ins (ERDNs) to serve as such invariant references between
samples. When combined with total RNA at a fixed spike-
in to RNA ratio, these oligoribonucleotides can be used
to normalize sRNA expression profiles based on the total
RNA starting input prior to size selection.

The use of synthetic spike-ins for normalization of
sRNA-seq data was previously published (32). As acknowl-
edged by the authors, their approach was limited by the
use of only three different oligoribonucleotides. Moreover,
the concept was not extensively tested, nor developed fur-
ther as they did not use these spike-ins in the sRNA-seq li-
braries in later studies (33). Another approach is using com-
mercial miRNA mixes with spike-ins in equimolar quan-
tity (34,35). However, these mixes are less suitable as they
do not span the entire expression range, a desired charac-
teristic for a good baseline population to be used in nor-
malization (36). Also, as these spike-ins are identical to
known miRNAs published in miRBase, they cannot be used
as internal spike-ins for sRNA-seq. We therefore designed
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Figure 3. Design and testing of external small-RNA normalization spike-ins (ERDNs). (A) Technical reproducibility. sRNA-seq analysis of six independent
ERDN spike-in experiments. The average non-normalized number of reads for each normalization spike-in plotted against the median number of reads
of each spike-in over the six technical replicates. Error bars indicate standard deviations. (B) Dynamic range of miRNA expression in zebrafish. Zebrafish
miRNAs are shown, sorted by increasing abundance and plotted against their corresponding average number of reads over the six replicates. Error bars
are standard deviations (n = 6). (C) ERDN sequences. Oligoribonucleotide sequences of the 25-mer ERDN spike-in set. (D) Quantitative diversity of the
zebrafish miRNA pool. Zebrafish miRNAs are shown sorted by decreasing abundance and plotted as cumulative fraction of reads that is consumed by each
miRNA. The dashed line indicates the fraction of the reads used up by the 10 most abundant miRNAs.

the ERDN spike-in set to include 19 single-stranded 5′-
phosphorylated oligoribonucleotides of 25 nucleotides long
(Figure 3C) that cover the entire expression range of sRNA.
As before, we first compiled an ERDN mix in which the in-
dividual spike-ins are balanced for differences in sRNA-seq
efficiency (Supplementary Figure S1.1B and Supplemen-
tary Table S1.3) and consume ∼3% of the total number of
reads,

Testing the ERDN spike-in set for sRNA-seq

Given that the normalization spike-ins will function as a
fixed reference in a variable biological sample, high tech-
nical reproducibility of spike-in sequencing is essential. To
evaluate this, the ERDN mix was added six times inde-
pendently to equal aliquots taken from a single batch of
zebrafish total RNA. The samples were individually sub-

jected to sRNA isolation and sRNA-seq. Reproducibility
was high for spike-ins with >100 reads and gradually de-
creased for lower read counts (Figure 3A), as was previously
described for RNA-seq (37). Comparison of the number of
reads that mapped to known zebrafish miRNAs (Figure 3B)
demonstrated that the read distribution of the ERDN spike
in set (Figure 3A) covers the entire dynamic range of miR-
NAs in these biological samples, i.e. from a single read to 2
× 105 reads per 4 million total reads on average per techni-
cal replicate. We conclude that, from a technical perspective,
the ERDN mix could be suitable for use as a reliable refer-
ence for data normalization in sRNA-seq.

In order to test this, we designed an experiment in which
predetermined fold-changes were artificially introduced in
zebrafish total RNA using external test spike-ins of various
sizes (10–70 nucleotides; Supplementary Data 3). The effect
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Figure 4. Evaluating ERDN-based normalization. (A) Effect of ERDN-based normalization on the dilution data of the fold-change oligoribonucleotides.
Linear regression analysis was performed on plots of the dilution factor versus the number of reads obtained for the 2-fold serial dilutions of each fold-
change oligonucleotide. The difference in the coefficients of determination (�R2) between non-normalized data and DESeq-normalized data is plotted for
each fold-change oligo (SS-10 to SS-40). DESeq normalization was performed using as a reference either the number of miRNA-mapped reads (green)
or the ERDNs (blue). SS-50, SS-60, SS-70 are not showed as they have <10 reads in more than three runs. (B) Effect of ERDN-based normalization on
the variance of replicate miRNA samples. The standard deviation of the number of reads (log2) obtained for each zebrafish miRNA was calculated over
the eight replicates used under (A). The results are presented in kernel density plots where the density (vertical axis) signifies the number of miRNAs that
have a particular standard deviation (horizontal axis). Red, not normalized; green, normalized with total miRNA-mapped reads, and blue, normalized
with ERDN. (C) Average raw read distribution of small RNA and SRQC. The average non normalized number of reads of the six different samples were
calculated and plotted against the length of sRNAs (blue, left y-axis) and SRQC spike-ins (black, right y-axis). The error bars show the standard deviation.
(D) Effect of ERDN-based normalization on the variance of sequences of different length. The standard deviation of the number of reads (log2) obtained for
each size spike-in was calculated over six female zebrafish samples, for non-normalized data and ERDN-normalized data.

of ERDN-based normalization on these fold-changes was
assessed. After sRNA isolation and sRNA-seq the num-
ber of reads mapping to the fold-change spike-ins varied
between 0 and 104, thus covering a large part of the dy-
namic range of the ERDNs (105 reads). To then evaluate
the efficacy of the ERDN spike-in set in normalization, the
following approach was taken: since the fold-change mixes
were added to an identical background of zebrafish RNA,
a scaling based on the number of miRNA reads would
be the best available normalization method to compare
ERDN-based normalization to. We therefore performed a
data normalization using the ERDN spike-in set and eval-
uated how close the results would match with the absolute
data normalisation based on the identical miRNA back-
ground in these samples. Subsequently, the coefficient of de-
termination (R2) between the observed and expected fold-
changes was calculated and used to check the performance

of the normalization procedure. The average R2 values for
all fold-change test spike-ins were 0.87 ± 0.12, 0.92 ± 0.06
and 0.91 ± 0.07 for non-normalized reads, total-number
of mapped miRNA reads normalized data and ERDN-
normalized data, respectively (Figure 4A). We conclude
that the accuracy of the observed fold-changes significantly
improves, close to the best possible normalization reference,
when the ERDN spike in set is used as an external reference
for data normalization.

We next took an alternative approach to analysing these
data by investigating the effect of ERDN-based normaliza-
tion on the variance of the replicate zebrafish miRNA mea-
surements (n = 8), which represent identical technical repli-
cates. For this purpose, the standard deviation distribution
of the mapped zebrafish miRNAs was calculated for each
miRNA over all eight replicates and plotted in a kernel den-
sity plot (Figure 4B). ERDN-based normalization signifi-
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Figure 5. Using ERDN for normalization of samples with different miRNA content. (A and B) Size distribution of sRNA in female and male adult zebrafish.
Histograms of the number of reads versus the read length are shown for a female (A) and a male (B) adult zebrafish. Blue, all reads; red, miRNA-
mapped reads and green, piRNA-mapped reads. Reads shorter than nine nucleotides are not included. (C and D) Size-selection profile in zebrafish samples.
Comparison of the SRQC reads between the female and male adult zebrafish (C) and between male and egg (D). (E and F) ERDN-based normalization
preserves the natural miRNA content. Reads were normalized by DESeq using as a reference either the number of mapped reads (E) or the ERDN spike-in
set (F). For each miRNA and piRNA, the average number of reads was calculated over four female and over four male zebrafish. The log2 ratio of male
over female miRNAs (red) and piRNAs (green) is displayed in kernel density plots. The vertical dashed line indicates an equal number of reads in female
and male zebrafish.
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cantly diminishes variability between replicates, almost as
well as the normalization based on total miRNA-mapped
reads from identical samples.

Lastly, we checked whether our ERDN-based normaliza-
tion strategy would also work on RNA with sizes outside
the miRNAs or piRNA size range. To that end, we used
the SRQC spike-ins as representative sRNAs covering sizes
from 10 to 70 nucleotides. The reproducibility of the num-
ber of SRQC reads was used as a read-out for the effective-
ness of ERDN-based normalization. First, sRNA-seq data
from six different female zebrafish spiked with the SRQC
and ERDN mixes was randomly down-sampled to mimic
an experiment with a larger variance in sequencing depth.
Otherwise, the total number of reads between these sam-
ples would have been too similar (CV = 0.087) to monitor a
clear improvement of SRQC reproducibility. Next, normal-
ization based on the ERDN spike-ins was performed, show-
ing a robust reduction of the variance of the SRQC reads
over most of the tested size range (Figure 4D). The vari-
ance did not improve for 70-nucleotide spike-in after nor-
malization, but this is likely a consequence of the low num-
ber of reads that mapped to this spike-in sequence (<100)
brought about by the size-selectivity of the standard Ion
Torrent sRNA-seq protocol (Figure 4C). We conclude that
the ERDN spike-ins can be used to effectively normalize
for variable sequencing depth over the range from 10 to 70
nucleotides.

In summary, the ERDN spike-in set yields reproducible
results in the size range from 10 to 70 nucleotides and cov-
ers a dynamic range of 218 while having a ∼2-fold difference
in number of reads between consecutive spike-ins. ERDN-
based normalization improves the fold-change response of
artificial fold-change controls and improves technical re-
producibility of sRNA sequencing. We suggest the use of
ERDNs for sample-to-sample normalization of sRNA-seq
data, in order to achieve a more accurate quantification of
differential expression between biological samples.

Applying the ERDN spike-in set in sRNA-seq

In contrast to our test experiment with identical sRNA ze-
brafish samples, normalization on the number of mapped
reads will fail to correctly preserve information on differ-
ential expression in cases where sRNA content and com-
position differ significantly between biological samples. To
demonstrate the applicability of ERDN-based normaliza-
tion in such a scenario, we applied our normalization spike-
in set in a sRNA-seq experiment comparing sRNA expres-
sion profiles of male and female zebrafish. For the analysis,
we have chosen to focus on miRNA and piRNA, as these
are abundant and their sequences are readily available. Total
RNA was isolated from the whole bodies of four adult male
and four adult female zebrafish and spiked with the SRQC
and ERDN spike-in mixes at a fixed total-RNA/spike-in
ratio. sRNA-seq analysis showed that the size distribution
of the NGS reads is remarkably different between female
(Figure 5A) and male (Figure 5B) zebrafish, with 10% ver-
sus 29% of the reads mapping to miRNAs, respectively. We
turned to the SRQC spike-ins to see if this difference was
caused by unequal size-selection ranges between female and
male zebrafish. We previously observed a substantial differ-

ence in the size-selection performance between somatic and
oocyte zebrafish samples (Figures 2B and 5D) that ham-
pers proper analysis of sRNA-seq data. For the adult female
and male zebrafish, however, the SRQC spike-in set revealed
an almost identical size-range distribution, suggesting that
no artificial size-based skewing between samples was in-
troduced during the library preparation (Figure 5C). We
can therefore conclude that the female samples contained a
substantially smaller fraction of miRNAs compared to the
male samples, probably due to the vast amount of maternal
RNA originating from the oocytes. In this situation, nor-
malization on the total number of miRNA-mapped reads
would skew the results toward a levelling of the ratios be-
tween male and female samples. Indeed, density plots of
the male over female miRNA ratios show that a mapped-
reads based normalization centres the distribution of log2
ratios close to zero for both miRNAs and piRNAs (Figure
5E). In contrast, normalization using the ERDN spike in
set as a reference retains the biological difference, thereby
demonstrating a higher miRNA content in male zebrafish
and a similar overall expression of piRNAs compared to fe-
male zebrafish (Figure 5F). Hoen et al. suggest to treat the
small RNA population not as a whole, but as a set com-
posed by smaller subsets such as miRNA, piRNA, etcetera
and then to normalize on the number of reads of each sub-
set (38). However, this approach was not successful in our
case as shown before. That might be due to the fact that
Hoen et al. checked for variability through identical repli-
cates sequenced in different laboratories, while in our case
we compared two biologically very different samples. To-
gether, these findings prove that normalization on subsets
mapped reads is not suitable in experiments, where the com-
position of the sRNA pool is different between samples.
The addition of ERDN spike-ins to total RNA samples at a
fixed ratio, however, effectively enables normalization rela-
tive to the amount of starting total RNA. Hence, biological
variation in sRNA composition and content between sam-
ples is preserved while at the same time technical variation
is effectively minimized.
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