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A B S T R A C T

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. 7-Methylgua-
nosine (m7G), one of the most prevalent RNA modifications, has been reported to play an important role in 
ccRCC progression; however, the specific regulators of m7G modification that are involved in this function 
remain unclear. This study aimed to explore the correlation between regulators of m7G methylation and ccRCC 
progression using unsupervised machine learning methods.

Methods: Transcriptome and clinical data of ccRCC were retrieved from The Cancer Genome Atlas (TCGA) 
database to identify differentially expressed m7G-related genes associated with the overall survival of patients 
with ccRCC. To construct and validate a prognostic risk model, TCGA dataset samples were divided into training 
and test sets. A multiple-gene risk signature was constructed using least absolute shrinkage and selection 
operator Cox regression analysis, and its prognostic significance was assessed using Cox regression and survival 
analyses. Finally, immunohistochemistry was performed to verify the prognostic significance of this signature.

Results: In total, 537 patients with ccRCC were included in this study. We found that 26 m7G RNA 
methylation regulators that were significantly differentially expressed. Univariate and multifactorial Cox 
regression analyses revealed that METTL1 expression was associated with ccRCC progression.

Conclusions: METTL1 associated with m7G may serve as a potential biomarker for ccRCC prognosis and 
diagnosis. Moreover, it may affect the prognosis of ccRCC by regulating the tumor immune microenvironment, 
providing a potential therapeutic target for immunotherapy. These results provide a new perspective on the role 
of M7G-related RNAs in ccRCC pathogenesis.

Background

Clear cell renal cell carcinoma (ccRCC) ranks as the most predomi-
nant subtype within renal cell carcinoma (RCC) [1,2]. Despite the 
benefits conferred by early surgery or ablative strategies in improving 
patient survival rates, up to one-third of patients eventually develop 
metastases, with a quarter experiencing recurrent metastasis following 
curative surgical resection [3]. In ccRCC, lactotransferrin, an important 
protein in the innate immune system, is downregulated and promotes 
metastatic growth. Interestingly, this downregulation also enhances the 

response to mammalian target of rapamycin (mTOR) inhibitors in ccRCC 
tumor cells, suggesting that it could serve as a predictive biomarker for 
therapeutic effectiveness [4]. Previous studies have demonstrated that 
the 5-year relative survival rate for early stage ccRCC is 75.2 % [5], 
whereas that for stage IV ccRCC remains below 10 % [6]. Consequently, 
making an early diagnosis and precise prognostic estimation is para-
mount importance [7].

The 7-methylguanosine (m7G), one of the most prevalent RNA 
modifications, has been identified as part of the mRNA 5’ cap structure, 
as well as in human ribosomal RNA (rRNA), transfer RNA (tRNA), and 
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microRNA [8–10]. Recent studies have shown that m7G methylation is 
closely associated with the tumorigenesis and progression of various 
cancers [11–13]. For instance, in prostate cancer, recent studies have 
shown that protein kinase B (AKT)/mTOR downstream signaling path-
ways regulate methyltransferase-like 1 (METTL1) expression and that 
METTL1 overexpression promotes tumorigenesis through the biogenesis 
of tRNA fragments [14]. Similarly, in breast cancer, METTL1-mediated 
modification of tRNA m7G plays a crucial tumor-suppressive role by 
facilitating the translation of growth arrest and DNA damage-inducible 
45 alpha and RB transcriptional corepressor 1 mRNA, which specifically 
interfere with cell cycle progression during the G2/M phase [15]. 
Furthermore, studies have found that the WD repeat domain 4 (WDR4) 
component of the m7G methyltransferase complex mediates translation 
of cyclin B1 mRNA by enhancing its binding to eukaryotic translation 
initiation factor 2A, thereby promoting the progression of hepatocellular 
carcinoma [16]. In addition, overexpression of the m7G regulator 
METTL1/WDR4 increases the expression of cell cycle progression genes, 
thus promoting tumor formation in acute myeloid leukemia [17]. 
Moreover, the WBSCR22/TRMT112 methyltransferase complex, which 
writes the m7G modification at a specific G1639 location in 18S rRNA, 
has been reported to activate oxaliplatin-induced apoptosis in colon 
cancer [18]. These findings across various cancer types highlight the 
diverse and significant roles of m7G methylation in cancer biology. 
However, research on the relationship between the regulators of m7G 
modification and tumor progression is still at the preliminary stage, 
particularly in clear cell renal cell carcinoma (ccRCC).

Given the critical role of m7G modification in various cancers and 
the lack of comprehensive studies on its effect in ccRCC, this study aims 
to investigate the impact of m7G regulatory genes on ccRCC progression 
and prognosis. Specifically, we identify associations between m7G 
regulator genes and the clinical characteristics of ccRCC using consensus 
clustering analysis. Moreover, we construct a prognostic model to esti-
mate ccRCC progression based on m7G regulatory gene expression. In 
addition, we investigate the correlation of the key m7G regulatory gene 
METTL1 with clinicopathological features, biological functions, 
signaling pathways, and drug sensitivity in ccRCC. By addressing these 
objectives, we aim to provide a comprehensive understanding of the role 
of m7G modification in ccRCC and potentially uncover novel biomarkers 
and therapeutic targets for this aggressive malignancy.

Materials and methods

Data acquisition

The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma 
(TCGA-KIRC) mRNA FPKM transcriptome data and associated clinical 
information were downloaded from the TCGA database (https://portal. 
gdc.cancer.gov/projects/TCGA-KIRC). A database of 72 normal samples 
and 537 ccRCC samples with gene expression and clinical information 
was retrieved by matching the sample ID. These datasets were also used 
to analyze the expression profiles of genes associated with m7G and to 
perform a prognostic assessment of patients with ccRCC based on the 
analysis. Patients without missing clinical and pathological character-
istic data were excluded, and the average of repeated gene expression 
data from the same patient was calculated. The downloaded raw data 
were preprocessed using Perl software (version strawberry-perl-5.32.1- 
64bit), and the extracted matrix was analyzed using bioinformatics 
procedures on R software (version 4.1.0). This study did not require 
ethical approval because the data were obtained from a publicly 
accessible database.

Patient inclusion and exclusion criteria

The clinical and transcriptome data of the patients were downloaded 
from TCGA (Project ID: TCGA-KIRC). Patients without follow-up clinical 
or transcription data were excluded, as previously reported [19]. The 

inclusion criteria for human ccRCC tissue samples were as follows: 
samples obtained from patients aged 18-80 years [20]; and histologi-
cally confirmed ccRCC. The exclusion criteria were samples obtained 
from patients with missing clinical and follow-up data.

Gene selection

Given the emerging evidence of methylguanosine’s crucial role in 
cancer progression and its potential as a source of novel biomarkers and 
therapeutic targets, we focused our investigation on methylguanosine- 
related genes. To systematically identify relevant methylguanosine- 
related genes, we searched the gene set enrichment analysis (GSEA) 
database (www.gsea-msigdb.org/gsea/index.jsp) for methylguanosine- 
related genes and obtained three gene sets (GOMF_M7G_5_PPPN_DI-
PHOSPHATASE_ACTIVITY, GOMF_RNA_7_METHYLGUANOSINE_-
CAP_BINDING, and GOMF_RNA_CAP_BINDING). After removing 
duplicated genes, 34 m7G-related genes remained: METTL1, WDR4, 
NSUN2, DCP2, DCPS, NUDT1, NUDT10, NUDT11, NUDT16, 
NUDT16L1, NUDT3, NUDT4, NUDT4B, NUDT5, NUDT7, AGO2, 
CYFIP1, CYFIP2, EIF4E, EIF4E1B, EIF4E2, EIF4E3, GEMIN5, LARP1, 
NCBP1, NCBP2, NCBP3, EIF3D, EIF4A1, EIF4G3, IFIT5, LSM1, NCBP2L, 
and SNUPN.

Identification of differentially expressed genes

Differentially expressed genes (DEG) of the m7G regulator between 
normal and tumoral tissues were determined using Wilcoxon test of the 
‘limma’ (version 3.58.1) package with a cut-off criterion of p<0.05. The 
correlations between these genes were evaluated using the R package 
‘corrplot’ (version 0.92).

Hierarchical clustering for m7G-related methylation genes

The ‘ConsensusClusterPlus’ package (version 1.66.0) [21] was used 
for consensus clustering with k = 2–9. A cluster heatmap was drawn 
using the ‘pheatmap’ package. The cumulative distribution function 
(CDF) values were compared with the clustering results. Additionally, 
we tested the relationship between clustering and prognosis using 
Kaplan-Meier curves and clinical factors.

Principal component analysis

To verify the clustering of the results, principal component analysis 
(PCA) was performed using the ‘limma’ package and visualized using 
the ‘ggplot2’ package.

Least absolute shrinkage and selection operator prognostic modeling

The Least Absolute Shrinkage and Selection Operator (LASSO) Cox 
regression analysis was used to mitigate the risk of model overfitting. 
LASSO regression is particularly effective for high-dimensional data 
because it applies a penalty to the regression coefficients, thereby 
reducing the number of variables included in the model [22,23]. The 
penalty parameter lambda was determined through cross-validation 
using the R package ‘glmnet’ (version 4.1-8). This method is widely 
used owing to its ability to increase the prediction accuracy and enhance 
interpretability by selecting the most relevant features from a large set of 
predictors [24].

Univariate Cox and LASSO regression analyses were used to 
construct a prognostic signature by screening genes associated with 
survival in the derived population cohort. For each patient with ccRCC, 
the risk score was calculated using the following formula:

Risk score =
∑n

i = 1 expi ∗ βi where n represents the number of 
prognostic genes, expi the expression level of prognostic gene i, and βi 
the regression coefficient of gene i. The downloaded TCGA database was 
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divided into two subgroups based on the median score of patients with 
ccRCC to obtain low- and high-risk groups. The overall survival curves of 
the two groups were drawn using the Kaplan-Meier method, and the 
accuracy of the RNA signature was evaluated based on the receiver 
operating characteristic (ROC) curves.

Univariate and multivariate Cox regression analyses

To determine whether the m7G-regulator-based risk score is an in-
dependent prognostic factor, univariate and multivariate Cox regression 
analyses were performed using the ‘survival’ and ‘forestplot’ packages. 
With the exception of the risk score, we investigated the effect of age 
(≤65 and >65 years), gender, grade, and T, N, and M stages on survival. 
Variables such as Mx, Tx, Nx, and unknown or ambiguous values were 
excluded. Factors with a p-value<0.05 in univariate analysis were 
inputted in multivariate Cox regression, after which factors with a p- 
value<0.05 and a hazard ratio [HR] >1 were considered independent 
prognostic factors.

Tumor microenvironment and tumor-infiltrating immune cells

The ESTIMATE algorithm (version 4.1.0) [25] of R was used to 
determine the proportion of immune-stromal components in the tumor 
microenvironment (TME) of the normal and tumor groups. The results 
are presented as the immune, stromal, and ESTIMATE scores. CIBER-
SORT, an algorithm reported by Newman et al. [26], was used to 
quantify the 22 infiltrating immune cells based on normalized gene 
expression profiles, which was verified by fluorescence-activated cell 
sorting. The 22 different immune cells included memory B cells, naive B 
cells, plasma cells, resting/activated natural killer (NK) cells, and seven 
different T cell types (CD8+ T cells, regulatory T cells [Tregs], rest-
ing/activated memory CD4+T cells, follicular helper T cells, naïve 
CD4+ T cells, and gamma delta T cells) [27]. Each sample was given a 
proportion of immune cells equal to the sum of all estimated values. 
Based on ccRCC gene expression data, the CIBERSORT algorithm was 
used to determine the relative proportions of these immune cells in the 
TME.

Prediction of the effect of immunotherapy and chemotherapy

The ‘ggstatsplot’ package was used to investigate the relationship 
between gene expression and efficacy of common immune checkpoint 
inhibitors. Based on the TCGA-KIRC dataset, the half-maximal inhibitory 
concentration values of common chemotherapeutics were calculated 
using the ‘pRRophetic’ package [28] to determine the sensitivity of the 
target genes to chemotherapy.

Tissue microarray analysis

ccRCC tissue microarrays were purchased from Guilin Fanpu 
Biotechnology Co., Ltd. (Guilin, China) and included 46 ccRCC samples 
from patients and 46 adjacent normal tissues as controls. METTL1 
antibody was purchased from Invitrogen Inc. (1:1000; PA5-80810; UK). 
The secondary antibody used was a biotinylated goat anti-rabbit IgG 
antibody (Abcam, UK). To assess the expression level of METTL1, the 
histochemistry score (H-score) was calculated using the following for-
mula: H-score = summation (i × pi), where i is the intensity score and 
pi is the percentage of cells with that intensity. Intensity scores were 

categorized as 0 (absent), 1 (weak), 2 (moderate), or 3 (strong).

Statistical analysis

t-test or one-way analysis of variance was used to analyze continuous 
variables, and chi-square test or Fisher’s exact test was used for cate-
gorical variables. Gene signatures were evaluated using univariate and 
multivariate Cox regression analyses. Statistical analyses were per-
formed using R software (version 4.1.0). Statistical significance for all 
analyses was set at P<0.05.

Results

Differentially expressed and prognostic-related genes in ccRCC

Among the 34 m7G regulator genes, 26 were significantly differen-
tially expressed (P<0.05). Compared with those in the normal controls, 
12 genes, namely METTL1, WDR4, NSUN2, DCP2, NUDT1, AGO2, 
GEMIN5, LARP1, NCBP3, EIF3D, EIF4A1, and IFIT5, were significantly 
upregulated. whereas 14 genes, namely DCPS, NUDT10, NUDT11, 
NUDT16, NUDT16L1, NUDT3, NUDT4, NUDT4B, NUDT7, CYFIP2, 
EIF4E, EIF4E1B, NCBP1, and LSM1, were significantly downregulated in 
patients with ccRCC (Fig. 1A).

Consensus clustering of m7G regulators identified two subgroups of ccRCC 
with different clinicopathological characteristics and prognosis

The optimal value of k was determined to be 3 according to the CDF 
curve (Fig. S1). Although k = 3 was initially determined optimal, we 
chose k = 2 for further analysis due to the large overlap between groups 
and the small sample size in one group when using k = 3. This decision 
prioritized robust clustering with adequate sample sizes in each group. 
Based on the consistent clustering analysis of m7G regulators in ccRCC, 
two subgroups were identified (Fig. 1B). Kaplan-Meier survival analysis 
indicated that cluster 1 had a significantly poorer outcome than cluster 2 
(P<0.001; Fig. 1C). Furthermore, the distribution of clinicopathological 
characteristics in clusters 1 and 2 is illustrated using a heatmap. Inte-
gration of the clustering data with clinical characteristics revealed that 
both M stage and survival status were significantly associated with the 
clustering (Fig. 1D). Based on these results, these clusters of lesions are 
closely associated with ccRCC.

Construction and verification of a LASSO prognostic risk model

Cox regression analysis and establishment of prognostic signatures
Univariate Cox regression analysis indicated that eight genes were 

significantly associated with poor prognosis in ccRCC: METTL1(HR =
1.107; 95 % confidence interval [CI] = 1.060–1.157), WDR4 (HR =
1.173, 95 % CI = 1.046–1.316), NSUN2 (HR = 1.080; 95 % CI =
1.028–1.135), NUDT11 (HR = 1.362; 95 % CI = 1.248–1.487), NUDT5 
(HR = 1.077; 95 % CI = 1.043–1.113), NCBP2 (HR = 1.055; 95 % CI =
1.011–1.099), EIF4A1 (HR = 1.135; 95 % CI = 1.062–1.213), and LSM1 
(HR = 1.091; 95 % CI = 1.022–1.166). Meanwhile, 11 genes were 
negatively associated with ccRCC progression: NUDT16 (HR = 0.949; 95 
% CI = 0.907–0.993), NUDT3 (HR = 0.780; 95 % CI = 0.633–0.962), 
NUDT4 (HR = 0.870; 95 % CI = 0.789–0.959), NUDT7 (HR = 0.646; 95 
% CI = 0.527–0.791), CYFIP1 (HR = 0.920; 95 % CI = 0.886–0.955), 
CYFIP2 (HR = 0.943; 95 % CI = 0.924–0.963), EIF4E (HR = 0.674; 95 % 

Fig. 1. Consensus clustering of m7G regulators. (A) Heatmap of the expression of 34 m7G RNA methylation regulators in ccRCC tissues compared. Red indicates 
upregulation, while green indicates downregulation. Notably, 12 genes, including METTL1 and WDR4, were significantly upregulated, while 14 genes, such as DCPS 
and NUDT10, were significantly downregulated (P < 0.05).(B) The ccRCC patients were divided into two clusters for k = 2. (C) Kaplan-Meier curves of overall 
survival of ccRCC patients reveals that patients in cluster 1 had significantly poorer overall survival compared to those in cluster 2 (P < 0.001).(D) The heatmap 
illustrates the associations between clinicopathological characteristics and the expression of each m7G RNA methylation regulator in the two clusters. The M stage 
and survival status showed significant associations with the clustering, suggesting that these m7G regulators may play a role in ccRCC progression and patient 
outcomes.*P < 0.05, **P < 0.01, and ***P < 0.001.
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CI = 0.498–0.911), EIF4E3 (HR = 0.775; 95 % CI = 0.700–0.858), 
GEMIN5 (HR = 0.862; 95 % CI = 0.791–0.938), LARP1 (HR = 0.981; 95 
% CI = 0.964–0.998), and IFIT5 (HR = 0.910; 95 % CI = 0.867–0.956) 
(Fig. 2A). Prognosis-related genes were selected using LASSO Cox 
regression analysis (Fig. 2B-C). Eight genes, METTL1, CYFIP2, NUDT11, 
NUDT7, NCBP2, EIF4E3, NSUN2, and EIF4A1, were determined to be 
predictor variables with nonzero coefficients in the LASSO regression 
model (Fig. 2D).

Validation of the diagnostic and prognostic signature for ccRCC patients
To construct a prognostic model of ccRCC, patients were randomly 

divided into training and test sets (1:1 ratio). The Kaplan-Meier curves 
indicated that the overall survival rate of the high-risk group was 
significantly lower than that of the low-risk group (P<0.001; Fig. 3A-B). 

Moreover, the time-ROC curves and area under the curve (AUC) values 
for the prognostic signature showed significant prognostic value for 
KIRC patients in the training set (1-year AUC = 0.748, 3-year AUC =
0.742, 5-year AUC = 0.776; risk AUC = 0.766, age AUC = 0.594, grade 
AUC = 0.626, stage AUC = 0.685; Fig. 3C-D) and test set (1-year AUC =
0.722, 3-year AUC = 0.672, 5-year AUC = 0.693; risk AUC = 0.693, age 
AUC = 0.607, grade AUC = 0.710, stage AUC = 0.754; Fig. 3E-F). 
Additionally, the scatter and risk score distribution plots demonstrated a 
correlation between survival status and risk scores in the training 
(Fig. S2A-B) and test sets (Fig. S2D-E). The heat maps also indicated 
consistent expression of the eight m7G prognosis-related genes in both 
datasets (Fig. S2C, S2F).

Factors such as age, sex, stage status, grade, TNM classification, 
subgrouping, and immune score were integrated into the prognostic 

Fig. 2. Identification of m7G RNA methylation regulators associated with prognosis in ccRCC. A) Univariate Cox regression results showing the hazard ratios and 95 
% confidence intervals for each m7G RNA methylation regulator. Eight genes, including METTL1 and WDR4, were significantly associated with poor prognosis (HR >
1, P < 0.05), while 11 genes, such as NUDT16 and NUDT3, were negatively associated with ccRCC progression (HR < 1, P < 0.05). (B-C) The least absolute shrinkage 
and selection operator (LASSO) regression was used to select the most prognostic-related genes. (D) The coefficients of selected RNAs identified eight genes (METTL1, 
CYFIP2, NUDT11, NUDT7, NCBP2, EIF4E3, NSUN2, and EIF4A1) as key predictors in the prognostic model.
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Fig. 3. Evaluates the prognostic risk model for overall survival in ccRCC patients. (A-B) The Kaplan-Meier curves of overall survival for patients in high- and low-risk 
groups in the training and test sets, respectively. In both sets, patients in the high-risk group demonstrated significantly poorer overall survival (P < 0.001). (C, E) 
Receiver operating characteristic (ROC) curves and their AUC value for 1, 3, and 5year survival predictions in the training and test sets. The model showed good 
predictive performance, with AUC values ranging from 0.672 to 0.776 across different timepoints and datasets. (D, F) The ROC curves for prognostic risk score 
against other clinicopathologic characteristics in the training and test sets. The risk score showed higher AUC values (0.766 in the training set and 0.693 in the test 
set) compared to age, grade, and stage, indicating its superior predictive power for patient outcomes.

Y. Liu et al.                                                                                                                                                                                                                                      Translational Oncology 51 (2025) 102202 

6 



Fig. 4. Assesses the prognostic value of the m7G-related RNAs prognostic risk signature in ccRCC patients. (A) The heatmap showing associations between the 
expression of the eight m7G-related RNAs in the high- and low-risk groups, clinicopathological features, immune score, and clusters. This visualization reveals 
distinct expression patterns between the risk groups and their correlation with clinical characteristics. (B) Univariate and (C) multivariate Cox analyses of the risk 
score model with clinicopathological features (including age, gender, grade, and stage) in the training set. Similarly, (D) Univariate and (E) multivariate Cox analyses 
show these analyses in the test set. In both sets, the risk score remained an independent prognostic factor after adjusting for other clinical variables, underscoring its 
robust predictive power.
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models. These models revealed significant correlations between the 
high-/low-risk groups and variables such as M status, T status, stage, 
grade, and cluster (Fig. 4A). Whether the risk scores and various clini-
copathological characteristics were independent prognostic indicators 
was determined using univariate and multivariate Cox regression ana-
lyses. The results showed that overall survival was positively correlated 
with the risk score, age, and staging status (P<0.05; Fig. 4B-E).

Moreover, we used stratified analysis to evaluate the prognostic 
value of the m7G risk genes based on age (>65 years vs. ≤65 years), 
gender (women vs. men), grade (G1–2 vs. G3–4), M stage (M0 vs. M1), T 
stage (T1-2 vs. T3-4), and TNM stages (stage I-II vs. stage III-IV). Kaplan- 
Meier survival analysis revealed that age, stage, and risk score were 
significantly correlated with overall survival (P<0.05; Fig. 5A–J). Uni-
variate and multivariate Cox regression analyses indicated that this risk 
signature was an independent prognostic indicator. These results indi-
cate that the m7G risk score for ccRCC may serve as an independent 
marker of ccRCC progression.

METTL1 predicts the ccRCC progression
METTL1, a key prognostic-related gene, was significantly upregu-

lated in patients with ccRCC (P = 0.001; Fig. 6A). A comprehensive 
evaluation of the m7G-related METTL1 RNA prognostic signature was 
conducted to confirm its predictive power for overall survival and 
progression-free survival (PFS). Notably, a strong association was 
observed between METTL1 expression and survival outcomes (Fig. 6B) 
and PFS (Fig. 6C); patients with elevated METTL1 expression had 
significantly poorer outcomes. Time-dependent ROC curves and AUC 
values further substantiated the high prognostic significance of METTL1 
expression in the prognostic signature (1-year AUC = 0.626, 3-year AUC 
= 0.633, and 5-year AUC = 0.623; Fig. 6D).

The association between METTL1 expression and ccRCC progression 
was confirmed using tissue microarrays. The clinical characteristics of 
the patients are presented in Table 1. Immunohistochemistry revealed 
elevated METTL1 levels in patients with ccRCC (Fig. 6E-F), with an AUC 
of 0.823 (Fig. 6G). Survival probability assessments suggested that 
higher METTL1 expression was associated with poorer prognosis 
(Fig. 6H).

Correlation of METTL1 expression with prognostic factors in ccRCC

We analyzed the differences in METTL1 expression in relation to 
patient clinical characteristics, such as age, sex, TNM stage, and tumor 
grade. Our heatmap demonstrated significant associations between 
METTL1 expression levels and factors such as age, stage, and grade 
(Fig. 7A). Further exploration of the relationship of METTL1 expression 
with clinical features, including age (>65 vs. ≤65 years), gender 
(women vs. men), grade (G1-G4), and TNM stage (I-IV), as well as T (T1- 
T4), M (M0 vs M1), and N (N0 vs N1) stages, revealed notable disparities 
(Fig. 7B-H). Univariate Cox regression analysis and a clinical correlation 
heatmap indicated that age, stage, and tumor grade were correlated with 
METTL1 expression, confirming their status as independent prognostic 
factors (Fig. 7I).

METTL1’s role in immune cell dynamics and checkpoint expression

To investigate the relationship of METTL1 with immune cell infil-
tration, we analyzed differences in the proportion of immune cells using 
the CIBERSORT algorithm. Fig. 8A-B show the percentages of the 22 

immune cell types per sample. Our findings revealed significant varia-
tions in 10 tumor-infiltrating immune cells, namely naïve B cells, CD8+
T cells, resting and activated CD4+ memory T cells, follicular helper T 
cells, Tregs, monocytes, M0 macrophages, resting dendritic cells, and 
resting mast cells (Fig. 8C). Moreover, METTL1 expression correlated 
positively with Tregs, M0 macrophages, and follicular helper T cells, and 
negatively with follicular helper T cells and resting dendritic cells 
(Fig. 8D), with Tregs showing the strongest positive correlation (R =
0.29; P<0.001).

Moreover, we assessed the roles of stromal and immune cells within 
the immune microenvironment, focusing on the influence of METTL1 on 
the TME characterization in ccRCC. The analysis indicated a higher 
stromal score in the low METTL1 expression group, with no significant 
variance in the immune scores (Fig. 8E). METTL1 expression positively 
correlated with the expression of TMIGD2, TNFSF9, TNFRSF18, and 
CD70 and inversely correlated with that of other markers (Fig. 8F), 
which reinforces its effect on the immune environment of ccRCC.

We also explored the correlation between METTL1 expression and 
drug sensitivity. Elevated METTL1 levels were significantly linked to 
increased sensitivity to several drugs (P<0.05), including vinorelbine, 
mitomycin C, doxorubicin, etoposide, salubrinal, and pyrimethamine 
(Fig. S3), indicating its potential as a predictive biomarker of treatment 
efficacy.

Discussion

ccRCC is one of the most lethal cancers of the genitourinary tract and 
is diagnosed in 70–80 % of patients with RCC [29]. Studies have re-
ported a 2 % annual increase in the incidence of RCC worldwide over the 
past two decades, amounting to an average of 295,000 newly diagnosed 
cases of RCC and 134,000 RCC-related deaths each year [7]. Recent 
reports have indicated the emergence of new favorable subsets of can-
cers of undefined origin (CUP), including RCC-CUP, which are treated as 
RCC and thus contribute to its increasing incidence [30]. Additionally, 
several imaging technologies, such as 99mTc-sestamibi single photon 
emission computed tomography/computed tomography (SPECT/CT) 
and Girentuximab positron emission tomography computed tomogra-
phy (PET-CT) molecular imaging, are able to accurately identify RCC 
with smaller diameters, thereby helping guide treatment decisions, 
reducing unnecessary surgical risks and minimizing complications [31]. 
Building upon these advances in imaging technology, future studies 
could explore the potential of using PET-CT to detect METTL1 expres-
sion levels in ccRCC patients. This novel approach could potentially 
combine the spatial resolution of PET-CT with the prognostic value of 
METTL1 expression, offering a non-invasive method to assess ccRCC 
progression and prognosis. Such an integrated approach could provide 
clinicians with more comprehensive information for treatment planning 
and monitoring, potentially improving patient outcomes.

Currently, effective prognostic markers for ccRCC are lacking, owing 
to its highly heterogeneous nature and complicated disease processes. 
Thus, identification of novel biomarkers is urgently needed to predict 
the long-term survival of patients with the disease. Additionally, the 
bilayer membrane structure of exosomes makes them highly resistant to 
enclosed RNases and proteases, which enhances the stability of the 
encapsulated mRNAs, miRNAs, and functional proteins, making exo-
somes effective diagnostic markers. Furthermore, the cargo in tumor- 
derived exosomes, which contain miRNAs, may serve as biomarkers of 
ccRCC in the serum and urine of patients, providing valuable targets for 

Fig. 5. Survival outcomes of high- and low-risk score subgroups among ccRCC patients, stratified by various clinicopathological features and METTL1 expression in 
ccRCC tissues. (A, B) Kaplan-Meier survival curves for patients stratified by age (>60 years vs. ≤60 years), demonstrating that the risk score maintains its prognostic 
value across age groups. (C, D) The survival differences between risk groups when stratified by gender. (E, F) The survival curves stratified by M stage. (G, H) The 
survival curves stratified by T stage. (I, J) The survival outcomes for TNM stages (stage I–II vs. stage III–IV). Across all these clinicopathological subgroups, patients in 
the high-risk group consistently showed poorer survival outcomes compared to those in the low-risk group, highlighting the robustness of the risk score as a 
prognostic indicator.
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early detection and monitoring [32].
Recent studies have shown that RNA methylation is associated with 

the development of various cancer types. In a recent study, m6A has 
been shown to be one of the most prevalent types of mRNA modification 
and has been extensively studied in glioblastoma, colorectal cancer, 
pancreatic cancer, hepatocellular carcinoma, acute lymphoblastic leu-
kemia, and other malignancies [33]. In contrast, m7G methylation 
modifications have rarely been studied. However, this modification is 
critical for controlling tumorigenesis, proliferation, metastasis, and 
tumor-associated immunity. To date, no comprehensive study has 
investigated the effect of m7G on ccRCC. In this study, differential 
analysis revealed significant differences in the expression levels of m7G 
RNA methylation regulators between normal and renal clear cell carci-
noma tissues, suggesting that m7G RNA methylation-modified genes, 
such as METTL1, CYFIP2, NUDT11, NUDT7, NCBP2, EIF4E3, NSUN2, 
and EIF4A1, may play important roles in the development of ccRCC. 
Furthermore, the association between risk scores and patient charac-
teristics indicated that gene-related regulation was involved in ccRCC 
differentiation and progression.

Studies have shown that METTL1 plays a critical role in m7G 
modification [34]. METTL1 has been shown to function in the 
self-renewal and differentiation of embryonic stem cells [35]; however, 
its role in cancer remains unclear. Several recent studies have found that 
tRNA m7G methyltransferase METTL1 is overexpressed in cancers and is 
associated with poor patient outcomes and resistance to chemotherapy, 
implying the potential role of METTL1 in cancer biology. Furthermore, 

METTL1 overexpression was found to be associated with poor prognosis 
and resistance to chemotherapy [36]. However, molecular insights into 
the role of METTL1 in ccRCC are limited. In the present study, differ-
ential analysis demonstrated that METTL1 expression in ccRCC tissues 
was significantly higher than that in normal tissues, which was validated 
using HPA. Furthermore, survival analysis showed that patients with 
high METTL1 expression had a shorter survival time and poor prognosis 
and that METTL1 was strongly associated with clinical characteristics. 
METTL1 overexpression has been reported to be associated with a poor 
prognosis in cancers such as liver cancer, intrahepatic chol-
angiocarcinoma (ICC), lung cancer, and colon cancer [37,38]. Collec-
tively, these data demonstrate the potential prognostic value of METTL1 
in patients with ccRCC.

Many studies have investigated the mechanism of action of METTL1 
in tumors. A study reported that METTL1 promoted esophageal squa-
mous cell carcinoma (ESCC) tumorigenesis via the RPTOR/ULK1/ 
autophagy axis and that it may serve as a therapeutic target for ESCC 
[11]. METTL1 was found to contribute to head and neck squamous cell 
carcinoma progression through the PI3K/AKT/mTOR signaling pathway 
[35]. A recent study has shown that METTL1 overexpression promoted 
the proliferation and migration of hepatocellular carcinoma cells by 
activating the phosphatase and tensin homolog deleted on chromosome 
ten signaling pathway [39]. In the present study, the GSEA results 
showed significant enrichment of genes associated with oxidative 
phosphorylation and ribosomes in the high METTL1 expression popu-
lation, suggesting that METTL1 promotes ccRCC cell proliferation, 
migration, and invasion through the regulation of oxidative phosphor-
ylation and ribosome pathways. Rapidly dividing cells such as cancer 
cells must maintain optimal protein levels, and ribosomes, which are 
molecular machines that synthesize proteins, are at central to this 
regulation. Recent studies have established that METTL1/WDR4 play an 
important role in ribosome biogenesis and mRNA translation by intro-
ducing m7G modifications into rRNA and tRNA [40]. As a major 
component of the protein synthesis factory, tRNAs are more complex 
than mRNA, and their modifications can affect tRNA stability, mRNA 
translation, and rates of protein synthesis [41]. These studies demon-
strate that abnormal tRNA expression levels and METTL1-mediated 
modifications of m7G tRNA could lead to cancer progression by inter-
fering with translation and protein synthesis. Furthermore, sufficient 
evidence indicates that METTL1 can increase VEGFA mRNA translation 
by upregulating its m7G and that METTL1 can stimulate angiogenesis to 
accelerate cancer cell proliferation and migration in a 
VEGFA-dependent manner [42]. However, the physiological functions 
and molecular mechanisms underlying METTL1-mediated m7G tRNA 
modifications in ccRCC remain unclear. Hence, our study provides new 
insights into m7G tRNA modifications in ccRCC. Thus, drugs targeting 
METTL1 can achieve therapeutic effects by inhibiting ribosomal protein 
synthesis and selective translation of cancer-promoting mRNA to slow 
down or passivate the growth and proliferation of tumor cells.

Several studies have indicated that ccRCC is an immunogenic ma-
lignancy and that numerous immune cells, such as CD8+ T cells, CD4+ T 
cells, macrophages, natural killer cells, and myeloid-derived suppressor 
cells, infiltrate its TME [43]. Nonetheless, tyrosine kinase inhibitor (TKI) 
monotherapy remains the appropriate first-line treatment for a signifi-
cant proportion of the patients who do not respond to immunotherapy. 
The STAR study showed no clinically significant reduction in life ex-
pectancy and treatment breaks between the drug-free interval strategy 

Fig. 6. The prognostic value of METTL1 in ccRCC patients. A) METTL1 expression in ccRCC (n = 537) compared to normal tissues (n = 72) in the TCGA dataset, 
revealing significantly higher expression in tumor tissues (P = 0.001). (B-C) The Kaplan-Meier curves illustrating overall survival and progression-free survival 
among high-risk and low-risk groups, stratified by METTL1 expression. Patients with high METTL1 expression consistently showed poorer survival outcomes. (D) The 
receiver operating characteristic (ROC) curves with corresponding AUC value for 1-, 3-, and 5-year survival predictions based on METTL1 expression in the TCGA 
dataset. The AUC values (0.626, 0.633, and 0.623 for 1-, 3-, and 5-year predictions, respectively) indicate moderate predictive performance. (E-F) The immuno-
histochemistry results of METTL1 in ccRCC compared to normal tissues and its expression in ccRCC tissue microarrays. (F) The ROC curve for METTL1 expression in 
ccRCC tissue microarrays, corresponding AUC value 0.823, suggesting strong diagnostic potential for METTL1. (H) The survival probability assessments of METTL1 
expression in ccRCC tissue microarrays further confirming its prognostic value.

Table 1 
Clinical and pathological characteristics of 46 paired ccRCC tumor tissues and 
adjacent normal tissues.

Tumor (n=46) Normal (n=46)

Age  
<60 25 25
≥60 21 21
Gender  
Female 13 13
Male 33 33
Tumor size  
<5cm 10 /
≥5cm 36 /
T stage  
T1 17 /
T2 21 /
T3 8 /
N stage  
N0 42 /
N1 2 /
N2 2 /
M stage  
M0 38 /
M1 8 /
Dead  
No 29 /
Yes 17 /
tumour recurrence  
No 38 /
Yes 8 /
Survival time(day) 2208.00(1302.00,2697.00) /
AFP(ng/mL) 54.30(12.30,210.00) /
CEA(ng/mL) 3.70(1.90,32.10) /
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Fig. 7. Comprehensive analysis of METTL1 expression and its prognostic value in ccRCC A) The heatmap illustrating the associations between METTL1 expression 
levels and key clinicopathological characteristics. This visualization reveals distinct patterns of METTL1 expression across different patient subgroups, highlighting 
its potential role in ccRCC progression. (B-H) The box plots that depict the METTL1 expression in specific clinicopathological features. I) The univariate Cox 
regression analyses, displaying hazard ratios with 95 % confidence intervals for METTL1 expression and various clinicopathological features. This forest plot il-
lustrates that elevated METTL1 expression, along with other factors such as advanced age, higher grade, and later stage, are associated with poorer prognosis in 
ccRCC patients
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and conventional continuation strategy groups, indicating that it may be 
an affordable and cost-effective treatment option with lifestyle benefits 
for patients with RCC during tyrosine kinase inhibitor therapy [44]. 
Some patients may not receive TKI as first-line treatment but may do so 
as monotherapy as second-line treatment. However, while treatment 
breaks in these patients are reasonable, caution should be exercised 
because these patients are more likely to have shorter progression-free 
survival than those receiving first-line TKIs. CD8+ T cell infiltration 
and CD4+ T cell hyperproliferation are associated with cancer severity 
and shortened survival in ccRCC. High CD8+ T cell proliferation rates 
are also associated with prolonged survival in patients with ccRCC, 
suggesting that the functional status of immune cells significantly affects 
the activity of antitumor immune cells. Failure of tumor-infiltrating 
lymphocytes to perform antitumor functions could be explained by the 
large infiltration of immunosuppressive cells such as Treg cells [45].

This study also aimed to explore the association between METTL1 
expression and immune cell infiltration. Tregs were positively correlated 
with METTL1 expression. Therefore, we hypothesized that METTL1 
promotes Treg infiltration. Studies have shown that Tregs actively 
participate in the inhibition of abnormal immune responses to auto-
antigens and play a leading role in impairing antitumor responses and 
promoting tumorigenesis [46]. The high infiltration rate of Tregs in the 
TME is associated with poor patient prognosis in various malignant tu-
mors, such as non-small cell lung cancer, ovarian cancer, glioblastoma 
multiforme, and pancreatic ductal adenocarcinoma [47–50]. Tregs can 
mediate immunosuppression by secreting immunosuppressive cytokines 
and expressing cell surface inhibitory receptors to inhibit 
antigen-presenting cell maturation, deplete IL-2, and regulate effector T 
cell function, among others [51]. Therefore, METTL1 overexpression 
may promote immune escape in ccRCC. Subsequently, we conducted 
immune checkpoint studies, which demonstrated that METTL1 expres-
sion positively correlated with the expression of TMIGD2, TNFSF9, 
TNFSF9, TNFRSF18, and CD70, suggesting that immune checkpoint 
inhibitors along with inhibition of METTL1 expression in ccRCC patients 
may improve better therapeutic outcomes. Nonetheless, numerous 
studies demonstrated that genes in the PI3K-Akt pathway, often dysre-
gulated in ccRCC, are linked to patient prognosis and may serve as po-
tential therapeutic targets [52,53]. Their findings regarding IL2RG, 
EFNA3, and MTCP1 as prognostic markers highlight the complex 
interplay between signaling pathways, immune responses, and clinical 
outcomes in ccRCC [54]. These results confirm that dysfunction in the 
immune microenvironment is crucial for ccRCC progression and could 
serve as a potential target for immunotherapy.

Our results suggest that patients with elevated METTL1 expression 
have significantly worse outcomes and higher clinical and pathological 
stages. Patients with low METTL1 expression tended to be in the early 
stages of the tumor, which could help in early ccRCC prediction. Im-
mune cell infiltration analysis showed that METTL1 expression was 
associated with the infiltration of multiple immune cells. This suggests 
that METTL1 is involved in regulating the expression and function of 
many immune cells, thereby affecting tumor progression. Thus, target-
ing METTL1 may improve the immune microenvironment of ccRCC, 
thereby improving tumor treatment efficacy. Drug sensitivity analysis 
suggested that METTL1 could be used as a biomarker to predict the ef-
ficacy of vinorelbine, mitomycin C, doxorubicin, etoposide, salubrinal, 

and pyrimethamine in ccRCC. This could assist clinicians in evaluating 
reasonable medication options.

Nonetheless, this study has several limitations. First, our analysis was 
based on retrospective data from TCGA database, which may introduce 
potential biases. Although our tissue microarray validation provided 
important biological confirmation, future studies should validate these 
findings in larger prospective cohorts to ensure generalizability and 
clinical applicability. Moreover, the potential mechanisms by which 
METTL1 contributes to ccRCC development have not been fully eluci-
dated. Based on previous studies, several hypotheses of METTL1 bio-
logical function that may be related to ccRCC progression have been 
posited. METTL1-catalyzed m7G modification can stabilize certain 
mRNAs and enhance their translation efficiency, possibly leading to the 
upregulation of oncogenes and cell cycle regulators that drive prolifer-
ation and invasion. Additionally, METTL1 promotes ribosome biogen-
esis and global protein synthesis, which may be particularly important 
for the rapid growth of cancer cells. Furthermore, the study found that 
METTL1 expression positively correlated with the infiltration of 
immunosuppressive Tregs into the ccRCC TME. This suggests that 
METTL1 facilitates immune evasion, allowing tumor cells to evade 
antitumor immune responses. Therefore, future studies should use in 
vitro and in vivo models to investigate the effects of METTL1-mediated 
m7G modifications on specific oncogenic pathways in ccRCC.

Conclusions

Our study provides novel insights into the role of m7G RNA 
methylation regulators, particularly METTL1, in ccRCC. We systemati-
cally revealed the expression patterns, potential functions, and prog-
nostic values of these regulators, with a specific focus on the critical role 
of METTL1 in shaping the tumor immune microenvironment.

Notably, this study is the first to demonstrate that METTL1 expres-
sion was highly correlated with the clinicopathological features of 
ccRCC and could serve as an independent prognostic indicator. Our 
findings suggest that METTL1 with CYFIP2, NUDT11, NUDT7, NCBP2, 
EIF4E3, NSUN2, and EIF4A1 may function as potential biomarkers for 
ccRCC diagnosis, prognosis, and treatment response prediction.

Furthermore, our analysis of the association between METTL1 and 
infiltration of immune cells, especially Tregs, provides new perspectives 
on how m7G methylation influences tumor immunity in ccRCC. This 
opens up possibilities for the development of novel immunotherapeutic 
strategies targeting the METTL1-mediated m7G pathway.

Our study not only advances our understanding of m7G-related gene 
pathogenesis in ccRCC, but also provides a foundation for developing 
novel diagnostic, prognostic, and therapeutic approaches targeting this 
pathway. Our findings may ultimately contribute to improving the 
outcomes of patients with ccRCC through personalized treatment 
strategies.
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Fig. 8. METTL1 expression and its relationship with tumor-infiltrating immune cells and the tumor microenvironment in ccRCC. (A) The stacked bar chart showing 
the relative proportions of 22 different tumor-infiltrating immune cell (TIC) types across individual ccRCC samples. This visualization provides an overview of the 
immune cell composition within the tumor microenvironment, highlighting the heterogeneity among patients. (B) The correlation heatmap among the 22 TIC types. 
The color intensity and size of the circles indicate the strength and direction of correlations between different immune cell populations, offering insights into po-
tential interactions within the tumor immune microenvironment (C) The box plots comparing the infiltration levels of the 22 immune cell types between high and 
low METTL1 expression groups. These plots reveal significant differences in immune cell compositions based on METTL1 expression levels. (D) The correlation 
between METTL1 expression and the infiltration levels of various immune cell types. (E) The violin plots comparing tumor microenvironment (TME) scores between 
high and low METTL1 expression groups. The plots depict differences in stromal scores, immune scores, and overall ESTIMATE scores, providing insights into how 
METTL1 expression might influence the composition of the tumor microenvironment. (F) The correlation heatmap between METTL1 expression and various immune 
checkpoint molecules. This visualization helps identify potential relationships between METTL1 and key regulators of the immune response in ccRCC.
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