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60-781 Poznań, Poland; mikolajmizera@gmail.com

2 Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA;
murik@email.unc.edu (E.N.M.); alvesv@email.unc.edu (V.M.A.)

3 Department of Pharmaceutical Sciences, Federal University of Paraíba, Joao Pessoa 58059, PB, Brazil
* Correspondence: alex_tropsha@unc.edu (A.T.); jpiontek@ump.edu.pl (J.C.-P.)

Received: 5 May 2020; Accepted: 14 June 2020; Published: 16 June 2020
����������
�������

Abstract: The poor aqueous solubility of active pharmaceutical ingredients (APIs) places a limit on
their therapeutic potential. Cyclodextrins (CDs) have been shown to improve the solubility of APIs,
but the magnitude of the improvement depends on the structure of both the CDs and APIs. We have
developed quantitative structure–property relationship (QSPR) models that predict the stability of
the complexes formed by a popular poorly soluble antibiotic, cefuroxime axetil (CA) and different
CDs. We applied this model to five CA–CD systems not included in the modeling set. Two out of
three systems predicted to have poor stability and poor CA solubility, and both CA–CD systems
predicted to have high stability and high CA solubility were confirmed experimentally. One of
the CDs that significantly improved CA solubility, methyl-βCD, is described here for the first time,
and we propose this CD as a novel promising excipient. Computational approaches and models
developed and validated in this study could help accelerate the development of multifunctional
CDs-based formulations.
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1. Introduction

Poor solubility of active pharmaceutical substances (API) places a significant limitation on
their clinical use. This issue affects nearly 40% of currently marketed APIs, resulting in their low
bioavailability and the necessity of increased API doses. Unfortunately, this issue is persistent: it has
been estimated that 90% of APIs currently under development are poorly soluble [1,2]. APIs with
low solubility belong to groups II and IV in the Biopharmaceutics Classification System (BCS). BCS II
substances are poorly soluble and have high permeability, whereas group IV substances are poorly
soluble and have low permeability. Optimizing pharmaceutical formulations toward greater solubility
may substantially improve their bioavailability.

The use of solubilizers as excipients allows for a compromise between increasing the concentration
of APIs at the site of release and maintaining the lipophilic nature of the APIs that facilitates their
permeability [3]. Among many strategies for combating poor solubility, the use of solubilizing
excipients such as cyclodextrins (CDs) is one of the most popular ones. CDs are macrocyclic polymers
that can encapsulate API molecules within the lipophilic cavity or adhere to API at the hydrophilic
surface. CDs have been successfully used as solubilizers for many sparingly soluble APIs [4–6].
Multiple examples have demonstrated the plausible effect of CDs on the chemical stability of APIs [7],
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including the pronounced stabilizing effect on β-lactam antibiotics in an acidic environment [8].
The stabilizing effect of CDs on the crystal structure [9] is crucial for preserving the required dissolution
rate throughout the shelf period of drugs, such as cefuroxime axetil (CA) [10]. The separation of
diastereomers, affecting the bioactivity of CA, may be achieved by the application of CDs [11]. CDs as
multifunctional excipients may be also used for taste masking [12–14], which is especially important to
improve the comfort of patients taking bitter drugs such as β-lactam antibiotics.

The vast number of experimental studies on CDs as multifunctional excipients has contributed to
the availability of large data sets with known thermodynamic properties of API-CD systems, including
synthetic CDs approved by FDA/EMA for use in pharmaceutical development or as food additives.
Indeed, many poorly soluble APIs have entered the pharmaceutical market as a result of using CDs
for drug formulations [15]. Many observations indicating that the solubilizing effect of CDs on APIs
depends on the structures of both components have made the API–CD systems a good target for
quantitative structure–property relationship (QSPR) modeling. If successful, such models could be
very useful in the rational design of effective formulations.

The interaction of APIs with CDs can be characterized by the stability constant Ks [7], which is
related to change of API solubility ∆S according to the formula:

∆S =
KsS0

1 + KsS0
[CD]

where:

S0—intrinsic solubility of API,
Ks—stability constant of API-CD system,

[CD]—CD concentration.

Machine learning-based QSPR models have shown good performance in predicting Ks.
For instance, Jeschke et al. [16] developed a model for Ks prediction of βCD systems. Their model
employed data on consistently measured ∆G of formation for βCD systems, and the random forest
method achieving the external validation R2 = 0.66. Zhao et al. [17] compared gradient boosting and
deep neural network models for predicting ∆G of complex formation. Gradient boosting showed
good predictive performance indicated by consistent in-sample and out-of-sample scores R2 = 0.86,
while DNN resulted in a model with R2 = 0.76 and R2 = 0.62 for in-sample and out-of-sample
predictions, respectively. A computer-aided study resulting in the synthesis of a novel polymer drug
carrier system was performed by Alves et al. [18]. The model used descriptors of both API and
polymer to streamline the selection of the most promising carrier system for poorly soluble APIs.
The predictions were experimentally validated and led to the discovery of a new solubility enhancing
carrier system.

Herein, we have investigated the use of optimal CD to improve the solubility and bioavailability
of CA, a sparingly soluble β-lactam analog. Although the increased solubility of CA in an amorphous
form was shown [19], some limitations related to recrystallization during shelf time apply. The possible
application of CDs to stabilize the amorphous state of solid CA may be beneficial for achieving higher
stability and better solubility [20]. Furthermore, improved compliance may be achieved by masking
the extremely bitter taste of CA [21].

In the previous studies, we investigated the benefits of combining CA with CD in the solid phase
in terms of improving CA’s solubility and antimicrobial activity [22]. Herein, we have carried out
the QSPR modeling of Ks. The main objective of this study was computer-assisted identification of
stable CA–CD systems with increased solubility of CA. To achieve this goal, we executed the following
specific studies: (i) collection, curation and integration of publicly available data on the stability of CD
complexes with small molecules; (ii) development of novel descriptors of API–CD systems; (iii) QSPR
model development and validation, (iv) prediction of ln(Ks) for novel CA–CDs complexes for CDs in
our in-house collection and (v) experimental validation of computational predictions.
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2. Materials and Methods

2.1. Data Integration and Curation

Data used in the study were acquired from the Cyclodextrin knowledgebase [23]. The data
reported in the database contained the IUPAC name of API, IUPAC name of CD, the value of the
stability constant and the experimental conditions of stability constant evaluation if reported in the
source study. The structure of molecules was generated using OPSIN [24] and ChemAxon [25] IUPAC
name converters, and subsequently standardized using ChemAxon Standardizer [26] following the
protocols we developed previously [27,28]. Chirality information was preserved during structure
generation from the IUPAC names. The curated dataset is available as supplemental material (File S1).

2.2. Molecular Descriptors

Descriptors for APIs structures were calculated using Mordred [29], which implemented PaDEL
descriptors in Python. 3D descriptors were used, since chirality information was present in provided
structures. A total of 637 descriptors were successfully generated and used for model development.
A novel protocol for calculating CD descriptors was developed. The main macrocyclic ring was
described by a single number of glucose subunits and concatenated with Mordred descriptors of the
C-5 side chain terminated by a hydrogen atom. This procedure allowed for the increased variance in
descriptor space due to the separation of a similar macrocyclic ring from side chains.

2.3. Model Development and Validation

The gradient boosting algorithm was used to create the QSPR model. The basis of operation
of the algorithm is an iterative addition of decision trees to an ensemble to reduce the error of the
previous trees in this ensemble. The specific implementation used in our modelling study was
LightGBM library [30]. The model was validated using a 5-fold external cross-validation procedure [31].
The procedure involves a random division of the entire dataset into five subsets of nearly equal size
followed by the systematic binary division of the original dataset into a training set with 80% of all
samples used for model training and 20% of the samples used as a test set, such that each of the five
subsets would be used once as a test set. For each 80:20 division, a new model was trained and used for
the prediction of the test set. The test predictions were collected and used for statistical characteristics
calculation. For the final model, a 5-fold cross-validation grid-search was done on the whole dataset,
and the best model was refitted on the whole dataset before predicting ln(Ks) of the CA–CD systems.

2.4. Statistical Analysis

Predictive performance evaluation of the model was done by calculation of the following measures:
accuracy, area under the receiver operating characteristic curve (AUC), correct classification rate (CCR),
sensitivity, positive predictive value (PPV), specificity and negative predictive value (NPV) [18].

2.5. Systems Stability Prediction and Experimental Evaluation

A poorly soluble API from the BCS II class, CA was selected as a model compound for which the best
CD expected to improve CA solubility was predicted. The CD library consisted of an in-house collection
of CDs commonly used in pharmaceutical formulations, including αCD, βCD, HP-αCD, HP-βCD and
methyl-βCD. For each CA-CD system, predictions were evaluated experimentally. Stability constants
of CA-CD systems were measured using the phase-solubility technique [6]. The excess of CA was
added to a 15 mL of CD solutions in concentrations of 0.02–0.1 mmol in stoppered test tubes. The test
tubes were shaken on a rotary shaker for 72 h at a controlled temperature 25 ◦C and pH = 7. The samples
were filtered by a 25 µm filter and the concentration of CA was measured using UV spectroscopy at
281 nm with the PerkinElmer Lambda 35 UV/Vis Spectrometer.
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3. Results

3.1. Study Design

The study design is shown in Figure 1. Data on the stability of multiple small molecules-CD
systems characterized by their Ks were collected from publicly accessible sources, as described in
detail in Methods (Figure 1, Step 1). The data were curated (Figure 1, Step 2), and the reported
experimental values were converted to ln(Ks). Small molecule-CD systems were characterized by
standard descriptors and a novel protocol for CD descriptor generation was used (Figure 1, Step 3).
QSPR models were developed with a gradient boosting machine learning approach (Figure 1, Step 4).
Models were employed to predict the stability of CA–CD systems for five CDs from our in-house
collection, as described in Methods (Figure 1, Step 5), and all five systems were tested experimentally
(Figure 1, Step 6).
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3.2. Dataset Preparation

We employed data reported in the database of CD complexes with small molecules [23] that
initially included 8534 records (Figure 2, Step 1). These data were curated based on the protocols
described by us earlier [27,28]. Records without structural information (131 in total) were removed
(Figure 2, Step 2). These included records for compounds for which neither SMILES nor IUPAC
names were provided. For the remaining compounds, their IUPAC names were converted to 2D
chemical structures by ChemAxon software [25] (Figure 2, Step 3) or manually in the case of failure of
the automated procedure. Sixty-three records with IUPAC names that could not be associated with
molecular structure were removed along with single-atom counter-ions (Figure 2, Step 4). All records
included data on the experimental conditions such as the temperature and pH; for records with missing
experimental conditions, the normal conditions, i.e., T = 25 ◦C and pH = 7, were assumed. Records in
the dataset were considered duplicative if both InChI keys of their small molecules and corresponding
CDs in the system, as well as experimental conditions, were identical. If the difference between ln(Ks)
values for duplicate small molecule-CD systems under the same experimental conditions was less than
10% of the range of ln(Ks) values, duplicative records were merged, and the averaged ln(Ks) value
was assigned to the merged record; otherwise, all duplicated records were removed (Figure 2, Step 5).
This step resulted in 418 merged records and 4540 records that were removed. The structures of small
molecules with the molecular weight greater than 50 Da and less than 500 Da were kept (Figure 2,
Step 6). The execution of Step 6 resulted in removing 183 records.
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Records with reported temperature and pH close to our test conditions T = 25 ◦C and pH = 7
were kept. Therefore, we selected only data from the experiments carried out under temperatures
between 20 ◦C and 30 ◦C and pH between 5 and 8 (Figure 2, Step 7). The final dataset included 1654
small molecule-CD complexes with ln(Ks) values ranging from ln(Ks) = 2 to ln(Ks) = 10, where the
datapoints outside these boundaries were considered outliers (Figure 2, Step 8). The distribution of
CD types in the final dataset is shown in Table 1. The dataset is dominated by natural CDs: α, β and
γ. Of the underrepresented class of semisynthetic CDs, the representatives with the highest counts
were hydroxypropyl-βCD (HP-βCD) and methylated derivatives of βCDs (Dimethyl-βCD, randomly
methylated-βCD, Trimethyl-βCD). The entire dataset is included in the Supplemental Materials (S1).

Table 1. Distribution of cyclodextrin (CD) derivatives in the final dataset.

αCD and Derivatives βCD and Derivatives γCD and Derivatives

Type Samples Type Samples Type Samples

αCD 411 Acetyl-βCD 19 γCD 160
Carboxyl αCD 1 βCD 638 Hydroxypropyl-γCD 5

Hydroxypropyl-αCD 3 Carboxyl-βCD 15
Trimethyl-αCD 8 Dimethyl-βCD 52

Hydroxypropyl-βCD 136
Randomly

methylated-βCD 49

βCD sulfate 16
Sulfobutyl ether βCD 117

Succinate-βCD 5
Trimethyl-βCD 19

3.3. Model Development

The data used for model development showed normal distribution with the mean ln(Ks) = 5.37
and standard deviation = 2.22 (Figure 3). The regression model we built initially failed to achieve
acceptable statistical characteristics. A possible cause for the failure was the relatively large fraction
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of the data with missing experimental conditions and the inadequacy of our guessed conditions for
building a successful regression model. Therefore, we decided to switch from the regression approach
to the more approximate binary classification. The final model consisted of three binary models
developed for three different binary division thresholds of ln(Ks): 4.5 (Figure 3, red), 5 (Figure 3, gray)
and 5.5 (Figure 3, green). The selection of thresholds for different binary classifications was done based
on the range of reported stability constants of ln(Ks) for CA–CD systems [32,33]. For negative classes,
the values within 1.5 logarithmic units below the chosen threshold were used (Figure 3, dotted lines).
The positive values included data above the threshold; the exact upper boundary was adjusted to
achieve an approximate match between the number of positive samples and that of the negative samples.
The classification dataset with the threshold of 4.5 included a total of 1145 samples, with 584 positives
and 561 negatives (Figure 3, red); for classification with the threshold 5, the dataset included a total
of 1316 samples, comprising 671 positives and 645 negatives (Figure 3, gray); and for classification
with threshold 5.5, the dataset included 1460 samples: 745 positives and 715 negatives (Figure 3,
green). Models were trained and tested using the five-fold external cross-validation procedure, and the
statistical characteristics of the models are given in Table 2. The model achieved acceptable scores
for all main statistical characteristics according to the suggested best practices for QSAR models
validation [34].
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Table 2. Statistical characteristics. The characteristics of the models for 5-fold external cross-validation.

Class Accuracy AUC CCR Sensitivity PPV Specificity NPV

ln(Ks) ≥ 4.50 0.64 0.69 0.64 0.68 0.63 0.60 0.65
ln(Ks) > 5.00 0.67 0.75 0.67 0.71 0.66 0.64 0.69
ln(Ks) > 5.50 0.70 0.76 0.70 0.69 0.67 0.71 0.72

3.4. Prediction and Experimental Validation

Model-based predictions in comparison with the experimental results are summarized in Table 3.
Systems were considered promising if all three models predicted a CD–CA system as positive.
According to this protocol, CA–βCD and CA–methyl-βCD were selected as promising hits, and all
classification predictions for these two systems were confirmed experimentally (Table 3, Systems 2
and 5). The CA–βCD system was investigated by Sapte et al. [33] before our study, and ln(Ks) = 5.83
was reported for this system. However, we decided to exclude this record from our training database,
and use it for an additional external validation of both the experimental data collected in our laboratory
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and the model we developed. Indeed, the CA–βCD system was predicted correctly as highly stable,
and our experimental value of ln(Ks) = 5.72 also agreed with the literature data. To examine the
predictive performance of the models further, the three systems selected as not promising (Table 3,
Systems 1, 3 and 4) were also tested. The experimental results for these systems were in full agreement
with predictions for CA–αCD and CA–HP-αCD and in partial agreement for CA–HP-βCD. The latter
system showed high ln(Ks), which was correctly predicted by two out of three models. In total, out of
15 predictions for all tested systems, 14 (93.3%) were correct; i.e., the ln(Ks) value for the CA-HP-βCD
system was underestimated in one case (Table 3, System 4). Results obtained in our laboratory were in
agreement with the value ln(Ks) = 5.95 reported by Shah et al. [32] (Table 3, System 4) confirming the
compatibility of our measurements with the data reported in the independent literature.

Table 3. Results of experimental validation. Comparison of predicted versus actual stability classes for
different cefuroxime axetil (CA)–CD systems and different ln(Ks) thresholds for binary data division.
Measured experimental ln(Ks) values are shown in the last column of the table.

API Cyclodextrin Predicted ln(Ks) * Promising
System

Experimental
ln(Ks)

>4.5 >5 >5.5
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4. Discussion

The first goal of the study was to collect and curate data required for the machine-learning-based
QSPR model. The curated dataset consisted of diverse API and non-API chemical structures in systems
with 16 CDs of natural and semi-synthetic origin. Previously, to model guest-CD systems, an effort was
made to curate the data originating from the distinct literature studies [35,36], including a large library
of both guest molecules and CDs [17]. We have followed the best practices of QSAR modeling [31] to
perform our study and assure of its reproducibility.

Initially, we developed continuous QSAR models that failed to achieve acceptable statistical
characteristics, i.e., the Q2 was <0.5. Thus, we decided to employ binary classification models and
developed three models with cut-off thresholds of 4.5, 5.0 and 5.5, respectively. To develop these
models, we employed the gradient boosting algorithm and chemical descriptors reflecting the structure
of both APIs and side chains of CDs. The size of the CD macrocycles was described by the number
of constituting glucose residues. Due to the enantioselectivity of CDs [37], the information on API
chiral centers was preserved by using 3D descriptors. One of the biggest advantages of this model
is that it could be applied to a variety of CDs and experimental conditions instead of being specific
for a single CD and predefined temperature and pH [35,38]. Consideration of both guest and CD
structures makes the model useful in cases when no sufficient experimental data for a CD system
exist. This problem is especially common when synthetic derivatives of CDs are used. The predictive
power of all the models was rigorously validated using 5-fold external cross-validation (see Table 2 for
statistical characteristics).

To achieve the goal of this study, we have applied the developed QSPR models to the prediction
of the stability constant for a poorly soluble β-lactam antibiotic, CA, combined with five CDs from
our in-house collection. We were particularly interested in combinations that would be predicted as
positives by all three models as an indication of the higher confidence in the positive result. For all
tested systems, 14 out of 15 predictions were correct. The predictions were used to identify the system
with likely the highest ln(Ks). Two CA-CD systems (2 and 5 from Table 3) were selected as the most
promising, because the models predicted these systems to have high ln(Ks) values; three other systems
were expected to have lower ln(Ks) values. Both systems predicted to have high ln(Ks) were confirmed
successfully with a minor exception for the CA-HP-βCD system (4 in Table 3), and correct predictions
were made by two out of three models. One of the models with the highest ln(Ks) threshold for binary
division of the training set of ln(Ks) = 5.5 mis-predicted this compound as negative, whereas this
system possessed the highest experimental ln(Ks) values. As the most important outcome of our study,
the identified CA–methyl-βCD (5 in Table 3) is a novel, not previously reported CD system, which may
serve as a promising excipient in drug formulation with CA.

Moreover, CD systems identified in this work may be of additional value for diastereomers
separation [11], solid-state chemical stabilization under certain conditions [7] and bitter taste
masking [12,13].

5. Conclusions

To summarize, we have successfully developed predictive models for assessing the stability of a
broad range of API-CD systems. Using these models, we have identified and experimentally confirmed
a novel promising CA-methyl-βCD system with improved CA solubility. This success was enabled
by the careful study design, including the collection of the expansive and diverse training dataset,
thorough data curation and the use of the best practices of QSAR modeling, including rigorous external
validation of the models. The successful experimental validation of the developed models using
poorly soluble API such as CA proved the applicability of the model to the discovery of novel API-CD
systems, where the solubility of the API can be substantially improved by the application of natural and
semi-synthetic CDs. The range of this model’s application can be extended to streamlining the choice
of CDs for the pharmaceutical analysis of chiral compounds [37,39] and the phytochemical extraction
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of APIs from plant matrix [40]. In both applications, a high affinity of CDs to the desired molecules
may be used to improve the efficiency of the analytical method, or reduce the toxic solvents use.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/6/913/s1,
File S1: Dataset used for model development.
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