Contents lists available at ScienceDirect

Saudi Journal of Biological Sciences

journal homepage: www.sciencedirect.com

Promising antiparasitic agents from marine sponges

Osama Mostafa^a, Mohammed Al-Shehri^b, Mahmoud Moustafa^{b,c,*}

^aZoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt

^b Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia

^c Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt

ARTICLE INFO

Review

Article history: Received 18 May 2021 Revised 17 August 2021 Accepted 22 August 2021 Available online 26 August 2021

Keyword: Marine sponges Novel antiparasitic drugs Potent activity Bioactive compounds

ABSTRACT

Parasitic diseases especially those prevail in tropical and subtropical regions severely threaten the lives of people due to available drugs found to be ineffective as several resistant strains have been emerged. Due to the complexity of the marine environment, researchers considered it as a new field to search for compounds with therapeutic efficacy, marine sponges represents the milestone in the discovery of unique compounds of potent activities against parasitic infections. In the present article, literatures published from 2010 until March 2021 were screened to review antiparasitic potency of bioactive compounds extracted from marine sponges. 45 different genera of sponges have been studied for their antiparasitic activities. The antiparasitic activity of the crude extract or the compounds that have been isolated from marine sponges were assayed in vitro against Plasmodium falciparum, P. berghei, Trypanosoma brucei rhodesiense, T. b. brucei, T. cruzi, Leishmania donovani, L. tropica, L. infantum, L. amazonesis, L. major, L. panamesis, Haemonchus contortus and Schistosoma mansoni. The majority of antiparastic compounds extracted from marine sponges were related to alkaloids and peroxides represent the second important group of antiparasitic compounds extracted from sponges followed by terpenoids. Some substances have been extracted and used as antiparasitic agents to a lesser extent like steroids, amino acids, lipids, polysaccharides and isonitriles. The activities of these isolated compounds against parasites were screened using in vitro techniques. Compounds' potent activity in screened papers was classified in three categories according to IC₅₀; low active or inactive, moderately active and good potent active. © 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. 2. 3.	Introduction	218 218 218
4.	Discussion	. 219
5.	Conclusion	. 225
	Declaration of Competing Interest	. 225
	Acknowledgement	. 225
	References	225

* Corresponding author.

E-mail address: mfmostfa@kku.edu.sa (M. Moustafa).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

https://doi.org/10.1016/j.sjbs.2021.08.068

1319-562X/© 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Parasitic diseases still endanger the accomplishment of current medicine for the last seven to eight decades. Particularly, the development of anti-infective drug resistance has represented a major load on global health and economics (Fitchett, 2015; Levy and Marshall, 2004). Drug resistance combined with lack of progress in the development of vaccines or resistant reversal agents has further aggravated the situation. In addition, several factors limit the utility of existing drugs in areas where they are really needed, for instance high cost, poor compliance, low efficacy and toxicity (Nwaka and Hudson, 2006). Therefore, the discovery and development of novel, safe and effective anti-infective drugs from new sources is an extremely urgent task.

Marine environment (more than 70% of the planet's surface) with its apparently infinite biodiversity is a promising source of bioactive compounds. About 30,000 compounds of marine source have been identified. Since 2008, more than 1000 compounds are being discovered every year. These compounds are generally characterized by their chemistry, complexity, diversity, and species source (Kiuru et al., 2014). Among the great biodiversity of ocean and sea, marine sponges have been one of the key resources for natural, bioactive compounds with potential therapeutic activity. This is due to the fact that sponges produce a wide variety of secondary metabolites with unique structural properties (Bisaria et al., 2020). Phylum Porifera (Sponges), the oldest multicellular animals are sessile aquatic organisms, filter feeders, without body symmetry. There are more than 9372 valid species including marine and non-marine species according to the World Porifera Database (Van Soest et al., 2018). They are located in all the seas and at different depths, adapting multiple forms and playing an important role in biogeochemical cycling (Bell, 2008).

As the majority of the sponges are soft and sessile; they become an easy target of marine predators. Therefore, as a survival strategy, sponges produce a variety of chemical compounds, including terpenes, sterols, fatty acids, alkaloids, peroxides, cyclic peptides, amino acid derivatives, and unusual nucleosides, to deter predators from preving upon them (Thomas et al., 2010). Also, sponges secrete defensive materials to keep small plants and animals from settling upon them (Hertiani et al., 2010). These bioactive compounds exhibited immunosuppressant, antitumor, antifungal, antiviral, antibacterial, anti-inflammatory and antiparasitic properties (Costantino et al., 1999; Elhady et al., 2016; Martins et al., 2014; Sagar et al., 2010; Santos et al., 2015; Vik et al., 2007; Xue et al., 2004). Moreover, approximately 800 antibiotic substances have been extracted from marine sponges (Torres et al., 2002). Therefore, Marine sponges have been considered as a drug treasure house (Anjum et al., 2016).

Amongst the few marine-derived drugs already on the market, there are two drugs derived from marine sponges; the first was Halaven[®] (Eribulin mesylate) isolated from the sponge *Halichon-dria okadai* which inhibiting the microtubule assembly and used in the treatment of patients with breast cancer and liposarcoma (Aseyev et al., 2016; Schöffski et al., 2016). The second is Cytosar-u[®] (cytarabine), its original natural product was isolated from the sponge *Cryptotheca crypta*, and this drug used in treatment of myeloid and meningeal Leukemia and other types of Leukemia (Pereira et al., 2019; Schwartsmann et al., 2001). However, there were no marine-based drugs have been developed for parasitic disease from sponges or other marine organisms.

The parasitic diseases malaria, leishmaniasis, American trypanosomiasis (Chagas disease), African trypanosomiasis (sleeping sickness), schistosomiasis, and others in tropical and sub-tropical regions are responsible for morbidity and mortality of million people in these regions. Malaria transmitted to people through biting of infected female *Anopheles* mosquitoes. The *Plasmodium* species

that cause malaria in humans are: P. falciparum, P. malariae, P. vivax, P. ovale, P. knowlesi. In 2019, the WHO African Region was home to 94% of malaria cases and deaths. Human African trypanosomiasis (HAT), or sleeping sickness, is caused by trypanosome parasites; the intermediate hosts of the parasites are tsetse flies. African trypanosomiasis caused by two subspecies of Trypanosoma brucei, namely T. b. gambiense in West and Central Africa, and T. b. rhodesiense in East Africa. In 2019, <1000 cases were found. This few number of cases does not reflect a lack of control efforts as in general active and passive screening has been maintained at similar levels; around 2.5 million people screened per year. As for American trypanosomiasis (Chagas disease) is caused by T. cruzi. More than 6 million people worldwide are infected with T. cruzi. This disease is found mainly in endemic areas of 21 continental Latin American countries: an estimated 75 million people at risk of infection. American trypanosomiasis transmitted to humans when come into contact with the stool of infected intermediate host triatomine bugs. Furthermore, there are more than 20 Leishmania species caused leishmaniasis; the intermediate host is female phlebotomine sandfly. There are three main forms of the disease: cutaneous leishmaniasis, visceral leishmaniasis, also known as kala-azar, and mucocutaneous leishmaniasis. More than one billion people are at risk of infection. Concerned with Schistosomiasis, more than 700 million people live in endemic areas and the disease affects about 240 million people worldwide. The infection is prevalent in tropical and sub-tropical areas of the world. Lastly, Schistosomiasis is caused by parasitic blood worm, Schistosoma; the infection is acquired when human come into contact with the infective stages, cercariae which swim freely in fresh water. There are two types of schistosomiasis: Urogenital schistosomiasis which caused by S. haematobium (adult worms live in the venous plexuses of the urinary tract) and intestinal schistosomiasis which caused by one of the following organisms S. mansoni, S. japonicum, S. intercalatum, S. mekongi and S. guineensis (adult worms live in the veins draining of the intestine). Most of the eggs deposited by females are trapped in the tissues and the body's reaction to them can cause massive damage (WHO). This article aimed to review antiparasitic properties of bioactive compounds extracted from marine sponges that can be used to generate more potent selective and specific novel antiparasitic drugs.

2. Methods

A systematic search was done to find all articles published in English and related to the present review subject from 2010 until March 2021 in PubMed and Google Scholar. The keywords used to search were "antiparasitic, marine sponge, antiprotozoal", and "antiparasitic, marine sponge, anthelminthic". The review articles, conference articles, and thesis were excluded with regard to extracted agents; synesthetic and semi-synesthetic compounds and those isolated from sponge-associated organisms were not considered in the present article. Variables assessed in the present review include sponge species/genus, region/country of origin, isolated compound, species/strain of parasite and the dose that cause growth inhibition.

3. Results

By screening literatures published from 2010 until March 2021, 52 articles were included for this review, 46 deals with the antiparasitic activities of the extracted compounds from the sponges and 7 deals with antiparasitic activities of the sponges' crud extracts; the paper of Ilias et al. (2012) was counted with the first and second group of articles because it was concerned with the study of the

Table 1

Antiparasitic activity of Marine sponges' crude extracts.

Target parasite	Extract type	Concentration IC ₅₀ µg/mL	Spongy	Country	References
Leishmania major Promastigotes stages	aqueous extract ethyl acetate extract dichloromethane extract	3.02 8.49 1.39	Sarcotragus sp.	Tunisia	(Ben Kahla-Nakbi et al., 2010)
	aqueous extract ethyl acetate extract dichloromethane extract	264.67 16.09 47.38	Ircinia spinosula		
D6 P. falciparum W2 P. falciparum Leishmania donovani promastigote stages	organic extract	0.09 μg/mL 0.086 μg/mL 1.19 μg/mL	Petrosid Ng5 Sp5	Australia	(Ilias et al., 2012)
D6 P. falciparum W2 P. falciparum Leishmania donovani promastigotes	dichloromethane extract	12 24 74	Negombata corticata	Red Sea, Egypt	(Eltamany et al., 2014)
Plasmodium berghei	Organic extract	42.3 52 60.3	Mycale laxissima Clathria echinata Agelas cerebrum	Boca de Calderas, Havana, Cuba	(Mendiola et al., 2014)
T. cruzi trypomastigotes	organic extracts aqueous extracts	10.80 0.57	Amphimedon viridis	Atlantic Ocean, Rio de Janeiro, Brazil	(Andrade et al., 2015)
T. cruzi amastigotes	organic extracts aqueous extracts	44.85 21.37			
T. cruzi epimastigote	acetone extracts	124.7 109.9 23.4 67.3 28.6	Tethya ignis Tethya rubra Dysidea avara Mycale angulosa Condrosia reniformes	Brazil and Spain	(de Paula et al., 2015)
T. cruzi amastigotes		7.2 44.5 40.3 55.5 82.6	Tethya ignis Tethya rubra Dysidea avara Mycale angulosa Condrosia reniformes		
T. cruzi Trypomastigote		$\begin{array}{l} EC_{50} \ 6.3 \\ EC_{50} \ 33.3 \\ EC_{50} \ 1.1 \\ EC_{50} \ 3.8 \\ EC_{50} \ 0.6 \end{array}$	Tethya ignis Tethya rubra Dysidea avara Mycale angulosa Condrosia reniformes		
P. falciparum	-	3.26 µM	Biemna laboutei	Madagascar	(Gros et al., 2015)

effects of the crude extract and isolated compounds of Australian marine sponge *Petrosid Ng5 Sp5* on chloroquine-sensitive (D6) and -resistant (W2) strains of *Plasmodium falciparum* and promastigote stages of *Leishmania donovani*. The results of antiparasitic activity of marine sponges' crude extracts against *L. major, L. donovani, T. cruzi, P. berghei* and D6 and W2 strains of *P. falciparum* were summarized in Table 1. Antiparasitic activity of extracted compounds from marine sponges against protozoan and helminthic parasites were listed in Table 2. Promising isolated compounds with potent antiparasitic activity based on IC₅₀ measurement were included in Table 3.

4. Discussion

In these articles, 45 different genera of sponges have been studied for their antiparasitic activities; the most frequently studied genus was *Plakortis* from different localities. The genera *Ircinia*, *Pandaros*, *Haliclona*, *Aplysinella*, *Diacarnus*, *Pseudoceratina*, *Monanchora* and *Hyrtios* have been studied in two different articles. These sponges were collected from different localities all over the world; the most explored sites were Australia, Indonesia, Brazil, Madagascar and China. Moreover, sponges were also collected from other localities such as Japan, India, Turkey, Egypt, Tunisia, Cuba and Spain. The secondary metabolites produced by sponges serve defensive purposes to protect them from predator attacks, biofouling, microbial infections and overgrowth by other aquatic sessile organisms (Paul et al., 2006). Therefore, compounds extracted from the same sponge species are more likely to be different if their habitat is distinguished due to the ecological response (Mani et al., 2012). Thus, it is important to mention the source of sponges to expect the variations in the extracted compounds obtained.

The antiparasitic activity of the crude extract or the compounds that have been isolated from marine sponges were assayed in vitro against *Plasmodium falciparum*, *P. berghei*, *Trypanosoma brucei rhodesiense*, *T. b. brucei*, *T. cruzi*, *Leishmania donovani*, *L. tropica*, *L. infantum*, *L. amazonesis*, *L. major*, *L. panamesis*, *Haemonchus contortus* and *Schistosoma mansoni*. The majority of articles screened (71%) were concerned with the antiparasitic activities against *P. falciparum* alone (73%) or *P. falciparum* and other parasites (27%). Different strains of *P. falciparum* were used in these studies: drug resistance strains (W2, K1, Dd2, 3D7, FcM29, FCB1) and drug sensitive strains (D6, D10, FcR3). This can be explained in the light of nearly half of the world's population was at risk of malaria in 2019; most cases and deaths occur in sub-Saharan Africa; there were an estimated 229 million cases of malaria in 2019, and the estimated number of malaria deaths was about 409,000 (WHO).

Along the period of survey, the number of publications fluctuated from year to year, the highest number of papers was recorded in 2010 (10 papers), followed by that recorded in 2014 (9 papers), then 2015 (6 papers) and 2016 (6 papers). Only four papers were recorded in 2018 and 2013. Four papers were recorded in 2011;

Table 2

Antiparasitic activity of Marine sponges extracted compounds.

T. brucei thodesimes Bitromopslau'amine longamide B Bromopyrole alkaloids 0.46 gr(m1.**) 9.71 gr(m1.**) 9.73 gr(m1.**) 9.74 gr(m1.**) 9.75 g	Target parasite	Extracted compounds	Chemistry	Concentration IC_{50}	Spongy	Country	References
Inspande B 1.53 µg/mL** Age/us sp. 2010) Sceptrin 9.71 µg/mL** 33.58 µg/mL** 33.58 µg/mL** 15.58 µg/mL** <td>T. brucei rhodesiense</td> <td>dibromopalau'amine</td> <td>Bromopyrrole alkaloids</td> <td>0.46 μg/mL*</td> <td>Axinella sp. and</td> <td>-</td> <td>(Scala et al.,</td>	T. brucei rhodesiense	dibromopalau'amine	Bromopyrrole alkaloids	0.46 μg/mL*	Axinella sp. and	-	(Scala et al.,
Seperin spongiacidin B 9.71 ug/mL** 1. cruzi Iongamide B 1. donovnit dioromopalva mine longamide B 33.03 µg/mL*** 1. donovnit dioromopalva mine longamide B 3.85 µg/mL*** spongiacidin B 1.04 µg/mL* retraprenylpenylactic acid heptopernyl-pquinol 1.44 µg/mL* T. brucei thodesierse demethylfurospongin-4 4-lydroxy-3- Terpenoids 4.54 µg/mL* T. cruzi heptopernyl-pquinol heptopernyl-pquinol 3.54 µg/mL* Joingamide P T. cruzi heptopernyl-pquinol 3.54 µg/mL* Joingamide P I. donovani heptopernyl-pquinol 3.54 µg/mL* Joingamide P I. donovani heptopernyl-pquinol 3.54 µg/mL* Joingamide P I. donovani heptopernyl-pquinol 4.08 µg/mL* Joingamide P I. donovani heptopernyl-pquinol 1.55 µg/mL* Joingamide P I. J. J. docloparum heptopernyl-pquinol 3.54 µg/mL* Joingamide P I. donovani heptopernyl-pquinol 4.08 µg/mL* Joingamide P I. donovani pandaroside C Caribbean Sea (Regalado ect al., 2010) T. b. rhodesiense		longamide B	15	1.53 μg/mL*	Agelas sp.		2010)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Sceptrin		9.71 μg/mL**			
T. cruzi longamide B 33.03 μg/mL*** L. donovani dibromopalari amine 1.09 μg/mL* St P. fulciparum spongiacitin B 1.34 μg/mL* KI P. fulciparum spongiacitin B 1.34 μg/mL* T. brucci thodesires demethylfurospongin-4 1.34 μg/mL* Hertparentylpenylacetic acid 1.54 μg/mL* Jone Jone Jone Jone Jone Jone Jone Jone		spongiacidin B		13.58 μg/mL***			
L donovani longsmide B syongiacidin B dispacenanide B	T. cruzi	longamide B		33.03 μg/mL***			
Integration is a 3.85 g/mL*St P, falciparum St P, falciparum	L. donovani	dibromopalau'amine		1.09 μg/mL*			
Ki P, falciparum spongiacidin B 1.09 μg/mL ² dispacenanide B 1.34 μg/mL ² T. brucei rhadesiani demetryl/furcspongin-4 Terpenoids 4-hydroxy-3- 0.60 μg/mL ² brcinia sp. T. cruzi heptaprenyl-p-quinol 3.54 μg/mL ² T. cruzi heptaprenyl-p-quinol 3.54 μg/mL ² T. cruzi heptaprenyl-p-quinol 4.08 μg/mL ² T. cruzi heptaprenyl-p-quinol 4.08 μg/mL ² T. cruzi heptaprenyl-p-quinol 4.08 μg/mL ² disorbanic 6.06 μg/mL ² 5.89 μg/mL ² disorbanic 6.06 μg/mL ² 5.80 μg/mL ² disorbanica 6.07 μg/mL ² 5.80 μg/mL ² disorbanica 6.07 μg/mL ² 5.80 μg/mL ² disorbanica 7.8 μg/mL ² 5.80 μg/mL ² disorbanica 7.8 μg/mL ² 5.81 μg/mL ² disorbanica 7.8 μg/mL ² 5.81 μg/mL ² disorbanica 7.51 μg/mL ² 5.51 μg/mL ² disorbanica 7.51 μg/mL ² 5.51 μg/mL ² disorbanica 5.90 μg/mL ² 5.90 μg/mL ² disorbanice 0		longamide B		3.85 μg/mL**			
disparamide B 1.34 g/gml ¹ dibrorongalau'amine Terpenoids 4.90 g/gml ² <i>T. bracei rhodesiense</i> Generative Generation Constraints of the second s	K1 P. falciparum	spongiacidin B		1.09 μg/mL*			
T. bracei indoesiene choromopalau anime 1.44 grg/mL* Spongia sp. and train sp. Turkey (Orhan et al., 2010) T. bracei indoesiene 4-hydroxy-3- tetraprenylp-quinol 3.54 grg/mL* Spongia sp. and train sp. Turkey (Orhan et al., 2010) T. cruzi heptaprenylp-quinol diterprenylp-quinol 3.54 grg/mL* Spongia sp. and train sp. Turkey (Orhan et al., 2010) T. cruzi heptaprenylp-quinol diterprenylp-quinol 3.54 grg/mL* Spongia sp. and train sp. Turkey (Orhan et al., 2010) L donovani heptaprenylp-quinol difuerprenylp-quinol 4.08 grg/mL* Spongia sp. and train sp. Turkey (Orhan et al., 2010) L donovani heptaprenylp-quinol difuerprenylp-gongin-1 4.08 grg/mL* Spongia sp. and train sp. Turkey (Orhan et al., 2010) K1 P. folciparum furospongin-1 4.08 grg/mL* 5.60 grg/mL* Spongia sp. and train sp. Caribbean Sea (Regalado et al., 2010) K1 P. folciparum pandaroside C metaprenylpenylpenylpenylpenylpenylpenylpenylp		dispacamide B		1.34 μg/mL*			
1. orucet modestense demetry furospongin-4 ierpenoids 4-by0 µg/m ⁻¹ isponged sp. and furkey (Unkey (Unkey) (Unkey (Unk	T have a find a dealers a	dibromopalau'amine	Temperation	1.48 μg/mL*	Consideration and	Turk	(O.1
 A - Iguitory-3 tetraprenylp-squinol J - Star gg/mL* J - Cruzi I - Cru	1. Drucei rnodesiense	demetnyifurospongin-4	Terpenoids	4.90 μg/mL*	Spongia sp. and	Тигкеу	(Ornan et al.,
 hetapternyl-p-quinol diterpenes dorisenone D 2.47 µg/mL* 2.47 µg/mL* 2.47 µg/mL* 3.54 µg/mL* 2.47 µg/mL* 3.58 µg/mL* 4.508 µg/mL* 4.509 µg/mL* 4.509 µg/mL* 4.506 µg/mL* 4.51 µg/mL* 5.60 µg/mL* 4.51 µg/mL* 4.57 µg/mL* 5.60 µg/mL* 4.57 µg/mL* 5.60 µg/mL* 4.51 µg/mL* 4.57 µg/mL* 5.60 µg/mL* 4.51 µg/mL* 4.57 µg/mL* 5.60 µg/mL* 4.51 µg/mL* 4.57 µg/mL* 5.61 µg/mL* 4.57 µg/mL* 5.61 µg/mL* 4.57 µg/mL* 6.61 µg/mL		4-IIyuI0xy-5- tetraprepylphenylacetic acid		0.60 µg/IIIL	n cinia sp.		2010)
alterpress darisemene D 2.47 μg/ml ⁻¹ diterpreness darisemene D 2.47 μg/ml ⁻¹ tryptophol 5.88 μg/ml ⁻¹ 1β-acetoxyspongi-12-en-16- 4.51 μg/ml ⁻¹ doovani furospongin-1 4-hydroxy-3- 5.60 μg/ml ⁻¹ octaprenylbenzoic acid 0.75 μg/ml ⁻¹ 1β-acetoxyspongi-12-en-16- 0.75 μg/ml ⁻¹ octaprenylbenzoic acid 0.75 μg/ml ⁻¹ 1β-acetoxyspongi-12-en-16- 0.75 μg/ml ⁻¹ orde 1.57 μg/ml ⁻¹ K1 P. falciparum furospinulosin-2 3.51 μg/ml ⁻¹ furospongin-4 7.51 μg/ml ⁺² octaprenylbenzoic acid 1.15 μg/ml ⁺² squalene 1.16 μg/ml ⁺² diterpenes dorisenone D 0.43 μg/ml ⁺² pandaroside C 0.79 μM ⁺² pandaroside C 0.051 μM ⁺² <td></td> <td>hentaprenyl-p-quinol</td> <td></td> <td>3 54 µg/mI **</td> <td></td> <td></td> <td></td>		hentaprenyl-p-quinol		3 54 µg/mI **			
T. cruzi heptaprent/t-p-quinol 5.89 µg/m1** I. f. acetoxyspongi-12-en-16-one 4.08 µg/m1** A-log rowsping-12-en-16-one 5.60 µg/m1** A-log rowsping-12-en-16-one 5.60 µg/m1** A-log rowsping-12-en-16-one 0.75 µg/m1* II β-acetoxyspongi-12-en-16-one 0.75 µg/m1* II β-acetoxyspongi-12-en-16-one 0.75 µg/m1* T. f. holdsparum furospongin-4 T. protophol 11 β-acetoxyspongi-12-en-16-one T. f. holdsparum 9.60 µg/m1** furospongin-4 7.51 µg/m1** 4-hydroxy-3- 5.51 µg/m1** furospongin-4 1.57 µg/m1* 4-hydroxy-3- 1.57 µg/m1* octaprenylbenzoic acid squalene gualene 1.16 µg/m1* furospongi-12-en-16-one 1.09 µg/m1* i11p-acetoxyspongi-12-en-16-one 0.03 µM* pandaroside C pandaroside C pandaroside C 0.03 µM* pandaroside C 0.05 µM* pandaroside C 0.05 µM* pandaroside C 0.05 µM* pandaroside C 0.040 µM* pandaroside C 0.05 µM* <td></td> <td>diterpenes dorisenone D</td> <td></td> <td>$2.47 \mu g/mL^*$</td> <td></td> <td></td> <td></td>		diterpenes dorisenone D		$2.47 \mu g/mL^*$			
T. cruzi hot pt aperuply-p-quinol 11β-acetoxyspongi-12-en-16- one 408 µg/mL** 4.51 µg/mL** L donovani furospongin-1 4-hydroxy-3- octaprenylbenzoic acid 11β-acetoxyspongi-12-en-16- one 500 µg/mL** 500 µg/mL** K1 P. fakiparum furospinulosin-2 5.60 µg/mL** 000 K1 P. fakiparum furospinulosin-2 5.60 µg/mL** 000 K1 P. fakiparum furospinulosin-2 5.11 µg/mL** 000 K1 P. fakiparum furospinulosin-2 5.11 µg/mL** 000 T. b. rhodesiense 1.16 µg/mL* 1.16 µg/mL* T. b. rhodesiense pandaroside G pandaroside G Steroidal Saponins 0.78 µM* Pandaros Caribbean Sea et al2010) L donovani pandaroside G methyl ester pandaroside G methyl ester 0.038 µM* Pandaros Caribbean Sea et al2010) T. b. rhodesiense pandaroside G methyl ester pandaroside G methyl ester 0.051 µM* Pandaros sp. Australia (Feng et al2012) T. b. rhodesiense pandaroside G methyl ester pandaroside G methyl ester 0.940 µM* Plakortis sp. Australia (Percy et al2012) T. b. pridejarum pandaroside G methyl ester pandaroside G 0.951 µM* Plakortis sp. Australia (2012) T. b. rhodesiense		tryptophol		5.89 μg/mL**			
11β-acetoxyspongi-12-en-16- one 4.51 μg/mL** L donovani furospongin-1 4-hydroxy-3- cotaprenylbenzoic acidd 4.08 μg/mL** 11β-acetoxyspongi-12-en-16- one 0.75 μg/mL** 11β-acetoxyspongi-12-en-16- one 7.55 μg/mL** 11β-acetoxyspongi-12-en-16- one 9.60 μg/mL** 11β-acetoxyspongi-12-en-16- one 9.60 μg/mL** 11β-acetoxyspongi-12-en-16- one 7.51 μg/mL** 11g-acetoxyspongi-12-en-16- one 7.51 μg/mL** 11g-acetoxyspongi-12-en-16- one 1.16 μg/mL* 11g-acetoxyspongi-12-en-16- one 1.16 μg/mL* 11g-acetoxyspongi-12-en-16- one 1.16 μg/mL* 11g-acetoxyspongi-12-en-16- one 1.16 μg/mL* 11g-acetoxyspongi-12-en-16- one 0.03 μg/mL* 11g-acetoxyspongi-12-en-16- one 0.03 μg/mL* 11g-acetoxyspongi-12-en-16- one 0.03 μM* pandaroside G Steroidal Saponins 0.78 μM* pandaroside G Steroidal Saponins 0.78 μM* pandaroside G 1.12-eni-debtydro-13-oxo- plakortide Q 1.12-didebtydro-13-oxo- plakortide Q 1.44 μM** 7.b. brucei pandaroside G Bromotyrosine lakloid 1.44	T. cruzi	heptaprenyl-p-quinol		4.08 μg/mL**			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		11β-acetoxyspongi-12-en-16-		4.51 μg/mL**			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		one					
4-hydroxy-3- octaprenylbenzoic acid 11β-acetoxyspongi-12-en-16- one 0.75 μg/mL** K1 P. falciparum furospinulosin-2 3.51 μg/mL** furospinulosin-2 3.51 μg/mL** valuence 1.57 μg/mL* ditropongin-4 7.5 μg/mL**	L. donovani	furospongin-1		4.08 μg/mL**			
$\begin{tabular}{ c $		4-hydroxy-3-		5.60 μg/mL**			
11 β-acetoxyspongi-12-en-16- one 0.75 μg/mL* K1 P, falciparum furospinulosin-2 3.51 μg/mL* furospinulosin-2 3.51 μg/mL* 4-hydroxy-3- octaprenylbenzoic acid 1.57 µg/mL* 4-hydroxy-3- octaprenylbenzoic acid 1.64 µg/mL* 4-hydroxy-3- octaprenylbenzoic acid 0.43 µg/mL* 11 β-acetoxyspongi-12-en-16- one 0.43 µg/mL* 12-epi-deoxoscalarin 7.54 µg/mL* tryptophol Steroidal Saponins 0.78 µM* pandaroside G Veric Polyketide 0.051 µM* 1.b. brucei 1,12-didehydro-13-oxo- plakortide Q Peroxides Peroxides 0.940 µM* Australia (Feng et al., 2012) Dd2 P. falciparum moamphilectine A diterpenoid β-lactam 0.66 µM* Hymeniacidon sp. Moa Island, P		octaprenylbenzoic acid					
one 9.60 µg/mL** K1 P. falciparum furospinulosin-2 3.51 µg/mL** furospongin-4 7.51 µg/mL** furospongin-4 7.51 µg/mL** octaprenylbenzoic acid squalene squalene 1.16 µg/mL* diterpenes dorisenone D 0.43 µg/mL* 11β-acetoxyspongi-12-en-16- 0.43 µg/mL* one 12-epi-deoxoscalarin 7.78 µg/mL** tryptophol 5.08 µg/mL** pandaroside G Steroidal Saponins 0.78 µM* Pandaros Caribbean Sea (Regalado et al., 2010) 1.39 µM** 0.051 µM* acanthifolium et al., 2010) et al., 2010) L donovani pandaroside G methyl ester 0.051 µM* Plakortis sp. Australia (Feng et al., 2010) L donovani pandaroside G methyl ester 0.051 µM* Plakortis sp. Australia (Feng et al., 2010) Dd2 P. falciparum monamphilectine A diterpenoid β-lactam 0.87 µM* Hyatella sp. Hervey Bay, (Yang et al., 2010) W2 P. falciparum discorhabdins A Pyrroloiminoq-uinone 0.05 µM* Aleutian Islands (Nieś and P) <		11β-acetoxyspongi-12-en-16-		0.75 μg/mL*			
K1 P. falciparum furospinulosin-2 3.51 μg/mL** K1 P. falciparum furospinulosin-2 3.51 μg/mL** 4-hydroxy-3 1.57 μg/mL* 4-hydroxy-3 1.57 μg/mL* 4-hydroxy-3 1.57 μg/mL* 4-hydroxy-3 1.57 μg/mL* 4-hydroxy-3 1.66 μg/mL* 6 ctaprenylbenzoic acid squalene 11 β-acetoxyspongi-12-en-16- 1.09 μg/mL* 0 1.16 μg/mL* 12-epi-deoxoscalarin 7.48 μg/mL* 12-epi-deoxoscalarin 5.08 μg/mL* pandaroside G Steroidal Saponins 0.78 μM* Pandaros pandaroside G 1.3 μM** et al., 2010) L donovani pandaroside G 1.3 μM** pandaroside G Peroxides 2012) T.b. brucei 1.1,2-didehydro-13-oxo- Cyclic Polyketide 0.049 μM* Plakortide Q Peroxides 2012) 2012) Dd2 P. falciparum monamphilectine A diterpenoid β-lactam 0.66 μM* Hyattella sp. Hervey Bay, (Yag et al., 4.010) W2 P. falciparum discorhabdins A Pyrroloiminoq-uinone 0.66 μM* Matt		one		0.000 / X++			
K1 P. Jaiciparum turosponjinulosin-2 3-51 μg/mL** furosponjin-4 7.51 μg/mL* furosponjin-4 7.51 μg/mL* octaprenylbenzoic acid	MAD CI.	tryptophol		9.60 µg/mL**			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	KT P. Jaiciparum	furospinulosin-2		3.51 µg/mL**			
4-rightoxy-5 1.57 μg/mL octaprenylbenzoic acid squalene squalene 1.16 μg/mL* diterpenes dorisenone D 0.43 μg/mL* 11β-acetoxyspongi-12-en-16- 1.09 μg/mL* one 7.48 μg/mL** T. b. rhodesiense pandaroside G pandaroside G Steroidal Saponins 0.78 μM* pandaroside G Caribbean Sea (Regalado pandaroside G Ottop pandaroside G 0.038 μM* pandaroside G Peroxides 0.049 μM* T.b. brucei 11,12-didehydro-13-oxo- Cyclic Polyketide 0.049 μM* JD-Carboxy-11,12,13,14- 0.940 μM* 2012) 2012) Dd2 P. falciparum pammaphysin F Bromotyrosine alkaloid 1.4 μM** Hyattella sp. Hervey Bay, (Yang et al., 2010) W2 P. falciparum discorhabdins A Pyrroloiminoq-uinone 0.65 μM* Aleutian Island, (Avilés and Puerto Rico D6 P. falciparum discorhabdins A <td></td> <td>4 bydrovy 2</td> <td></td> <td>1.51 μg/IIIL 1.57 μg/mL*</td> <td></td> <td></td> <td></td>		4 bydrovy 2		1.51 μg/IIIL 1.57 μg/mL*			
squalene 1.16 µg/mL* diterpenes dorisenone D 0.43 µg/mL* 11β-acetoxyspongi-12-en-16- 1.09 µg/mL* one 12-epi-deoxoscalarin tryptophol 5.08 µg/mL** T. b. rhodesiense pandaroside G pandaroside G Steroidal Saponins one 0.38 µM* acanthifolium et al., 2010) L. donovani pandaroside G pandaroside G Steroidal Saponins 0.51 µM* acanthifolium t. donovani pandaroside G pandaroside G 0.051 µM* pandaroside G Cyclic Polyketide plakortide Q Peroxides 10-carboxy-11,12,13,14- 0.940 µM* tetranor-plakortide Q Peroxides Dd2 P. falciparum pasamaplysin F Bromotyrosine alkaloid 1.4 µM** alkaloid 0.60 µM* W2 P. falciparum discorhabdins A plakortide C Pyrroloiminoq-uinone 0.05 µM* discorhabdins A Pyrroloiminoq-uinone 0.05 µM* 0.17 µM* 0.05 µM* Aleutian Islands (Na et al., 2010)<		4-liyuloxy-5- octaprenylbenzoic acid		1.57 µg/IIIL			
diterpenes dorisenone D0.43 μg/mL*11β-acetoxyspongi-12-en-16- one1.09 μg/mL*12-epi-deoxoscalarin tryptophol7.48 μg/mL**12-epi-deoxoscalarin tryptophol5.08 μg/mL**1. b. rhodesiensepandaroside G pandaroside G methyl ester0.78 μM* 0.038 μM* 0.038 μM* 0.038 μM*Caribbean Sea et al., 2010)L donovanipandaroside G pandaroside G pandaroside GSteroidal Saponins0.78 μM* 0.038 μM* 0.038 μM* 0.038 μM*Caribbean Sea et al., 2010)L donovanipandaroside G pandaroside G1.3 μM** pandaroside GCyclic Polyketide PeroxidesPlakortis sp.Australia 2012)T. b. brucei11,12-didehydro-13-oxo- plakortide Q 10-carboxy-11,12,13,14- tetranor-plakortide Q 927Cyclic Polyketide PeroxidesO.940 μM*Plakortis sp.Australia 2012)Dd2 P. falciparum MOan amphilectine ABromotyrosine alkaloid diterpenoid β-lactam alkaloid0.60 μM* 4Hyattella sp. Hymeniacidon sp.Hervey Bay, Mona Island, Rodriguez, 2010)D6 P. falciparum discorhabdins C dihydrodiscorhabdin CPyrroloiminoq-uinone alkaloid0.05 μM* 4Latrunculia sp.Aleutian Islands 2010)W2 P. falciparum discorhabdins A discorhabdin CO.05 μM* 0.55 μM*Latrunculia sp.Aleutian Islands 2010)		squalene		1.16 µg/mL*			
Tiβ-acetoxyspongi-12-en-16- one1.09 µg/mL*11β-acetoxyspongi-12-en-16- one7.48 µg/mL** tryptophol7. b. rhodesiensepandaroside G pandaroside G methyl ester5.08 µg/mL** Steroidal Saponins0.78 µM* 0.038 µM* 0.038 µM*Pandaros acanthifoliumCaribbean Sea et al., 2010)L. donovanipandaroside G methyl ester0.038 µM* pandaroside G methyl ester0.051 µM* Plakortis sp.Caribbean Sea et al., 2010)L. donovanipandaroside G methyl ester0.051 µM* ProxidesPlakortis sp.AustraliaT. b. brucei11,12-didehydro-13-oxo- plakortide Q 10-carboxy-11,12,13,14- tetranor-plakortide QCyclic Polyketide Peroxides0.940 µM* 0.87 µM*Plakortis sp.AustraliaDd2 P. falciparum W2 P. falciparummonamphilectine Aditerpenoid β-lactam alkaloid0.60 µM* 0.65 µM*Hymeniacidon sp. Latrunculia sp.Hervey Bay, Mona Island, Puerto Rico Rodríguez, 2010)D6 P. falciparum W2 P. falciparumdiscorhabdins A discorhabdins C dihydroiscorhabdin CPyrroloiminoq-uinone alkaloid0.05 µM* 0.05 µM*Latrunculia sp.Aleutian Islands 2010)W2 P. falciparum discorhabdins A dihydroiscorhabdin C0.91 µM* 0.95 µM*Latrunculia sp.Aleutian Islands 2010)		diterpenes dorisenone D		$0.43 \mu g/mL^*$			
one 12-epi-deoxoscalarin 7.48 µg/mL** T. b. rhodesiense pandaroside G Steroidal Saponins 0.78 µM* Pandaros Caribbean Sea (Regalado L. donovani pandaroside G Steroidal Saponins 0.78 µM* acanthifolium et al., 2010) L. donovani pandaroside G Steroidal Saponins 0.78 µM* acanthifolium et al., 2010) L. donovani pandaroside G methyl ester 0.038 µM* acanthifolium et al., 2010) L. donovani pandaroside G methyl ester 0.051 µM* Plakortis sp. Australia (Feng et al., 2012) T.b. brucei 11,12-didehydro-13-oxo- Cyclic Polyketide 0.049 µM* Plakortis sp. Australia 2012) 10-carboxy-11,12,13,14- terranor-plakortide Q peroxides 2012) 2012) Dd2 P. falciparum monamphilectine A diterpenoid β-lactam 0.60 µM* Hymeniacidon sp. Mona Island, (Avilés and Rodríguez, 2010) W2 P. falciparum discorhabdins A Pyrroloiminoq-uinone 0.05 µM* Latrunculia sp. Aleutian Islands (Na et al., 2010) W2 P. falciparum discorhabdins C		11β-acetoxyspongi-12-en-16-		1.09 μg/mL*			
12-epi-deoxoscalarin tryptophol7.48 μg/mL** 5.08 μg/mL**7.48 μg/mL** 5.08 μg/mL**7.48 μg/mL** 5.08 μg/mL**T. b. rhodesiensepandaroside G pandaroside G methyl esterSteroidal Saponins0.78 μM* 0.038 μM* 0.038 μM* 0.038 μM* 0.051 μM*Pandaros acanthifoliumCaribbean Sea et al., 2010)(Regalado et al., 2010)L. donovanipandaroside G pandaroside G methyl ester0.31 μM** 0.051 μM*Pankortis sp.Australia(Feng et al., 2012)T.b. brucei11,12-didehydro-13-oxo- plakortide Q 0-carboxy-11,12,13,14- tetranor-plakortide QCyclic Polyketide Peroxides0.940 μM*Plakortis sp.Australia 2012)(Feng et al., 2012)Dd2 P. falciparum 3D7 P. falciparumpanmaphysin FBromotyrosine alkaloid alkaloid1.4 μM** 0.87 μM*Hyattella sp. Hymeniacidon sp.Hervey Bay, Australia(Yang et al., 2010)D6 P. falciparum discorhabdins C dihydrodiscorhabdin CPyrroloiminoq-uinone alkaloids0.05 μM*Latrunculia sp.Aleutian Islands 2010)(Na et al., 2010)W2 P. falciparumdiscorhabdins A dihydrodiscorhabdin CPyrroloiminoq-uinone alkaloids0.05 μM*Latrunculia sp.Aleutian Islands 2010)(Na et al., 2010)		one					
tryptophol5.08 μg/mL**T. b. rhodesiensepandaroside G pandaroside G methyl esterSteroidal Saponins0.78 μM* 0.038 μM* acanthifoliumPandaros acanthifoliumCaribbean Sea et al., 2010)L. donovanipandaroside G monaroside G methyl ester1.3 μM** 0.051 μM*acanthifoliumet al., 2010)T. b. brucei11,12-didehydro-13-oxo- plakortide Q 10-carboxy-11,12,13,14- tetranor-plakortide QCyclic Polyketide Peroxides0.049 μM* 0.940 μM*Plakortis sp.Australia(Feng et al., 2012)Dd2 P. falciparum 3D7 P. falciparumpsammaplysin FBromotyrosine alkaloid alkaloid1.4 μM** 0.87 μM*Hyattella sp.Hervey Bay, Australia(Yang et al., AustraliaW2 P. falciparum discorhabdins C dihydrodiscorhabdin Cditerpenoid β-lactam alkaloid0.05 μM* 0.17 μM*Latrunculia sp.Aleutian Islands 2010)(Na et al., 2010)W2 P. falciparum discorhabdins A ditorhabdins APyrroloiminoq-uinone alkaloid0.05 μM*Latrunculia sp.Aleutian Islands 2010)(Na et al., 2010)		12-epi-deoxoscalarin		7.48 μg/mL**			
T. b. rhodesiensepandaroside G pandaroside G methyl esterSteroidal Saponins0.78 μM* 0.038 μM*Pandaros acanthifoliumCaribbean Sea(Regalado et al., 2010)L. donovanipandaroside G pandaroside G mandaroside G methyl ester1.3 μM** 0.051 μM*acanthifoliumet al., 2010)T. b. brucei11,12-didehydro-13-oxo- plakortide Q 10-carboxy-11,12,13,14- tetranor-plakortide QCyclic Polyketide Peroxides0.049 μM*Plakortis sp.Australia(Feng et al., 2012)Dd2 P. falciparum 3D7 P. falciparumpsammaplysin FBromotyrosine alkaloid alkaloid1.4 μM** 0.87 μM*Hyattella sp.Hervey Bay, Australia(Yang et al., 2010)W2 P. falciparumdiscorhabdins A discorhabdins C dihydrodiscorhabdin CPyrroloiminoq-uinone alkaloid0.05 μM*Latrunculia sp.Aleutian Islands 2010)(Na et al., 2010)W2 P. falciparumdiscorhabdins A discorhabdins APyrroloiminoq-uinone alkaloid0.05 μM*Latrunculia sp.Aleutian Islands 2010)(Na et al., 2010)		tryptophol		5.08 μg/mL**			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T. b. rhodesiense	pandaroside G	Steroidal Saponins	0.78 μM*	Pandaros	Caribbean Sea	(Regalado
L. donovanipandaroside G1.3 μM**pandaroside G methyl ester0.051 μM*T.b. brucei11,12-didehydro-13-oxo- plakortide QCyclic Polyketide Peroxides0.049 μM*Plakortis sp.Australia(Feng et al., 2012)10-carboxy-11,12,13,14- tetranor-plakottide Q0.940 μM*0.940 μM*2012)2012)Dd2 P. falciparum 3D7 P. falciparumpsammaplysin FBromotyrosine alkaloid diterpenoid β-lactam alkaloid1.4 μM** 0.87 μM*Hyattella sp.Hervey Bay, Australia(Yang et al., 2010)W2 P. falciparummonamphilectine Aditerpenoid β-lactam alkaloid0.60 μM*Hymeniacidon sp.Mona Island, Puerto Rico(Avilés and Puerto RicoD6 P. falciparumdiscorhabdins A discorhabdins C dihydrodiscorhabdin CPyrroloiminoq-uinone alkaloid0.05 μM*Latrunculia sp.Aleutian Islands 2010)W2 P. falciparumdiscorhabdins C dihydrodiscorhabdin C0.17 μM*2010		pandaroside G methyl ester		0.038 μM*	acanthifolium		et al., 2010)
pandaroside G methyl ester0.051 μM*T.b. brucei11,12-didehydro-13-oxo- plakortide Q 10-carboxy-11,12,13,14- tetranor-plakottide QCyclic Polyketide Peroxides0.049 μM*Plakortis sp.Australia (Feng et al., 2012)Dd2 P. falciparumpsammaplysin FBromotyrosine alkaloid diterpenoid β-lactam alkaloid1.4 μM** 0.87 μM*Hyattella sp.Hervey Bay, Australia(Yang et al., 2010)W2 P. falciparummonamphilectine A discorhabdins C dihydrodiscorhabdin Cditerpenoid β-lactam alkaloids0.60 μM* 2.80 μM**Hymeniacidon sp. Latrunculia sp.Mona Island, Puerto Rico 2010)(Na et al., 2010)W2 P. falciparumdiscorhabdins A discorhabdins C dihydrodiscorhabdin CPyrroloiminoq-uinone alkaloid0.05 μM* 2.80 μM**Latrunculia sp.Aleutian Islands (Na et al., 2010)W2 P. falciparumdiscorhabdins A discorhabdins A discorhabdin S0.05 μM* 0.05 μM*Latrunculia sp.Aleutian Islands 2010)	L. donovani	pandaroside G		1.3 μM**			
1.b. brucei 11,12-didehydro-13-oxo- plakortide Q Cyclic Polyketide 0.049 μM* Plakortis sp. Australia (Feng et al., 2012) plakortide Q Peroxides 2012) 2012) 10-carboxy-11,12,13,14- tetranor-plakottide Q 0.940 μM* 2012) 2012) Dd2 P. falciparum psammaplysin F Bromotyrosine alkaloid 1.4 μM** Hyattella sp. Hervey Bay, Australia (Yang et al., 2010) W2 P. falciparum monamphilectine A diterpenoid β-lactam alkaloid 0.60 μM* Hymeniacidon sp. Mona Island, Puerto Rico (Avilés and Puerto Rico D6 P. falciparum discorhabdins A discorhabdins C dihydrodiscorhabdin C Pyrroloiminoq-uinone discorhabdin C 0.05 μM* Latrunculia sp. Aleutian Islands (Na et al., 2010) W2 P. falciparum discorhabdins A discorhabdins A 0.17 μM* 0.05 μM* 2010)		pandaroside G methyl ester		0.051 μM*		A	
Dd2 P. falciparum psammaplysin F Bromotyrosine alkaloid 1.4 μM** Hyattella sp. Hervey Bay, (Yang et al., 3D7 P. falciparum monamphilectine A diterpenoid β-lactam 0.60 μM* Australia 2010) W2 P. falciparum discorhabdins A Pyrroloiminoq-uinone 0.05 μM* Latrunculia sp. Aleutian Islands (Na et al., 010 discorhabdins C alkaloid 2.80 μM** 2010) 2010) W2 P. falciparum discorhabdins C alkaloids 2.80 μM** 2010) W2 P. falciparum discorhabdins C 0.17 μM* 2010)	1.b. brucei	11,12-didenydro-13-oxo-	Cyclic Polyketide	0.049 μM [∞]	Plakortis sp.	Australia	(Feng et al.,
bit bit is a construction of a local body if (12,15), if a construction of a local body is a local body if (12,15), if a construction of a local body is a local body if (12,15), if a construction of a local body is a local body if (12,15), if a construction of a local body is a local body if (12,15), if a construction of a local body is a local body if (12,15), if a construction of a local body is a local body if (12,15), if a construction of a local body is a local body is a local body if (12,15), if a construction of a local body is a local body if (12,15), if a construction of a local body is a local body if (12,15), if a construction of a local body is a local body if (12,15), if a		plakorude Q 10-carboyy-11 12 13 14-	Peroxides	0 940 uM*			2012)
Dd2 P. falciparum psammaplysin F Bromotyrosine alkaloid 1.4 μM** Hyattella sp. Hervey Bay, (Yang et al., 3D7 P. falciparum monamphilectine A diterpenoid β-lactam alkaloid 0.87 μM* Australia 2010) W2 P. falciparum monamphilectine A diterpenoid β-lactam alkaloid 0.60 μM* Hymeniacidon sp. Mona Island, Puerto Rico Rodríguez, 2010) D6 P. falciparum discorhabdins A discorhabdins C alikaloids Pyrroloiminoq-uinone alkaloids 0.05 μM* Latrunculia sp. Aleutian Islands (Na et al., 2010) W2 P. falciparum discorhabdins C alikaloids alkaloids 2.80 μM** 2010) 2010) W2 P. falciparum discorhabdins A 0.17 μM* 2010) 2010)		tetranor-plakortide O		0.540 µM			
3D7 P. falciparum 0.87 μM* Australia 2010) W2 P. falciparum monamphilectine A diterpenoid β-lactam alkaloid 0.60 μM* Hymeniacidon sp. Mona Island, Puerto Rico (Avilés and Rodríguez, 2010) D6 P. falciparum discorhabdins A discorhabdins C dihydrodiscorhabdin C Pyrroloiminoq-uinone alkaloids 0.05 μM* Latrunculia sp. Aleutian Islands (Na et al., 2010) W2 P. falciparum discorhabdins A discorhabdins C 0.17 μM* 2010) W2 P. falciparum discorhabdins A discorhabdins A 0.05 μM* 2.80 μM** 2010)	Dd2 P. falciparum	psammaplysin F	Bromotyrosine alkaloid	1.4 μM**	Hvattella sp.	Hervey Bay.	(Yang et al.,
W2 P. falciparum monamphilectine A diterpenoid β-lactam alkaloid 0.60 μM* Hymeniacidon sp. Mona Island, Puerto Rico (Avilés and Rodríguez, 2010) D6 P. falciparum discorhabdins A discorhabdins C dihydrodiscorhabdin C Pyrroloiminoq-uinone alkaloids 0.05 μM* Latrunculia sp. Aleutian Islands (Na et al., 2010) W2 P. falciparum discorhabdins A discorhabdins A 0.17 μM* 2010) W2 P. falciparum discorhabdins A 0.05 μM*	3D7 P. falciparum	F		0.87 μM*		Australia	2010)
alkaloid Puerto Rico Rodríguez, 2010) D6 P. falciparum discorhabdins A Pyrroloiminoq-uinone 0.05 µM* Latrunculia sp. Aleutian Islands (Na et al., discorhabdins C alkaloids 2.80 µM** 2010) dihydrodiscorhabdin C 0.17 µM* W2 P. falciparum discorhabdins A 0.05 µM*	W2 P. falciparum	monamphilectine A	diterpenoid <i>β</i> -lactam	0.60 μM*	Hymeniacidon sp.	Mona Island,	(Avilés and
D6 P. falciparum discorhabdins A Pyrroloiminoq-uinone 0.05 μM* Latrunculia sp. Aleutian Islands (Na et al., discorhabdins C alkaloids 2.80 μM** 2010) dihydrodiscorhabdin C 0.17 μM* 2010) W2 P. falciparum discorhabdins A 0.05 μM*	• •	•	alkaloid			Puerto Rico	Rodríguez,
D6 P. falciparum discorhabdins A Pyrroloiminoq-uinone 0.05 μM* Latrunculia sp. Aleutian Islands (Na et al., discorhabdins C alkaloids 2.80 μM** 2010) dihydrodiscorhabdin C 0.17 μM* 2010) W2 P. falciparum discorhabdins A 0.05 μM*							2010)
discorhabdins C alkaloids 2.80 µM** 2010) dihydrodiscorhabdin C 0.17 µM* W2 P. falciparum discorhabdins A 0.05 µM*	D6 P. falciparum	discorhabdins A	Pyrroloiminoq-uinone	0.05 μM*	Latrunculia sp.	Aleutian Islands	(Na et al.,
dihydrodiscorhabdin C 0.17 μM* W2 P. falciparum discorhabdins A 0.05 μM*		discorhabdins C	alkaloids	2.80 μM**			2010)
W2 P. falciparum discorhabdins A 0.05 μM*		dihydrodiscorhabdin C		0.17 μM*			
	W2 P. falciparum	discorhabdins A		0.05 μM*			
discornabalis C 2.00 µM*		discornabdins C		2.00 μM*			
University of the strength of	D10 P falcingrum	Manadonorovido A	andonorovukatal	0.15 μlvi 6.99 μM**	Dlakortic cfr. cimpley	Pupakon Marino	(Eattorusso
Manadoperovide B polyketides 6.76 µM** Parkotts (J. Sinplex Danaketi Manado et al. 2010)	DTO F. Juicipurum	Manadoperoxide B	nolyketides	6.76 μM**	Flukortis Gr. simplex	Park of Manado	et al 2010)
Manadoperoxide C manadoperoxides 4.54 µM** Indopersia		Manadoperoxide C	manadoperoxides	4 54 μM**		Indonesia	ct al., 2010)
Manadoperoxide D 10.38 uM**		Manadoperoxide D	manadoperonaco	10.38 uM**		maonesia	
W2 Plasmodium Manadoperoxide A 3.74 µM**	W2 Plasmodium	Manadoperoxide A		3.74 μM**			
falciparum Manadoperoxide B 3.69 μ M**	falciparum	Manadoperoxide B		3.69 µM**			
Manadoperoxide C 2.33 μ M**		Manadoperoxide C		2.33 μM**			
Manadoperoxide D 7.93 μ M**		Manadoperoxide D		7.93 μM**			
W2 P. falciparum epiplakinic acid F methyl ester Cycloperoxides $4 \mu g/mL^{**}$ Plakortis Mona Island, (Jiménez-	W2 P. falciparum	epiplakinic acid F methyl ester	Cycloperoxides	4 μg/mL**	Plakortis	Mona Island,	(Jiménez-
plakortolide J >10 µg/mL** halichondrioides Puerto Rico Romero et al.,		plakortolide J		>10 µg/mL**	halichondrioides	Puerto Rico	Romero et al.,
epiplakinidioic acid $0.3 \mu g$ /mL [*] 2010)		epiplakinidioic acid		0.3 μg/mL*			2010)
polyketides epiptakinic acid r $3 \mu g/mL^{**}$		polyketides epiplakinic acid F		3 μg/mL**			
Pitekonourier >10 µg/iii. 207 P. folcingrum Halidona cup Solomon Islando (Mari et al.	3D7 P falcinarum	Flakonoliue F Haliclonacyclaming A	Diperiding alkaloid	10 μg/IIIL 0.7 μM*	Haliclona con	Solomon Islands	(Mani et al
FCR1 P falcingum reactionacyclammer reaction 0,7 µm reactionacyclammer 2011 (Mall et al., 2011) FCR1 P falcingum 011 (M* 2011)	FCB1 P falcinarum	Hancionacyclamme A	i iperiunie aikalulu	0.7 μm 0.11 μM*	nunciona spp.	JOIOTHOIT ISIdHUS	2011)
L donovani acanthifolioside A (1) steroid glycosides 8.5 uM** Pandaros Martinique Island (Regalado	L. donovani	acanthifolioside A (1)	steroid glycosides	8.5 uM**	Pandaros	Martinique Island	(Regalado
acanthifoliside D (4) 5.7 μ M** acanthifolium et al. 2011)		acanthifolioside D (4)		5.7 μM**	acanthifolium		et al., 2011)
acanthifolioside E (5) 9.4 μ M**		acanthifolioside E (5)		9.4 μM**			,
acanthifolioside F (7) $5.7 \mu M^{**}$		acanthifolioside F (7)		5.7 μM**			

Target parasite	Extracted compounds	Chemistry	Concentration IC ₅₀	Spongy	Country	References
P. falciparum	acanthifolioside A (1),		7.6 μM**			
	acanthifolioside F (7)		9.2 μM**			
T. b. rhodesiense	acanthifolioside F (7)	D	6.4 μM**	.,		
I. CTUZI P. falcinarum	aeroplysinin-1 (1)	Bromotyrosine	IU μM** 5M**	Verongula rigida	Columbia	(Galeano
P. Juicipurum L. nanamensis	11-hydroxyaerothionin (8)		5 μινι 10 μM**			et al., 2011)
3D7 P. falciparum	psammaplysin H	Bromotyrosine alkaloid	0.41 μM*	Pseudoceratina sp.	-	(Xue et al.,
•	psammaplysins G	•	5.22 μM**			2004)
	psammaplysins F		1.92 μM**			
T. b. rhodesiense	manadoperoxide B	Manadoperoxides	0.003 μg/mL*	Plakortis cfr. lita	Indonesia	(Chianese
	manadoperoxide F		0.078 μg/IIL 0.792 μg/mL*			et al., 2012)
	manadoperoxide G		1.84 μg/mL*			
	manadoperoxide H		0.315 µg/mL*			
	manadoperoxide I		0.062 μg/mL*			
I donovani	manadoperoxide K		0.087 μg/mL* 0.589 μg/mL*			
L. donovani	manadoperoxide C		3.24 μg/mL ^{**}			
	manadoperoxide F		5.73 µg/mL**			
	manadoperoxide G		3.22 μg/mL**			
	manadoperoxide H		2.44 μg/mL*			
	manadoperoxide I manadoperoxide K		0.633 μg/IIIL 1.89 μg/mL*			
3D7 P. falciparum	psammaplysins, 19-	Bromotyrosine alkaloid	6.4 μM**	Aplysinella	Indonesia	(Mudianta
•	hydroxypsammaplysin E	·	·	strongylata		et al., 2012)
FCB1 P. falciparum	Araplysillin I	Bromotyrosine alkaloid	4.5 μM**	Suberea	Solomon Islands,	(Mani et al.,
	Araplysillin I (1) salt		5.3 μM** 2.6 μM**	ianthelliformis	South Pacific	2012)
	Araplysillin N20-		5.0 µM**			
	hydroxyformamide		olo pili			
	Purealidin Q		3.6 µM**			
	Aerothionin		3.4 μM**			
	Homoaerothionin Aplysipope D		2.8 μM** 1.0 μM**			
	11.19-Dideoxyfistularin 3		2.1 μM ^{**}			
	11-Hydroxyfistularin 3		2.1 μM**			
3D7 P. falciparum	Araplysillin I		4.6 μM**			
	Araplysillin I (1) salt		4.5 μM** 7.0 μM**			
	Arapiysiiiin N20-iormaniide Arapiysillin N20-		7.0 μM** 4.1 μM**			
	hydroxyformamide		1.1 parts			
	Aerothionin		4.2 μM**			
	Homoaerothionin		4.0 μM**			
	Aplysinone D		3.1 μM** 0 9 μM*			
	11-Hydroxyfistularin 3		2.6 μM**			
T. brucei brucei	Iotrochamides A	N-cinnamoyl-amino	3.4 μM**	lotrochota sp.	Australia	(Feng et al.,
	Iotrochamides B	acids	4.7 μM**			2012)
3D7 P. falciparum	Tsitsikammamine C	bispyrroloiminoquinone	0.013 μM *	Zyzzya sp.	Australia	(Davis et al.,
	Makaluvamines J Makaluvamines G	alkalold	0.025 μM [*] 0.036 μM*			2012)
	Makaluvamines L		0.04 μM*			
	Makaluvamines K		0.039 μM*			
	Damirones A		1.88 μM**			
Dd2 P falcinarum	Damirones B Tsitsikammamine C		12.25 μM ^{**} 0.018 μM [*]			
Duz 1. lateiparum	Makaluvamines I		0.022 μM*			
	Makaluvamines G		0.039 μM*			
	Makaluvamines L		0.021 μM*			
	Makaluvamines K		0.3 μM*			
	Damirones B		0.36 μινι 3.8 μΜ**			
D6 P. falciparum	ingamine A	pentacyclic ingamine	0.09 μg/mL*	Petrosid Ng5 Sp5	Australia	(Ilias et al.,
	22(S)-hydroxyingamine A	alkaloids	0.22 μg/mL*	- 1		2012)
14/2 D 6-1	dihydroingenamine D		0.078 μg/mL*			
vv2 P. falciparum	111gamine A 22(S)-bydroxyingamine A		$0.072 \ \mu g/mL^{*}$			
	dihydroingenamine D		0.057 μg/mL*			
L. donovani	ingamine A		5.98 μg/mL**			
	22(S)-hydroxyingamine A		5.83 μg/mL**			
3D7 P falsing	dihydroingenamine D	Thiszing Alkaloida	3.12 μg/mL**	Plakortis lita	Australia	(Davis et al
Dd2 P. falcinarum	ппаріакопопе А.	THIAZHIC AIKAIUIUS	0.006 μM*		AUSUIdiid	(Davis et al., 2013)
2 az jaiciparam						_0.0,

(continued on next page)

O. Mostafa, M. Al-Shehri and M. Moustafa

Table 2 (continued)

Target parasite	Extracted compounds	Chemistry	Concentration IC ₅₀	Spongy	Country	References
FcM29 P. falciparum	Plakortide U	Endoperoxide	0.3 μg/ml*	Plakinastrella	Fiji Islands,	(Festa et al.,
	Plakortides R	polyketides	1.62 μg/ml*	mamillaris	Melanesia, South	2013)
T h rhodesiense	Plakortides I manadoperovide B (1)	Endoperovide	19.1 μg/ml*** 0.003 μg/ml*	Plakortis cfr lita	Pacific Ocean	(Chianese
1. D. HIOUESIENSE	12-isomanadoperoxide B (2)	polyketides	$0.003 \ \mu g/ml^*$	Tukonus cjr. illu	muonesia	et al., 2013)
	manadoperoxidic acid B (3)	FJ	1.87 μg/ml*			
FCB1 P. falciparum	Glycosphingolipids:	glycosphingolipids	0.53 μM*	Axinyssa djiferi	Senegal	(Farokhi et al.,
	axidjiferoside-A, -B and -C					2013)
D10 P. falciparum	Endoperoxide polyketide 1	Endoperoxide	3.89 μM**	Plakortis simplex	China	(Chianese
	Endoperoxide polyketide 2	polyketides	4.05 μM**			et al., 2014)
	Endoperoxide polyketide 5		6.18 μM**			
	Endoperoxide polyketide 7		5.12 μM**			
W2 P. falciparum	Endoperoxide polyketide 1		2.91 μM**			
	Endoperoxide polyketide 2		2.70 μM**			
	Endoperoxide polyketide 3		1.56 μM**			
	Endoperoxide polyketide 5		4.98 μM ^{**}			
	Endoperoxide polyketide 7		4.10 μM ^{**}			
T. bruci	plakortide E	Endoperoxide	5 μM**	Plakortis	Bahamas	(Oli et al.,
	-	•		halichondrioides		2014)
D6 P. falciparum	norditerpene diacarperoxide J	Norditerpene	1.6 μM**	Diacarnus	China	(Yang et al.,
W2 P. falciparum	24 stand shalest 0 20	endoperoxides	1.8 μM**	megaspinorhabdosa	Turala and	2014a)
i. prucei prucei	24-vinyi-choiest-9-ene-3β	Sterolas	21.56 μM ^{**} 4.58 μM ^{**}	Haliciona simulans	ireiand	(viegeimann et al. 2014)
	en-38-ol.50.80-enidioxy		ч.Jo µімі			ci di., 2014j
	24-methylenecholesterol		9.01 μM**			
L. donovani	Scalarane sesterterpene,	Norditerpene	32.9 μg/mL***	Hyrios sp.	Paracel islands	(Yang et al.,
	sesterstamide	endoperoxides				2014a)
P. falciparum	Netamine K	Tricyclic Alkaloids	2.4 μM**	Biemna laboutei	Madagascar	
н. contortus	v-w-acyladenine alkaloid,	AIKAIOIO	граа зт hg/mr***	Pnoriospongia sp.	Australia	(Farrugia et al. 2014)
P. falciparum	Sesquiterpene isonitrile 7.20-	Isonitriles	0.013 μM*	Cvmbastela hooneri	_	(Young et al.
·	diisocyanoadociane					2015)
3D7 P. falciparum	isocyanide amphilectane-type	isocyanide	0.044 μM*	Svenzea flava	Caribbean Sea	(Avilés et al.,
	diterpenes monamphilectines B	amphilectane-type				2015)
	diterpopes monamphilectines C	diterpenes	0.043 μM*			
T. cruzi	Monalidine A	Guanidine and	8 μM**	Monanchoraarhuscula	Brazil	(Santos et al
trypomastigotes	Batzelladine D	Pyrimidine Alkaloids	64 μM***			2015)
	Batzelladines F		5 μM**			-
	Batzelladines L		2 μM**			
L infantum	Norbatzelladine L		7 μM** 2 μM**			
promastigotes	Batzelladine D		∠ μινι 2 μM**			
promuorigotes	Batzelladines F		4 μM**			
	Batzelladines L		2 μM**			
	Norbatzelladine L		2 μM**			
P. falciparum	Netamines O	Tricyclic Guanidine	16.99 μM**	Biemna laboutei	Madagascar	(Gros et al.,
	Netamines P	Alkaloids	32.62 μM*** 8 37 μM**			2015)
3D7 P. falcinarum	sulfated polysaccharides	sulfated polysaccharides	6.3 μg/ml***	Desmansamma	_	(Marques
ser i, jaciparam	sanated porysacchanaes	sanatea porysacenarides	55.5 µB/IIII	anchorata		et al., 2016)
W2 P. falciparum	norterpene cyclic peroxides1	Norterpene cyclic	4.2 μM**	Diacarnus	Xisha Islands,	(Yang et al.,
	norterpene cyclic peroxides2	peroxides	3.0 µM**	megaspinorhabdosa	South China Sea	2016)
	norterpene cyclic peroxides 3		1.6 μM**			
	norterpene cyclic peroxides4		4.9 μM** 5.6 μM**			
	norterpene cyclic peroxides6		5.5 μM**			
	norterpene cyclic peroxides7		1.9 μM**			
D6 P. falciparum	norterpene cyclic peroxides1		5.6 μM**			
	norterpene cyclic peroxides2		6.5 μM**			
	norterpene cyclic peroxides 3		2.2 μM**			
	norterpene cyclic peroxides5		7.3 μM** 8.6 μM**			
	norterpene cyclic peroxides6		8.1 uM**			
	norterpene cyclic peroxides7		2.0 μM**			
T. b. rhodesiense	ircinin-1 (1)	Linear	97 μM***	Ircinia oros	Gökçeada,	(Chianese
	ircinin-2 (2)	Furanosesterterpenoids	65 μM***		Northern Aegean	et al., 2017)
	ircinialactam E (3)		130 μM*** 120 μM***		Sea, Turkey	
T cruzi	ircinialactam F (4)		130 μM*** 120 μM***			
1. 11 1121	ircinin-2 (2)		120 μW 110 μM***			
	ircinialactam E (3)		-			

Table 2 (continued)

Target parasite	Extracted compounds	Chemistry	Concentration IC ₅₀	Spongy	Country	References
L. donovani	ircinin-1 (1)		31 μM***			
	ircinin-2 (2)		28 µM***			
	ircinialactam E (3)		120 μM***			
	ircinialactam F (4)		95 μM***			
P. falciparum	ircinin-1 (1)		58 μM***			
	ircinin-2 (2)		56 μM***			
	ircinialactam E (3)		95 μM***			
	ircinialactam F (4)		>100 µM***			
3D7 P. falciparum	8-oxo-tryptamine (4)	Guanidine	8.8 μg/mL**	Monanchora	Madagascar	(Campos et al.,
	mixture of (E) and (Z)-6-	Alkaloids	8.0 μg/mL**	unguiculata		2017)
	bromo-20-demethyl-30-N-					
2007 D () ;	methylaplysinopsin (6, 7)	D 1 411 1 1		m 1 · 1 · ··· ·	D 11 D: 1	
3D7 P. falciparum	pseudoceratidine I	Bromopyrrole Alkaloids	I.I μM** 5.0 μM**	Tedania braziliensis	Brazil, Rio de	(Parra et al.,
	pseudoceratione derivative		5.8 µM		Janeiro state	2018)
	4 + 5		4 uM**			
	pseudoceratidine derivative 73		- μM 2 μM**			
	pseudoceratidine derivative 25		2 µM**			
	pseudoceratidine derivative 31		7 µM**			
	pseudoceratidine derivative 50		3 μM**			
L. infantum	pseudoceratidine derivative 20		24 μM***			
promastigote	pseudoceratidine derivative 23		19 μM**			
	pseudoceratidine derivative 27		24 µM***			
	pseudoceratidine derivative 42		20 µM***			
	pseudoceratidine derivative 50		23 μM***			
L. amazonesis	pseudoceratidine derivative 20		19 μM**			
promastigote	pseudoceratidine derivative 23		44 μM***			
	pseudoceratidine derivative 27		43 μM***			
	pseudoceratidine derivative 42		76 μM***			
	pseudoceratidine derivative 50		18 μM**			
T. cruzi epimastigote	pseudoceratidine derivative 20		7 μM**			
	pseudoceratidine derivative 27		24 μM***			
Dd2 P. falciparum	smenotronic acid (1)	Sesquiterpenods	3.51 μM**	Hyrtios erectus	Chuuk Island,	(Ju et al.,
	nalaral (2)		2.11 μM ^{**}		rederated States	2018)
Th hmucoi	peloroi (3)	alltalaid	0.8 µM	Uniting on	of Microfiesia	(Shady at al
1. D. Drucei	Hyrtiodollile A	aikaioiu	40 II (IC50 = 15.26 µmol/I)	Hyruos sp.	Egypt	(Shady et al., 2018)
			$(1030 - 13.20 \mu mol/L)$			2010)
			$(IC50 = 7.48 \mu mol/L)$			
FCR3 P. falciparum	Ceratinadins E	Bromotyrosine Alkaloids	0.77 ug/mL*	Pseudoceratina sp.	lapan	(Kurimoto
5	Psammaplysin F	, i i i i i i i i i i i i i i i i i i i	2.45 µg/mL *	· · · · · · · · · · · · · · · · · · ·	5.1	et al., 2018)
K1 P. falciparum	Ceratinadins E		1.03 μg/mL			
5 1	Psammaplysin F		3.77 μg/mL**			
3D7 P. falciparum	kaimanol	Sterol	0.359 µM *	Xestospongia sp.	Indonesia	(Murtihapsari
	saringosterol		0.00025 μM*			et al., 2021)
3D7 P.falciparum	8-oxo-tryptamine (4)	Tryptamine alkaloids	8.8 μg/mL**	Fascaplysinopsis	Mayotte (Indian	(Campos et al.,
	mixture of (E) and (Z)-6-		8.0 μg/mL**	reticulata	Ocean)	2019)
	bromo-20 -demethyl-30 -N-					
	methylaplysinopsin (6, 7)					
D10 P. falciparum	avarone	sesquiterpene quinone	2.74 μM**	Dysidea avara	Turkey	(Imperatore
	Iniazoavarone	avarone	0.38 μM [*]			et al., 2020)
	avarol		U.96 μM [*] 2.00 μM**			
vv2 P. falcıparum	avarone		2.09 μM** 0.21 μM*			
	Iniazoavarone		0.21 μM [*]			
D falsing	avaroi		1.10 μM**			
P. Juicipurum	Thissesterene		15.55 µW			
2 3D7 transgenic	avarol		0.30 µM**			
line	avaiOi		5.50 µm			
promastignte stage	avarone		28 21 µM***			
of L infantum	Thiazoavarone		8 78 µM**			
or 2. injuntum	avarol		7.42 μM**			
promastigote stage	avarone		20.28 μM***			
of L. tropica	Thiazoavarone		9.52 μM**			
	avarol		7.08 μM**			
amastigote stage of L.	avarone		7.64 μM**			
infantum.	Thiazoavarone		4.99 μM**			
	avarol		3.19 µM**			
S. mansoni	avarone		42.77 μM***			
schistosomula	Thiazoavarone		5.90 µM**			
	avarol		33.97 μM***			
C2C4 T cruzi		D	10 M**	Anhycinolla rhay	Fiji Islands	(Oluwahusola
	bisaprasin	Bromotyrosine Alkaloids	19 μίνι	Apiysinena max	i iji islands	(Oldwabusola

**** inactive, ** moderately active, * good potent active.

Table3

List of isolated compounds with potent antiparasitic activity based on IC₅₀ measurement.

	Extracted compounds	Target parasites/strains	References
1	dibromopalau'amine	T. brucei rhodesiense, L. donovani, K1 P. falciparum	(Scala et al., 2010)
2	longamide B	T. brucei rhodesiense	
3	spongiacidin B	K1 P. falciparum	
4	dispacamide B	K1 P. falciparum	
5	4-hydroxy-3-tetraprenylphenylacetic acid	T. brucei rhodesiense	(Orhan et al., 2010)
6	diterpenes dorisenone D	T. brucei rhodesiense. K1 P. falciparum	()
7	11B-acetoxyspongi-12-en-16-one	L. donovani, K1 P. falciparum	
8	4-hydroxy-3-octaprenylbenzoic acid	K1 P. falciparum	
9	squalene	K1 P. falciparum	
10	pandaroside G	T. b. rhodesiense	(Regalado et al., 2010)
11	pandaroside G methyl ester	T. b. rhodesiense. L. donovani	
12	11.12-didehvdro-13-oxo-plakortide O	T.b. brucei	(Feng et al., 2010)
13	10-carboxy-11.12.13.14-tetranor-plakortide O	T.b. brucei	(1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
15	monamphilectine A	W2 P. falciparum	(Avilés and Rodríguez, 2010)
16	discorhabdins A	D6 P. falciparum, W2 P. falciparum	(Na et al., 2010)
17	dihvdrodiscorhabdin C	D6 P. falciparum, W2 P. falciparum	
18	epiplakinidioic acid	W2 P. falciparum	(Jiménez-Romero et al., 2010)
19	Haliclonacyclamine A	3D7 P falciparum FCB1 P falciparum	(Mani et al. 2011)
20	manadoperoxide B	T h rhodesiense I donovani	(Chianese et al. 2012)
21	manadoperoxide C	T h rhodesiense	(cinanese et al., 2012)
22	manadoperoxide F	T h rhodesiense	
23	manadoperoxide G	T h rhodesiense	
23	manadoperoxide H	T h rhodesiense I donovani	
25	manadoperoxide I	T h rhodesiense L donovani	
26	manadoperoxide K	T h rhodesiense I donovani	
20	Tsitsikammamine C	3D7 P falcingrum Dd2 P falcingrum	(Davis et al. 2012)
27	Makaluvamines I	3D7 P. falciparum, Dd2 P. falciparum	(Davis et al., 2012)
20	Makaluvamines G	3D7 P. falciparum, Dd2 P. falciparum	
30	Makaluvamines I	3D7 P. falciparum, Dd2 P. falciparum	
31	Makaluvamines E Makaluvamines K	3D7 P. falciparum, Dd2 P. falciparum	
32	Damirones A	Dd2 P falcinarum	
32	ingamine A	D6 P falcingrum W2 P falcingrum	(Ilias et al. 2012)
34	22(S)-bydroxyingamine A	D6 P falcingrum, W2 P falcingrum	(1145 ct ul., 2012)
35	dihydroingenamine D	D6 P. falciparum, W2 P. falciparum	
36	Thianlakortone A	3D7 P falcinarum Dd2 P falcinarum	(Davis et al. 2013)
37	Plakortide II	FcM29 P falcinarum	(Festa et al. 2013)
38	Plakortides R	rem25 r. julipurum	(105ta et al., 2015)
30	manadoperovide B (1)	T h rhodesiense	(Chianese et al. 2013)
40	12-isomanadoperoxide B (2)	1. b. mouestense	(cinalese et al., 2015)
40	manadoperoxidic acid B (3)		
42	Clycosphingolipids: axidiferoside-A _B & _C	FCB1 P falcingrum	(Farokhi et al. 2013)
43	Sesquiterpene isonitrile 7 20-diisocvanoadociane	P falcinarum	(Young et al. 2015)
44	isocyanide amphilectane-type diterpenes monamphilectines B	3D7 P falcinarum	(Avilés et al. 2015)
45	isocyanide amphilectane-type diterpenes monamphilectines C	SB7 1. julipurum	(10105 ct al., 2015)
46	nsammanlysin H	3D7 P falcinarum	$(X_{11} \text{ et al} 2011)$
47	pelorol (3)	Dd2 P falcinarum	(Iu et al 2018)
48	Ceratinadins F	FCR3 P falcinarum	(Kurimoto et al. 2018)
49	Psammanlysin F	. e.e juleipurum	(namioto et al., 2010)
50	kaimanol	3D7 P falciparum	(Murtihansari et al. 2021)
51	saringosterol	ser rijaciparam	(marchiapouri et all, 2021)
52	Thiazoavarone	D10 P falciparum W2 P falciparum	(Imperatore et al. 2020)
53	avarol		(imperatore et al., 2020)
54	Thiazoavarone		
51	1 magou , al olic		

whereas in 2016, 2017, 2019 and 2020 only two papers were recorded in each. The seven publications concerned with the antiparasitic activities of crude extract were published in 2010, 2014 and 2015, and the forty seven publications concerned with the antiparasitic activities of extracted compounds were published all over the period of survey; this reflects the interest of authors to study the antiparasitic effect of extracted compounds rather than the crude extract to save a step towards the drug discovery.

The majority of antiparastic compounds extracted from marine sponges were related to alkaloids: diterpenoid β -lactam alkaloid (Avilés and Rodríguez, 2010), Pyrroloiminoquinone alkaloids (Na et al., 2010), bromotyrosine alkaloid (Kurimoto et al., 2018; Mani et al., 2012; Mudianta et al., 2012; Oluwabusola et al., 2020; Xu et al., 2011; Yang et al., 2010), pentacyclic ingamine alkaloids (Ilias et al., 2012), thiazine alkaloids (Davis et al., 2013), tricyclic alkaloids (Gros et al., 2014), guanidine and pyrimidine Alkaloids (Gros et al., 2015), tryptamine alkaloids (Campos et al., 2019), puri-

nes (Farrugia et al., 2014) and piperidine (Farrugia et al., 2014). In addition, peroxides represents the second important group of antiparasitic compounds extracted from sponges (Chianese et al., 2012; Chianese et al., 2014; Chianese et al., 2013; Fattorusso et al., 2010; Feng et al., 2010; Festa et al., 2013; Jiménez-Romero et al., 2010; Oli et al., 2014; Yang et al., 2014a; Yang et al., 2014b), followed by terpenoids (Avilés and Rodríguez, 2010; Chianese et al., 2017; Ju et al., 2018; Orhan et al., 2010). Some substances have been extracted and used as antiparasitic agents to a lesser extent like Steroids (Murtihapsari et al., 2021; Regalado et al., 2011; Regalado et al., 2010; Viegelmann et al., 2014), amino acids (Feng et al., 2012), lipids (Farokhi et al., 2013), polysaccharides (Marques et al., 2016) and Isonitriles (Young et al., 2015). The activities of these isolated compounds against parasites were screened using in vitro techniques. This is a starting point and a step ahead of target-based screen technique in the drug discovery sequence, and since it is already known to kill

the parasite, the cellular permeability problem has been settled (Nweze et al., 2021).

In the present article compounds' potent activity in screened papers was classified in three categories according to IC₅₀. If it was in μ M: IC₅₀ > 20 μ M considered low active or inactive, IC₅₀1–20 μ M classified moderately active, IC₅₀ < 1 μ M considered good potent active (Batista et al., 2009). If it was in μ g/ml: IC₅₀ > 10- μ g/ml considered inactive, IC₅₀ 3–10 μ g/ml classified moderately active, IC₅₀ < 3 μ g/ml considered good potent active (loset et al., 2009). The total number of extracted antiparasitic compound assayed in the screened articles was 147; the compounds were labeled in Table 2 according to the previous classification and those with good potent activity were 54 compounds and listed in Table 3.

Although, there are many promising anti-parasites compounds isolated from marine sponges, however there are also many obstacles in the way of converting them into effective drugs, starting from ethics and policies associated with samples collection and followed by sample supply, shortcomings of traditional bioassayguided fractionation approaches, compatibility of some samples to high-throughput screening (HTS) techniques, and the duration, cost, efforts and processes needed before any of these compounds can be approved as an effective drug (Mayer et al., 2020). In more details, in the natural environment like marine habitat -apart from culturable microbes- accessing, collecting or recollecting of some samples is a challenge. For example, when a promising crude extract is identified from marine animals like a sponge or other, more samples are usually required to get enough crude extract for further investigations of the compound/compounds. If the chemical synthesis is not yet established or achievable for the isolated pure compounds, more quantity is required before proceeding the preclinical studies and clinical trials (García-Vilas et al., 2016). In addition, factors like the site of sample collection, season, genotype, differences related to an organism like age, and environmental stress to which the organism exposed, apparently affect the repeatability or reproducibility, thereby limiting the progression of the identified compounds to the next phase of drug development. However, the utilization of molecular biology techniques in isolation and expression of key genes, and semi- or total synthesis of the promising compounds, it will represent a real breakthrough in overcoming a large part of sampling problems (Nweze et al., 2020). Another challenges faces the drug discovery from natural marine habitat was the trouble of lack of unanimity in terms of fractions collection, isolation and structural elucidation of the bioactive compounds and other bioassay-guided fractionation. Nevertheless, some of these challenges may be overcome with the continuous advancement in chemical analysis techniques such as spectrometry (e.g., mass spectrometer), chromatography (e.g., gas chromatography, thin layer chromatography, high performance layer chromatography), and spectroscopy (e.g., ultraviolet, evaporative light scattering, refractive index, nuclear magnetic resonance), and researchers believe that the techniques could greatly renovate bioactivity guided fractionation, especially for complex extracts (Blockley et al., 2017; Choudhary et al., 2017).

5. Conclusion

This work reviewed the antiparasitic properties of natural compounds and crude extracts from marine sponges in most recentlypublished articles. Considering the many antiparasitic activities observed for all crude extracts and natural compounds described here, it can be stated that in fact there are optimistic perspectives on the continuing investigation of marine sponges for the treatment of parasitic infections, and they will certainly lead the scientific community to the discovery of more new efficient molecular templates and effective drugs for these diseases. Parasitic diseases specially neglected tropical diseases such as malaria, african trypanosomiasis, Chagas' disease, leishmaniasis and schistosomiasis have a detrimental impact on the world's poor peoples. Unfortunately communities suffering from these diseases have not offered a market gainful enough to attract any notable investment in research and development for new drugs. Therefore, this work intends to draw the attention of parasitologists to take their role in the efforts required for the development of novel antiparasitic drugs as part of the intensive efforts of the global scientific community to solve this economic and humanitarian problem.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Thanks to the Deanship of Scientific Research, King Khalid University for funding this article under grant no. (G.R.P./166/42).

References

- Andrade, A.A., Gama, A., Teixeira, G.S., Atella, G.C., Castro, S., Coutinho, C.C., Souza, E., 2015. Activity of marine sponge-derived extracts against Trypanossoma cruzi associated with apoptosis-like death. Int. J. Res. Stud. n Biosci. 3, 92–101.
- Anjum, Komal, Abbas, Syed Qamar, Shah, Sayed Asmat Ali, Akhter, Najeeb, Batool, Sundas, Hassan, Syed Shams ul, 2016. Marine sponges as a drug treasure. Biomole. Therapeutics 24 (4), 347–362.
- Aseyev, Olexiy, Ribeiro, Joana M., Cardoso, Fatima, 2016. Review on the clinical use of eribulin mesylate for the treatment of breast cancer. Expert Opin. Pharmacother. 17 (4), 589–600.
- Avilés, E., Prudhomme, J., Le Roch, K.G., Rodríguez, A.D., 2015. Structures, semisyntheses, and absolute configurations of the antiplasmodial αsubstituted β-lactam monamphilectines B and C from the sponge Svenzea flava. Tetrahedron 71 (3), 487–494.
- Avilés, Edward, Rodríguez, Abimael D., 2010. Monamphilectine A, a potent antimalarial β-lactam from marine sponge Hymeniacidon sp: isolation, structure, semisynthesis, and bioactivity. Org. Lett. 12 (22), 5290–5293.
- Batista, R., De Jesus Silva Júnior, A., De Oliveira, A.B., 2009. Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Nonalkaloidal natural products. Molecules 14 (8), 3037–3072.
- Bell, James J., 2008. The functional roles of marine sponges. Estuar. Coast. Shelf Sci. 79 (3), 341–353.
- Bisaria, K., Sinha, S., Srivastava, A., Singh, R., 2020. Marine pharmacognosy: an overview of marine-derived pharmaceuticals. Marine Niche: Appl. Pharmac. Sci., 361–381
- Blockley, A., Elliott, D.R., Roberts, A.P., Sweet, M., 2017. Symbiotic microbes from marine invertebrates: driving a new era of natural product drug discovery. Diversity 9 (4), 49.
- Campos, P.-E., Pichon, E., Moriou, C., Clerc, P., Trépos, R., Frederich, M., De Voogd, N., Hellio, C., Gauvin-Bialecki, A., Al-Mourabit, A., 2019. New antimalarial and antimicrobial tryptamine derivatives from the marine sponge Fascaplysinopsis reticulata. Mar. Drugs 17 (3), 167.
- Campos, Pierre-Eric, Wolfender, Jean-Luc, Queiroz, Emerson F., Marcourt, Laurence, Al-Mourabit, Ali, Frederich, Michel, Bordignon, Annélise, De Voogd, Nicole, Illien, Bertrand, Gauvin-Bialecki, Anne, 2017. Unguiculin A and ptilomycalins E-H, antimalarial guanidine alkaloids from the marine sponge Monanchora unguiculata. J. Nat. Prod. 80 (5), 1404–1410.
- Chianese, G., Fattorusso, E., Scala, F., Teta, R., Calcinai, B., Bavestrello, G., Dien, H.A., Kaiser, M., Tasdemir, D., Taglialatela-Scafati, O., 2012. Manadoperoxides, a new class of potent antitrypanosomal agents of marine origin. Org. Biomol. Chem. 10 (35), 7197–7207.
- Chianese, Giuseppina, Persico, Marco, Yang, Fan, Lin, Hou-Wen, Guo, Yue-Wei, Basilico, Nicoletta, Parapini, Silvia, Taramelli, Donatella, Taglialatela-Scafati, Orazio, Fattorusso, Caterina, 2014. Endoperoxide polyketides from a Chinese Plakortis simplex: further evidence of the impact of stereochemistry on antimalarial activity of simple 1, 2-dioxanes. Biorg. Med. Chem. 22 (17), 4572–4580.
- Chianese, G., Scala, F., Calcinai, B., Cerrano, C., Dien, H.A., Kaiser, M., Tasdemir, D., Taglialatela-Scafati, O., 2013. Natural and semisynthetic analogues of manadoperoxide B reveal new structural requirements for trypanocidal activity. Mar. Drugs 11 (9), 3297–3308.
- Chianese, Giuseppina, Silber, Johanna, Luciano, Paolo, Merten, Christian, Erpenbeck, Dirk, Topaloglu, Bülent, Kaiser, Marcel, Tasdemir, Deniz, 2017. Antiprotozoal linear furanosesterterpenoids from the marine sponge Ircinia oros. J. Nat. Prod. 80 (9), 2566–2571.

O. Mostafa, M. Al-Shehri and M. Moustafa

- Choudhary, A., Naughton, L.M., Montánchez, I., Dobson, A.D., Rai, D.K., 2017. Current status and future prospects of marine natural products (MNPs) as antimicrobials. Mar. Drugs 15 (9), 272.
- Costantino, V., Fattorusso, E., Mangoni, A., Di Rosa, M., Ianaro, A., 1999. Glycolipids from sponges. VII. 1 simplexides, novel immunosuppressive glycolipids from the Caribbean sponge Plakortis simplex. Bioorg. Med. Chem. Lett. 9 (2), 271– 276.
- Davis, Rohan A., Buchanan, Malcolm S., Duffy, Sandra, Avery, Vicky M., Charman, Susan A., Charman, William N., White, Karen L., Shackleford, David M., Edstein, Michael D., Andrews, Katherine T., Camp, David, Quinn, Ronald J., 2012. Antimalarial activity of pyrroloiminoquinones from the Australian marine sponge Zyzzya sp. J. Med. Chem. 55 (12), 5851–5858.
- Davis, Rohan A., Duffy, Sandra, Fletcher, Sabine, Avery, Vicky M., Quinn, Ronald J., 2013. Thiaplakortones A-D: antimalarial thiazine alkaloids from the Australian marine sponge plakortis lita. J. Organ. Chem. 78 (19), 9608–9613.
- de Paula, Jéssica Carreira, Desoti, Vânia Cristina, Sampiron, Eloísa Gibin, Martins, Solange Cardoso, Ueda-Nakamura, Tânia, Ribeiro, Suzi Meneses, Bianco, Everson Miguel, de Oliveira Silva, Sueli, de Oliveira, Gibson Gomes, Nakamura, Celso Vataru, 2015. Trypanocidal activity of organic extracts from the Brazilian and Spanish marine sponges. Revista Brasileira de Farmacognosia 25 (6), 651–656.
- Elhady, S.S., El-Halawany, A.M., Alahdal, A.M., Hassanean, H.A., Ahmed, S.A., 2016. A new bioactive metabolite isolated from the Red Sea marine sponge Hyrtios erectus. Molecules 21 (1), 82.
- Eltamany, E.E., Eltahawy, N.A., Ibrahim, A.K., Temraz, T., Hassanean, H.A., Radwan, M.M., Ahmed, S.A., 2014. Anticancer, antiprotozoal and antimicrobial activities of some red sea organisms. Catrina 9 (1), 01–06.
- Farokhi, F., Grellier, P., Clément, M., Roussakis, C., Loiseau, P.M., Genin-Seward, E., Kornprobst, J.-M., Barnathan, G., Wielgosz-Collin, G., 2013. Antimalarial activity of Axidjiferosides, new β-galactosylceramides from the African sponge Axinyssa djiferi. Mar. Drugs 11 (4), 1304–1315.
- Farrugia, Michelle, Trotter, Nicholas, Vijayasarathy, Soumini, Salim, Angela A., Khalil, Zeinab G., Lacey, Ernest, Capon, Robert J., 2014. Isolation and synthesis of N-acyladenine and adenosine alkaloids from a southern Australian marine sponge, Phoriospongia sp. Tetrahedron Lett. 55 (43), 5902–5904.
- Fattorusso, Caterina, Persico, Marco, Calcinai, Barbara, Cerrano, Carlo, Parapini, Silvia, Taramelli, Donatella, Novellino, Ettore, Romano, Adriana, Scala, Fernando, Fattorusso, Ernesto, Taglialatela-Scafati, Orazio, 2010. Manadoperoxides A – D from the Indonesian sponge Plakortis cfr. simplex. Further insights on the structure– activity relationships of simple 1, 2-dioxane antimalarials. J. Nat. Prod. 73 (6), 1138–1145.
- Feng, Yunjiang, Davis, Rohan A., Sykes, Melissa, Avery, Vicky M., Camp, David, Quinn, Ronald J., 2010. Antitrypanosomal cyclic polyketide peroxides from the Australian marine sponge Plakortis sp. J. Nat. Prod. 73 (4), 716–719.
- Feng, Yunjiang, Davis, Rohan A., Sykes, Melissa L., Avery, Vicky M., Quinn, Ronald J., 2012. Iotrochamides A and B, antitrypanosomal compounds from the Australian marine sponge lotrochota sp. Bioorg. Med. Chem. Lett. 22 (14), 4873–4876.
- Festa, Carmen, De Marino, Simona, D'Auria, Maria Valeria, Taglialatela-Scafati, Orazio, Deharo, Eric, Petek, Sylvain, Zampella, Angela, 2013. New antimalarial polyketide endoperoxides from the marine sponge Plakinastrella mamillaris collected at Fiji Islands. Tetrahedron 69 (18), 3706–3713.
- Fitchett, Joseph R, 2015. Antibiotics, copayments, and antimicrobial resistance: investment matters. Lancet. Infect. Dis. 15 (10), 1125–1127.
- Galeano, E., Thomas, O.P., Robledo, S., Munoz, D., Martinez, A., 2011. Antiparasitic bromotyrosine derivatives from the marine sponge Verongula rigida. Mar. Drugs 9 (10), 1902–1913.
- García-Vilas, J.A., Martínez-Poveda, B., Quesada, A.R., Medina, M.Á., 2016. Aeroplysinin-1, a sponge-derived multi-targeted bioactive marine drug. Mar. Drugs 14 (1), 1.
- Gros, Emmanuelle, Martin, Marie-Thérèse, Sorres, Jonathan, Moriou, Céline, Vacelet, Jean, Frederich, Michel, Aknin, Maurice, Kashman, Yoel, Gauvin-Bialecki, Anne, Al-Mourabit, Ali, 2015. Netamines O-S, five new tricyclic guanidine alkaloids from the Madagascar sponge Biemna laboutei, and their antimalarial activities. Chem. Biodivers. 12 (11), 1725–1733.
- Hertiani, Triana, Edrada-Ebel, RuAngelie, Ortlepp, Sofia, van Soest, Rob W.M., de Voogd, Nicole J., Wray, Victor, Hentschel, Ute, Kozytska, Svetlana, Müller, Werner E.G., Proksch, Peter, 2010. From anti-fouling to biofilm inhibition: New cytotoxic secondary metabolites from two Indonesian Agelas sponges. Biorg. Med. Chem. 18 (3), 1297–1311.
- Ilias, Muhammad, Ibrahim, Mohamed, Khan, Shabana, Jacob, Melissa, Tekwani, Babu, Walker, Larry, Samoylenko, Vladimir, 2012. Pentacyclic ingamine alkaloids, a new antiplasmodial pharmacophore from the marine sponge Petrosid Ng5 Sp5. Planta Med. 78 (15), 1690–1697.
- Imperatore, Concetta, Gimmelli, Roberto, Persico, Marco, Casertano, Marcello, Guidi, Alessandra, Saccoccia, Fulvio, Ruberti, Giovina, Luciano, Paolo, Aiello, Anna, Parapini, Silvia, Avunduk, Sibel, Basilico, Nicoletta, Fattorusso, Caterina, Menna, Marialuisa, 2020. Investigating the antiparasitic potential of the marine sesquiterpene avarone, its reduced form avarol, and the novel semisynthetic thiazinoquinone analogue thiazoavarone. Mar. Drugs 18 (2), 112. https://doi. org/10.3390/md18020112.
- Ioset, J.-R., R. Brun, T. Wenzler, M. Kaiser & V. Yardley, 2009. Drug screening for kinetoplastids diseases. A Training Manual for Screening in Neglected Diseases. The Pan-Asian Screening Network
- Jiménez-Romero, Carlos, Ortiz, Idelisse, Vicente, Jan, Vera, Brunilda, Rodríguez, Abimael D., Nam, Sangkil, Jove, Richard, 2010. Bioactive cycloperoxides isolated from the Puerto Rican sponge Plakortis halichondrioides. J. Nat. Prod. 73 (10), 1694–1700.

- Ju, E., Latif, A., Kong, C.-S., Seo, Y., Lee, Y.-J., Dalal, S.R., Cassera, M.B., Kingston, D.G., 2018. Antimalarial activity of the isolates from the marine sponge Hyrtios erectus against the chloroquine-resistant Dd2 strain of Plasmodium falciparum. Zeitschrift für Naturforschung C 73 (9–10), 397–400.
- Ben Kahla-Nakbi, Amel, Haouas, Najoua, El Ouaer, Ali, Guerbej, Hamadi, Mustapha, Karim Ben, Babba, Hamouda, 2010. Screening of antileishmanial activity from marine sponge extracts collected off the Tunisian coast. Parasitol. Res. 106 (6), 1281–1286.
- Kiuru, Paula, D'Auria, M., Muller, Christian, Tammela, Päivi, Vuorela, Heikki, Yli-Kauhaluoma, Jari, 2014. Exploring marine resources for bioactive compounds. Planta Med. 80 (14), 1234–1246.
- Kurimoto, Shin-ichiro, Ohno, Taito, Hokari, Rei, Ishiyama, Aki, Iwatsuki, Masato, Ö mura, Satoshi, Kobayashi, Jun'ichi, Kubota, Takaaki, 2018. Ceratinadins E and F, New Bromotyrosine Alkaloids from an Okinawan Marine Sponge Pseudoceratina sp. Mar. Drugs 16 (12), 463. https://doi.org/10.3390/ md16120463.
- Levy, Stuart B, Marshall, Bonnie, 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10 (S12), S122–S129.
- Mani, L., Jullian, V., Mourkazel, B., Valentin, A., Dubois, J., Cresteil, T., Folcher, E., Hooper, J.N., Erpenbeck, D., Aalbersberg, W., 2012. New antiplasmodial bromotyrosine derivatives from Suberea ianthelliformis Lendenfeld, 1888. Chem. Biodivers 9 (8), 1436–1451.
- Mani, L., Petek, S., Valentin, A., Chevalley, S., Folcher, E., Aalbersberg, W., Debitus, C., 2011. The in vivo anti-plasmodial activity of haliclonacyclamine A, an alkaloid from the marine sponge. Haliclona sp. Nat. Prod. Res. 25 (20), 1923–1930.
- Marques, J., Vilanova, E., Mourão, P.A., Fernàndez-Busquets, X., 2016. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium. Sci. Rep. 6 (1), 1–14.
- Martins, A., Vieira, H., Gaspar, H., Santos, S., 2014. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar. Drugs 12 (2), 1066–1101.
- Mayer, A., Guerrero, A.J., Rodríguez, A.D., Taglialatela-Scafati, O., Nakamura, F., Fusetani, N., 2020. Marine pharmacology in 2014–2015: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and anthelmintic activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 18 (1), 5.
- Mendiola, Judith, Regalado, Erik L., Díaz-García, Alexis, Thomas, Olivier P., Fernández-Calienes, Aymé, Rodríguez, Hermis, Laguna, Abilio, Valdés, Olga, 2014. In vitro antiplasmodial activity, cytotoxicity and chemical profiles of sponge species of Cuban coasts. Nat. Prod. Res. 28 (5), 312–317.
- Mudianta, I Wayan, Skinner-Adams, Tina, Andrews, Katherine T., Davis, Rohan A., Hadi, Tri A., Hayes, Patricia Y., Garson, Mary J., 2012. Psammaplysin derivatives from the Balinese marine sponge Aplysinella strongylata. J. Nat. Prod. 75 (12), 2132–2143.
- Murtihapsari, Murtihapsari, Salam, Supriatno, Kurnia, Dikdik, Darwati, Darwati, Kadarusman, Kadarusman, Abdullah, Fajar Fauzi, Herlina, Tati, Husna, Muhammad Hafiz, Awang, Khalijah, Shiono, Yoshihito, Azmi, Mohamad Nurul, Supratman, Unang, 2021. A new antiplasmodial sterol from Indonesian marine sponge, Xestospongia sp. Nat. Prod. Res. 35 (6), 937–944.
- Na, MinKyun, Ding, Yuanqing, Wang, Bin, Tekwani, Babu L., Schinazi, Raymond F., Franzblau, Scott, Kelly, Michelle, Stone, Robert, Li, Xing-Cong, Ferreira, Daneel, Hamann, Mark T., 2010. Anti-infective discorhabdins from a deep-water Alaskan sponge of the genus Latrunculia. J. Nat. Prod. 73 (3), 383–387.
- Nwaka, Solomon, Hudson, Alan, 2006. Innovative lead discovery strategies for tropical diseases. Nat. Rev. Drug Disc. 5 (11), 941–955.
- Nweze, J.A., Mbaoji, F.N., Huang, G., Li, Y., Yang, L., Zhang, Y., Huang, S., Pan, L., Yang, D., 2020. Antibiotics development and the potentials of marine-derived compounds to stem the tide of multidrug-resistant pathogenic bacteria, fungi, and protozoa. Mar. Drugs 18 (3), 145.
- Nweze, J.A., Mbaoji, F.N., Li, Y.-M., Yang, L.-Y., Huang, S.-S., Chigor, V.N., Eze, E.A., Pan, L.-X., Zhang, T., Yang, D.-F., 2021. Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: a review of recent articles. Infect. Dis. Poverty 10 (1), 1–19.
- Oli, S., Abdelmohsen, U.R., Hentschel, U., Schirmeister, T., 2014. Identification of plakortide E from the Caribbean sponge Plakortis halichondroides as a trypanocidal protease inhibitor using bioactivity-guided fractionation. Mar. Drugs 12 (5), 2614–2622.
- Oluwabusola, Emmanuel T., Tabudravu, Jioji N., Al Maqbali, Khalid S., Annang, Frederick, Pérez-Moreno, Guiomar, Reyes, Fernando, Jaspars, Marcel, 2020. Antiparasitic activity of bromotyrosine alkaloids and new analogues isolated from the Fijian marine Sponge Aplysinella rhax. Chem. Biodivers. 17 (10). https://doi.org/10.1002/cbdv.v17.1010.1002/cbdv.202000335.
- Orhan, I., Şener, B., Kaiser, M., Brun, R., Tasdemir, D., 2010. Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar. Drugs 8 (1), 47–58.
- Parra, L.L., Bertonha, A.F., Severo, I.R., Aguiar, A.C., de Souza, G.E., Oliva, G., Guido, R. V., Grazzia, N., Costa, T.R., Miguel, D.C., 2018. Isolation, derivative synthesis, and structure–activity relationships of antiparasitic bromopyrrole alkaloids from the marine sponge Tedania brasiliensis. J Nat Prod 81 (1), 188–202.
- Paul, V.J., Puglisi, M.P., Ritson-Williams, R., 2006. Marine chemical ecology. Nat. Prod. Rep. 23 (2), 153–180.
- Pereira, R.B., Evdokimov, N.M., Lefranc, F., Valentão, P., Kornienko, A., Pereira, D.M., Andrade, P.B., Gomes, N.G., 2019. Marine-derived anticancer agents: clinical benefits, innovative mechanisms, and new targets. Mar. Drugs 17 (6), 329.

O. Mostafa, M. Al-Shehri and M. Moustafa

- Regalado, Erik L., Jiménez-Romero, Carlos, Genta-Jouve, Gregory, Tasdemir, Deniz, Amade, Philippe, Nogueiras, Clara, Thomas, Olivier P., 2011. Acanthifoliosides, minor steroidal saponins from the Caribbean sponge Pandaros acanthifolium. Tetrahedron 67 (5), 1011–1018.
- Regalado, Erik L., Tasdemir, Deniz, Kaiser, Marcel, Cachet, Nadja, Amade, Philippe, Thomas, Olivier P., 2010. Antiprotozoal steroidal saponins from the marine sponge Pandaros acanthifolium. J. Nat. Prod. 73 (8), 1404–1410.
- Sagar, S., Kaur, M., Minneman, K.P., 2010. Antiviral lead compounds from marine sponges. Mar. Drugs 8 (10), 2619–2638.
- Santos, M.F., Harper, P.M., Williams, D.E., Mesquita, J.T., Pinto, E.G., da Costa-Silva, T. A., Hajdu, E., Ferreira, A.G., Santos, R.A., Murphy, P.J., 2015. Anti-parasitic guanidine and pyrimidine alkaloids from the marine sponge Monanchora arbuscula. J. Nat. Prod. 78 (5), 1101–1112.
- Scala, F., Fattorusso, E., Menna, M., Taglialatela-Scafati, O., Tierney, M., Kaiser, M., Tasdemir, D., 2010. Bromopyrrole alkaloids as lead compounds against protozoan parasites. Mar. Drugs 8 (7), 2162–2174.
- Schöffski, Patrick, Chawla, Sant, Maki, Robert G, Italiano, Antoine, Gelderblom, Hans, Choy, Edwin, Grignani, Giovanni, Camargo, Veridiana, Bauer, Sebastian, Rha, Sun Young, Blay, Jean-Yves, Hohenberger, Peter, D'Adamo, David, Guo, Matthew, Chmielowski, Bartosz, Le Cesne, Axel, Demetri, George D, Patel, Shreyaskumar R, 2016. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. The Lancet 387 (10028), 1629–1637.
- Schwartsmann, Gilberto, da Rocha, Adriana Brondani, Berlinck, Roberto GS, Jimeno, Jose, 2001. Marine organisms as a source of new anticancer agents. Lancet Oncol. 2 (4), 221–225.
- Shady, Nourhan Hisham, Fouad, Mostafa A., Ahmed, Safwat, Pimentel-Elardo, Sheila Marie, Nodwell, Justin R., Kamel, Mohamed Salah, Abdelmohsen, Usama Ramadan, 2018. A new antitrypanosomal alkaloid from the Red Sea marine sponge Hyrtios sp. J. Antibiot. 71 (12), 1036–1039.
- Thomas, T.R.A., Kavlekar, D.P., LokaBharathi, P.A., 2010. Marine drugs from spongemicrobe association—a review. Mar. Drugs 8 (4), 1417–1468.
- Torres, Yohandra R., Berlinck, Roberto G.S., Nascimento, Gislene G.F., Fortier, Sérgio C., Pessoa, Claudia, de Moraes, Manoel O., 2002. Antibacterial activity against resistant bacteria and cytotoxicity of four alkaloid toxins isolated from the marine sponge Arenosclera brasiliensis. Toxicon 40 (7), 885–891.

Saudi Journal of Biological Sciences 29 (2022) 217-227

- Van Soest, R., Boury-Esnault, N., Hooper, J., Rützler, K.d., De Voogd, N., Alvarez de Glasby, B., Hajdu, E., Pisera, A., Manconi, R., Schoenberg, C., 2018.
- Viegelmann, C., Parker, J., Ooi, T., Clements, C., Abbott, G., Young, L., Kennedy, J., Dobson, A.D., Edrada-Ebel, R., 2014. Isolation and identification of antitrypanosomal and antimycobacterial active steroids from the sponge Haliclona simulans. Mar. Drugs 12 (5), 2937–2952.
- Vik, Anders, Hedner, Erik, Charnock, Colin, Tangen, Linda W., Samuelsen, Ørjan, Larsson, Rolf, Bohlin, Lars, Gundersen, Lise-Lotte, 2007. Antimicrobial and cytotoxic activity of agelasine and agelasimine analogs. Biorg. Med. Chem. 15 (12), 4016–4037.
- World Health Organization. Health Topics (WHO). Available online: https://www. who.int/health-topics/#S (accessed on 18 March 2021).
- World porifera database. The World Register of Marine Species (WoRMS) Available online: http://www.marinespecies.org/porifera/ (accessed on 25 March 2021).
- Xu, Min, Andrews, Kathy T., Birrell, Geoff W., Tran, Truc Linh, Camp, David, Davis, Rohan A., Quinn, Ronald J., 2011. Psammaplysin H, a new antimalarial bromotyrosine alkaloid from a marine sponge of the genus Pseudoceratina. Bioorg. Med. Chem. Lett. 21 (2), 846–848.
- Xue, Song, Zhang, Hai Tao, Wu, Pei Chun, Zhang, Wei, Yuan, Quan, 2004. Study on bioactivity of extracts from marine sponges in Chinese Sea. J. Exp. Mar. Biol. Ecol. 298 (1), 71–78.
- Yang, F., Gan, J.-H., Liu, X.-Y., Lin, H.-W., 2014a. Scalarane sesterterpenes from the Paracel islands marine sponge Hyrtios sp. Natl. Prod. Commun. 9 (6).
- Yang, Fan, Wang, Ru-Ping, Xu, Bin, Yu, Hao-Bing, Ma, Guo-Yi, Wang, Guang-Fei, Dai, Shu-Wen, Zhang, Wei, Jiao, Wei-Hua, Song, Shao-Jiang, Lin, Hou-Wen, 2016. New antimalarial norterpene cyclic peroxides from Xisha Islands sponge Diacarnus megaspinorhabdosa. Bioorg. Med. Chem. Lett. 26 (8), 2084–2087.
- Yang, F., Zou, Y., Wang, R.-P., Hamann, M.T., Zhang, H.-J., Jiao, W.-H., Han, B.-N., Song, S.-J., Lin, H.-W., 2014b. Relative and absolute stereochemistry of diacarperoxides: antimalarial norditerpene endoperoxides from marine sponge Diacarnus megaspinorhabdosa. Mar. Drugs 12 (8), 4399–4416.
- Yang, Xinzhou, Davis, Rohan A., Buchanan, Malcolm S., Duffy, Sandra, Avery, Vicky M., Camp, David, Quinn, Ronald J., 2010. Antimalarial bromotyrosine derivatives from the Australian marine sponge Hyattella sp. J. Nat. Prod. 73 (5), 985–987.
- Young, Ryan M., Adendorff, Matthew R., Wright, Anthony D., Davies-Coleman, Michael T., 2015. Antiplasmodial activity: the first proof of inhibition of heme crystallization by marine isonitriles. Eur. J. Med. Chem. 93, 373–380.