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TAp73 is a tumor suppressor transcriptional factor, belonging to p53 family. Alteration of TAp73 in tumors might
lead to reduced DNA damage response, cell cycle arrest and apoptosis. Carcinogen-induced TAp73¡/¡ tumors display
also increased angiogenesis, associated to hyperactivition of hypoxia inducible factor signaling. Here, we show that
TAp73 suppresses BNIP3 expression, directly binding its gene promoter. BNIP3 is a hypoxia responsive protein, involved
in a variety of cellular processes, such as autophagy, mitophagy, apoptosis and necrotic-like cell death. Therefore,
through different cellular process altered expression of BNIP3 may differently contribute to cancer development and
progression. We found a significant upregulation of BNIP3 in human lung cancer datasets, and we identified a direct
association between BNIP3 expression and survival rate of lung cancer patients. Our data therefore provide a novel
transcriptional target of TAp73, associated to its antagonistic role on HIF signaling in cancer, which might play a role in
tumor suppression.

Introduction

p73 is a transcriptional factor, belonging to p53 family. The
presence of 2 promoters in the TP73 gene gives rise to 2 sets of
isoforms: transactivational (TA) domain-containing isoforms,
TAp73, regulated by the first promoter (P1), and the N-trun-
cated isoforms, lacking TA domain (from promoter P2),
DNp73. Alternative splicing can also take place at 30-end, leading
to 7 isoforms varying in activity and specificity a, b, g, d, e, z,
h.1-5 p53 family is one of the most powerful families of genes6,7;
it plays fundamental roles in protection of genome integrity8-13

in germline and somatic cells impacting fertility14-21 and can-
cer.22-36 In cancer cells p73 is rarely mutated, but its expression is
often deregulated. There is increasing evidence, that TAp73/
DNp73 expression ratio affects tumor development and progres-
sion.37-39 TAp73 is considered a bona fide tumor suppressor,
largely mimicking p53 function. It controls cell cycle arrest, apo-
ptosis as well as DNA damage repair.40 Tumor suppressor func-
tion of TAp73 has also been recently associated to repression of
tumor angiogenesis, through regulation of hypoxia inducible fac-
tor (HIF) signaling. TAp73 indeed directly binds HIF-1a pro-
tein, promoting its oxygen-independent degradation.41,42

Conversely, DNp73 antagonizes TAp73 and it is considered an
oncogenic protein.43-46 It can form inactive complexes with

TAp73, and also bind common promoters with p53 and TAp73,
thus inhibiting their transcriptional activity.47-50 Besides its can-
cer related function, TAp73 also plays a role in neurogenesis, and
its dysregulation is linked with developmental defect and neuro-
degenerative diseases. In fact, TAp73 is necessary for neuronal
differentiation and maintenance of neuronal stem cells.51-54

Hypoxia inducible factors (HIFs) mediate the physiological
response to hypoxia55 regulating processes, such as angiogene-
sis,56-58 proliferation59-68 and metabolism.64,69-73 The wide tran-
scriptional reprogramming operated by HIF-1, includes the direct
transcriptional induction of the Bcl-2 Nineteen kilodalton Inter-
acting Protein (BNIP3).74,75 BNIP3 is a Bcl2-family BH3-only
protein, which contributes to cellular processes, such as apoptosis,
autophagy, mitophagy and mitochondrial metabolism.76 BNIP3-
deficient mice do not display significant physical abnormalities
and altered lifespan, however they show decreased postischemic
myocardial apoptosis,77-82 suggesting an involvement in hypoxic-
dependent cell death. BNIP3 was first shown to localize in mito-
chondria,83 although later in glial cells was also observed a nuclear
localization.84,85 BNIP3 activation causes mitochondrial dysfunc-
tion through mitochondrial apoptosis, reduced oxidative phos-
phorylation and induction of autophagy and mitophagy.86-89

Here, we show a direct regulation by TAp73 on BNIP3 tran-
scription, and we report a possible clinical relevance of this axis
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for lung cancer patients. Consistently with reduced TAp73 activ-
ity, high BNIP3 expression correlates with bad prognosis in
patients with lung cancer.

Results

TAp73 represses HIF1a and its target BNIP3
To investigate the influence of TAp73 on BNIP3 expression

we used SaOS-2 cells with Tet-On system. SaOs-2 is a p53/p63/
p73 deficient human osteosarcoma cell line. Expression of
TAp73 in these cells can be induced by doxycycline treatment.
As shown in Fig. 1A, B and Fig. S1A, 2 mg/ml of doxycycline
induced TAp73 expression in a time-dependent manner. Along
with TAp73 accumulation we detected decrease in BNIP3 pro-
tein levels and as previously described reduced HIF1a
(Fig. 1A).41,43 p21 was used as positive control of p73 transcrip-
tional activation (Fig. 1A). To evaluate whether BNIP3 downre-
gulation was associated to altered transcription of the BNIP3
gene, we performed real-time qPCR in SaOs-2 Tet-On cell line.
qPCR also highlighted decrease in BNIP3 mRNA level
(Fig. 1B). Taken together these data indicate that consistently
with TAp73-dependent downregulation of HIF1a BNIP3 is
downregulated.

Next we employed H1299, p53-null human non-small cell
lung carcinoma (NSCLC) cell line, expressing endogenous
TAp73. First, we overexpressed HA-tagged TAp73 for 24 h and

exposed the cells to hypoxia during the last 8h of transfection
(1% O2) (Fig. 2A, B). Protein and RNA levels of TAp73 and its
transcriptional target p21 confirmed TAp73 transcriptional acti-
vation (Fig. 2B, Fig. S1B, C). Increased levels of BNIP3 mRNA
and protein were observed in cells, under hypoxia, as BNIP3 is a
hypoxia response gene. TAp73 overexpression in normoxia and
hypoxia confirmed the BNIP3 repression observed in SaOs-2
Tet-On mRNA (Fig. 2A, B).

Then we performed knockdown experiment in H1299 cells
by transfecting selective siRNA, for TAp73 isoforms. mRNA lev-
els of BNIP3 resulted upregulated after TAp73 silencing, stron-
ger effect was seen after 48h (Fig. 2C). Similarly western blot
(WB) analysis showed BNIP3 protein accumulation after TAp73
depletion (Fig. 2D). Together with the data reported in Fig-
ure 1, these data proved a TAp73-dependent inhibition of
BNIP3 expression in an oxygen-independent manner.

TAp73 binds BNIP3 promoter
The ability of TAp73 to inhibit the expression of BNIP3 in an

oxygen-independent manner indicated the possibility of an addi-
tional HIF-independent regulation of BNIP3 by TAp73. We
therefore investigated the hypothesis that TAp73 acts also as a
transcriptional factor directly regulating BNIP3 promoter. In
support of this hypothesis BNIP3 has been shown as a direct p53
transcriptional target.90 We therefore assessed whether the previ-
ous validated p53RE in BNIP3 promoter could also be regulated
by TAp73 (Fig. 3A). The p53RE is located between ¡987 and

Figure 1. TAp73 overexpression inhibits BNIP3 expression in ostesarcoma cell line. HATAp73 was overexpressed in SAOS2-HATAp73 cell line for 4h, 8h,
16h, 24h. (A) Protein levels of HIF1a, HATAp73, p21, BNIP3 and b-tubulin were analyzed by WB. Figure shows a representative replicate of 3 independent
experiments. (B) mRNA levels of p21 and BNIP3 were analyzed by qPCR at different time points after TAp73 induction. Relative expression of genes was
normalized against TBP and calculated as fold induction on the time point 0h. Data is reported as mean§ s.d. of two experiments for p21, 3 experiments
for BNIP3. *P< 0.05 (Student’s T-test).
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¡1021 bp upstream of the transcription start site (TSS) and
comprises 2 closely located p53 binding sites. To experimentally
validate our hypothesis we used a reporter gene vector, containing
the region of BNIP3 promoter showed in Fig. 3A (between
¡1638 and C186 bp from the TSS) upstream of the luciferase
reporter gene. We co-transfected H1299 cells with this construct,
HA-TAp73-expressing plasmid and control Renilla vector for 20
h. Transfection efficiency was confirmed by WB (Fig. 3C). Con-
sistently with our hypothesis luciferase assay showed significant
decrease in luciferase activity of approximately 40% after
HATAp73 transfection (Fig. 3B).

Next, we performed chromatin immunoprecipitation (ChIP)
assay for the indicated p53RE in the BNIP3 promoter, in TAp73
SaOs-2 Tet-On cells, after 16 h of doxycycline induction. The
specific amplification in anti-HA immunoprecipitated chromatin
confirmed a direct binding of TAp73 on BNIP3 human pro-
moter (Fig. 3D). Data obtained from luciferase gene reporter
assay and ChIP demonstrated that TAp73 suppresses BNIP3
gene expression directly binding its promoter.

The BNIP3 regulation is of clinical importance for lung
cancer patients

Trp73¡/¡ and TAp73¡/¡ mice spontaneously develop lung
carcinomas, and altered ratio TAp73/DNp73 is frequently
reported in human lung cancer.91,92 TAp73 is therefore consid-
ered a bona fide tumor suppressor, particular relevant in lung
tumorigenesis. We wanted therefore to verify whether down-
stream to TAp73 alteration, BNIP3 upregulation might play a
role in lung carcinoma. We employed a bioinformatic approach
to assess BNIP3 expression in human lung cancer patient speci-
mens. We used publicly available Hou Lung patient data set to
analyze BNIP3 expression in 156 patient samples. Dataset
includes 4 groups of patient samples: derived from normal lung,
large cell lung carcinoma, lung adenocarcinoma or squamous cell
lung carcinoma. Median BNIP3 expression was significantly
higher in all lung carcinomas compared to normal lung tissue
(Fig. 4A–C). These data suggest that failure of TAp73/BNIP3
axis in lungs may lead to BNIP3 upregulation and may contrib-
ute to tumorigenicity.

Figure 2. TAp73 inhibits BNIP3 expression in non-small cell lung carcinoma cell line. (A, B) H1299 cells were transfected with HATAp73-alfa for 24h. Cells
were subjected to hypoxia for 8h before lysis. (A) BNIP3 mRNA level was analyzed by qPCR. Data is reported as mean § s.d., n D 3 independent experi-
ments for hypoxia, n D 5 for normoxia. (B) Protein level of BNIP3, HATAp73 and p21 was analyzed by WB. (C) BNIP3 mRNA level was analyzed by qPCR
after TAp73 knockdown in H1299 for 48h or 72h. nD 3. (D) Protein level of BNIP3 and p73 after 48h of TAp73 knockdown was analyzed by WB. (A, C) Rel-
ative expression of genes was normalized against TBP and calculated as fold induction. Data is reported as mean§ s.d. *P< 0.05 (Student’s T-test). (B, D).
Figure shows a representative replicate of 3 independent experiments.
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We next used publicly available data set to assess BNIP3
expression impact on patients’ survival. Survival rate appeared
significantly higher in patients with low BNIP3 expression
(Fig. 4D). Our data suggest that BNIP3 may have a role in
tumorigenesis and progression of lung cancers.

Discussion

We identified BNIP3 as a novel TAp73 target gene. BNIP3
expression can be regulated by TAp73 via 2 mechanisms
(Fig. 5). Here we show that BNIP3 expression is inhibited by
TAp73, through its direct binding on BNIP3 promoter. We
demonstrated that the p53-like responsive element in the BNIP3
promoter, previously experimentally validated for p53 can also
be recognized by TAp73. As BNIP3 is a HIF1a target gene,90

and HIF1a is repressed by TAp73,41 relationship between
TAp73 and BNIP3 can also depend on an indirect regulation via
HIF1.

TAp73 has tumor-suppressor function, we therefore also
investigated a possible involvement of BNIP3 in tumourigenesis.
BNIP3 contributes to several processes in cell, which potentially
can affect tumor development. The ability to activate apoptosis
would indicate a tumor suppressor function for BNIP3, however
its pro-necrotic role may lead to pro-tumorigenic effects, as
necrosis can promote tumor growth and associates with poor
prognosis for patients.93 BNIP3 is also known to lead to autoph-
agy, which may promote both tumor suppression and tumor
growth, and the implication of autophagy in cancer progression
can be different.94-99 BNIP3 has also been shown to act as a tran-
scriptional factor: if it translocates to nucleus, it suppresses Apo-
ptosis-Inducing Factor expression, preventing cell death, thus
showing tumorigenic function.85 Our bioinformatics analysis
would suggest an oncogenic function for BNIP3. BNIP3 expres-
sion is upregulated in lung carcinomas, and correlates with bad
prognosis for patients with lung cancer. Therefore our current
data, although still preliminary, might indicate TAp73/BNIP3
negative axis as a novel pathway for TAp73 tumor suppressor

Figure 3. TAp73 directly transactivates p53 response element in the BNIP3 promoter. (A) Schematic image of the BNIP3 promoter region. HRE1, HRE2 –
Hypoxia Response Elements. The insert shows p53 responsive element (p53RE), identified by Xi Feng et al.90 located between ¡1021 and ¡987 bp
upstream of the transcription-start site (TSS). Core p53 binding elements are highlighted in red. (B) BNIP3 promoter activity is repressed by TAp73.
H1299 cells were cotransfected with BNIP3 reporter vector and pcDNA or TAp73 as a transactivator. The luciferase assay was performed after 20 h, and
normalized by Renilla luciferase activity. Experiment was performed 2 times, mean value § SD is shown. *P < 0.05 (Student’s T-test) (C) Western Blot
analysis performed with the same lysates which were used for Luciferase assay was used as a control of the TAp73 expression. (D) Chromatin extracted
from SAOS2-HA-TAp73 was incubated with anti-HA or IgG antibodies. Immunoprecipitated DNA was tested by PCR for p53-Response Element in BNIP3
promoter. NG: PCR negative control. Figure shows a representative replicate of 3 independent experiments
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function. Consistently, TAp73 loss results in mitochondrial dys-
function.100,101 BNIP3 upregulation as a consequence of TAp73
loss might therefore contribute to TAp73–dependent mitochon-
drial phenotype and be associated to the complex involvement of
p73102-104 and the other family members in regulation of mito-
chondrial activity,105-108 cell metabolism109-114 and redox
homeostasis.115-118 However, currently it is still unclear
whether the complex integration of all the p53 family mem-
bers, in particular the truncated isoform of p73, DNp73, and
the cancer-associated mutants of p53, impacts and affects the
TAp73-dependent antagonism of BNIP3 expression and
more generally of hypoxia response. Future studies are
demanded to address these aspects.

Overall, we described a novel transcriptional target of TAp73,
also involved in hypoxia response, confirming the antagonistic
role of TAp73 on HIF signaling and tumourigenesis.

Materials and Methods

Cell cultures
H1299 and SaOS2-Tet-On cell lines were used. Cells were

grown in humidified incubator, at 37�C, in atmosphere of 5%
CO2 in air. Cells were cultivated in RPMI medium, containing
L-glutamine, 4,5 g/L of D-glucose, 2,383 g/L of HEPES Buffer,
1,5 g/L of Sodium Bicarbonate, 110 mg/L of Sodium Pyruvate

Figure 4. BNIP3 expression is increased in lung carcinomas and correlates with worse patient survival. (A) BNIP3 expression in normal lung and large cell
carcinoma, Hou Lung dataset. (B) BNIP3 expression in normal lung and squamous cell lung carcinoma, Hou Lung data set. (C) BNIP3 expression in normal
lung and lung adenocarcinoma, Hou Lung dataset. (A–C) n D 156 samples in th Hou Lung data set. (D) Survival analysis of GSE 4573 dataset (patients
with lung cancer). Patients were divided in 2 groups: patients with low expression of the BNIP3 gene and with high expression. n D 46 patients with low
BNIP3 expression, n D 77 patients with high BNIP3 expression.
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(Gibco, Life Technologies), supplemented with Penicillin Strep-
tomycin (Gibco, Life Technologies) and 10% (vol/vol) of FBS
(Labtech). To generate SaOS2 cell line with inducible expression
of HA-TAp73(SaOS2-Tet-On), we used Tet-responsive tran-
scriptional activator rtTA. To induce HA-TAp73 expression in
that cell line we treated the cells with 2 ug/ml of doxycycline for
indicated period of time.

RNA extraction and quantitative PCR
RNA was extracted from cells by means of RNEasy Mini Kit

(Qiagen), according to the Qiagen company protocol. The RNA
obtained was quantified by spectrophotometric analysis, and
1 ug of total RNA was used to prepare cDNA with RevertAid H
minus First Strand cDNA Synthesis kit (ThermoScientific),
using Random primers and protocol from the kit. qPCR was car-
ried out with 1/10 of prepared cDNA and Power SYBR Green
PCR Master Mix (Applied Biosystems). Relative gene expression
was analyzed in accordance to 7500 Software version 2.0.6 of
Applied Biosystems, normalized to housekeeping gene TBP.

Sequences of the primers used for the qPCR are: human TAp73:
Fw CAGACAGCACCTACTTCGACCTT, Rev CCGCCCAC-
CACCTCATTA; P21: Fw cctgtcactgtcttgtaccct; Rev gcgtttggag
tggtagaaatct; TBP: Fw TCAAACCCAGAATTGTTCTCCT-
TAT; Rev CCTGAATCCCTTTAGAATAGGGTAGA;
BNIP3: Fw cctgtcgcagttgggttc; Rev gaagtgcagttctacccaggag.

Western blot analysis
For the protein extraction cells were lysed in RIPA buffer with

protease inhibitor cocktail tablets Complete, EDTA-free (Roche)
and phosphatase inhibitor cocktail tablets PhosSTOP (Roche).
Lysate was measured for protein concentration by using Bio-
RAD Protein Assay (Bio-RAD), then mixed with Laemmly load-
ing buffer, and 100 ug of proteins were loaded on 10% SDS-
PAGE, and then transferred to polyvinylidene difluoride blotting
membranes (Amersham, GE Healthcare). Membranes were
blocked for 1 hour in 5% (m/vol) dry milk dissolved in PBS
with 1% (vol/vol) Tween-20 (PBST); incubated with primary
antibodies overnight and with secondary ones, conjugated with

Figure 5. TAp73 regulates the BNIP3 expression via 2 mechanisms. TAp73 can directly bind the BNIP3 promoter and inhibit its expression. BNIP3 is upre-
gulated by HIF1 in hypoxia. TAp73 drives HIF1a degradation and, subsequently, can prevent BNIP3 upregulation. No expression of TAp73 enables expres-
sion of BNIP3 (upper panel). TAp73 expression leads to lower BNIP3 level impacting different processes, including autophagy, mitophagy, mitochondrial
metabolism and necrotic cell death.
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horseradish peroxidase, for 1 hour. Antibodies were diluted in
5% dry milk in PBST: anti-HIF1a 1:250 (Novus Biologicals),
anti-HA 1:1000 (Covance), anti-GAPDH 1:40000 (Sigma),
anti-p21 1:1000 (Santa Cruz Biotechnology), anti-BNIP3 1:600
(Abcam), anti-b-tubulin 1:3000 (Santa Cruz Biotechnology),
anti-P73 1:2000 (Bethyl). SuperSignal West Dura Chemilumi-
nescenr Substrate (Thermo Scientific) was used to detect signal
on membranes.

Cell transfection
For TAp73 overexpression in H1299 cell line 1.2 E6 cells

were seeded per 10 cm dish 24 h before transfection. Transfec-
tion was performed with 10 ug DNA (pcDNA empty or pcDNA
with HA-TAp73) per 10 cm dish using Lipofectamine 2000
Reagent (Invitrogen). Cells were collected 24 h after transfection.

For TAp73 knockdown in H1299 cell line 1.2 E6 cells were
seeded per 10 cm dish 24 h before transfection. Transfection was
performed using 50 nM siRNA (control siRNA (Ambion) or
siTAp73 (Ambion)) and Lipofectamine RNAiMAX (Invitrogen).
Each dish was split in two 24 h after transfection; cells were col-
lected 48 h and 72 h after transfection.

For luciferase assay H1299 cells were seeded 20 h before
transfection in 12-well plates, 1.5 E5 cells per well. Transfection
was carried out by means of Lipofectamine 2000 (Invitrogen).
Cells were cotransfected with 0.05 ng/well pcDNA with HA-
TAp73 plasmid or empty pcDNA plasmid, 1 ug/well pRL-cyto-
megalovirus vector and 800 ng/well BNIP3 promoter luciferase
reporter vector or p21 promoter luciferase reporter vector.

Luciferase assay
Cells were lyzed 20 h after transfection, and Firefly luciferase

activity was measured, normalized to Renilla luciferase activity
with Dual-Glo Luciferase Assay System (Promega), in accordance
with Dual-Glo Luciferase Assay System protocol. Light emission
over 1s was measured with luminometer.

Chromatin immunoprecipitation assay
SaOS2-Tet-On cell line was used for ChIP assay. TAp73

overexpression for 24 h was achieved by doxycycline treatment.
Then cells were collected, fixed in 37% formaldehyde, and sub-
jected to sonication for DNA shearing. Chromatin was immuno-
precipitated with anti-HA antibodies (Covance) or unspecific
immunoglobulin G (IgG) antibodies (Invitrogen) with a ChIP
assay Kit (Invitrogen), and the promoter region, containing
potential p73 response element, was amplified using the designed
BNIP3 promoter primers. For positive control p21 promoter pri-
mers were used. The sequences of BNIP3-ChIP primers are fol-
lowing: 50 -AGCGTTTCTGGGGCGCACCTTG- 30 and 50

-GGGACTGGGAGGCACTTTTCAGAGGA- 30.

Bioinformatic analyses
By using Oncomine�database and Oncomine�Research Edi-

tion (available via Internet https://www.oncomine.org/resource/
main.html) we gained access to Hou Lung dataset, analyzed it for
BNIP3 expression and compared BNIP3 expression in normal
lung with expression in large cell carcinoma, squamous cell lung
carcinoma or lung adenocarcinoma.

Gene expression data set GSE4573 was downloaded. Patients
were divided in 2 cohorts, in accordance to level of the BNIP3
expression. Kaplan-Meier curves, demonstrating survival, were
built up for both cohorts. P-value is measured by Students t-
test.119,120
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