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Phenotypic and biochemical categorization of humans with detrimental variants can provide
valuable information on gene function. We illustrate this with the identification of two
different homozygous variants resulting in enzymatic loss-of-function in LDHD, encoding
lactate dehydrogenase D, in two unrelated patients with elevated D-lactate urinary excretion
and plasma concentrations. We establish the role of LDHD by demonstrating that LDHD loss-
of-function in zebrafish results in increased concentrations of D-lactate. D-lactate levels
are rescued by wildtype LDHD but not by patients’ variant LDHD, confirming these variants'
loss-of-function effect. This work provides the first in vivo evidence that LDHD is responsible
for human D-lactate metabolism. This broadens the differential diagnosis of D-lactic acidosis,
an increasingly recognized complication of short bowel syndrome with unpredictable onset
and severity. With the expanding incidence of intestinal resection for disease or obesity,
the elucidation of this metabolic pathway may have relevance for those patients with D-lactic
acidosis.
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actate exists in the human body as two optical isomers: L-

lactate and D-lactate (Fig. 1). L-lactate is produced from

pyruvate during anaerobic glycolysis and present in blood at
concentrations 100 times greater than D-lactate; the use of a
chiral derivatization reagent enables enantiomeric separation!—3,
D-lactate is acquired exogenously by consumption of foods, by
metabolism of chemicals such as propylene glycol, by intestinal
bacteria production, or endogenously by methylglyoxal metabo-
lism—a toxic product that is converted to D-lactate*8. The
methylglyoxal pathway is upregulated in various types of cancer
as a consequence of the metabolic switch to aerobic glycolysis®11.

D-lactic acidosis develops when D-lactate levels in plasma
are >3 mmol L~! and is a rare complication of short bowel syn-
drome!2, Short bowel syndrome occurs after removal of a section
of the small intestine due to malignancy or disease (i.e., Crohn’s
disease), or jejunoileal bypass surgery for obesity treatment!3-16.
The shortened small intestine impairs carbohydrate absorption
and hence leads to increased carbohydrate delivery to colonic
bacteria. As a consequence, colonic bacteria proliferate and foster
an acidic environment favoring D-lactate producing species.
Clinical features comprise primarily neurological symptoms.
Management of D-lactate acidosis consists of restoring acid-base
balance by bicarbonate infusion, and antibiotic treatment and
carbohydrate restriction to reduce D-lactate producing bacterial.
The onset and degree of severity of D-lactic acidosis are still
not well understood, nor are the pathways involved in D-lactate
metabolism.

We report two patients with increased D-lactate excretion and
elevated D-lactate concentration in plasma, yet without acidosis.
Both patients have rare or novel variants in LDHD predicted
to result in enzymatic impairment; metabolic studies expressing
these variants in zebrafish and subsequent rescue by human
wildtype LDHD establish the role of LDHD in D-lactate
metabolism.

Results

Metabolic analysis reveals elevated D-lactate. The first patient,
born of Sicilian parents from the same village, was originally
described by Duran et al.1”. He was seen by a clinical geneticist at
age 4 due to delayed motor and mental development. Urinary
lactate excretion was high, and consisted almost exclusively of
D-lactate instead of the common isomer L-lactate!”. Upon
reexamination at age 40 because of family counseling, he still had
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Fig. 1 Lactate optical isomers. Mass-spectrometry chromatogram of the
separation of L-lactate (purple) and its optical isomer D-lactate. Note
the relative position of the hydroxyl group and hydrogen atom. L-lactate
is present at approximately 100 times that of D-lactate in the plasma of
a healthy control

an extremely increased D-lactate excretion (mean: 1686 mmol per
mol creatinine) (Fig. 2a). Plasma analysis also revealed elevated
D-lactate concentration (0.7 mM) (Fig. 2b). Furthermore, 2-
hydroxyisovaleric acid and 2-hydroxyisocaproic acid were
elevated in urine and plasma organic acid profiles. Upon identi-
fication of the increased D-lactate isomer, the chirality of these
increased metabolites was subsequently also determined to be
in the D-isomer form (Fig. 2c-f). Repeated antibiotic treatments
failed to correct D-lactate levels, making a bacterial origin of
this elevated metabolite unlikely. Additionally, the continued
presence of increased D-lactate suggested that this was not a
temporary metabolic disturbance. Array CGH analysis revealed
a de novo 11p13 deletion, known to cause intellectual disability
and explaining his syndromal features, though elevated D-lactate
levels are not associated with this syndrome!8.

The unique biochemical phenotype of this patient prompted us
to examine new patients for elevated D-lactate concentrations
and we identified a second patient with a clinical diagnosis of
West syndrome and elevated D-lactate in urine and plasma, as
well as increased levels of both D-2-hydroxyacids (Fig. 2). As
increased D-lactate excretion is not a known feature of either
a 11p13 deletion or West syndrome, we investigated if this
perturbation could be due to a different genetic cause, particularly
as studies in neurometabolic patient cohorts have reported a high
rate (13-14%) of patients with multiple molecular diagnoses!®-20.

Identification of LDHD responsible for D-lactate metabolism.
As the parents of Patient 1 originated from the same Sicilian
village, we hypothesized that they may share some degree of
consanguinity. We therefore analyzed homozygosity regions
identified by SNParray for genes which might relate to D-lactate
excretion (Supplementary Table 1). The fifth largest stretch of
homozygosity of 3.5MB contained 28 protein coding genes
including LDHD (Supplementary Table 2). LDHD has been
identified as a putative lactate dehydrogenase in mammals but
the function in humans has not been elucidated?l:22. We
performed Sanger sequencing of exonic regions and intronic/
exonic boundaries of DNA isolated from blood of the patient
and identified a homozygous LDHD nonsynonymous variant
NM_153486.3:c.1388C>T [https://www.ncbinlm.nih.gov/
nuccore/NM_153486.3], p.(Thr463Met) (Fig. 3a). Both parents
were heterozygous carriers. The variant’s predicted effect on
protein function was classified as probably damaging (PolyPhen-
2) and deleterious (Sorting Intolerant From Tolerant; SIFT), and
resided in a region highly conserved across multiple species
(Fig. 3b)?>?% The variant was not present in large human
population variant frequency databases such as the Genome of
the Netherlands, the Exome Variant Server, the 1000 Genomes or
our in-house dataset, although it is present heterozygously in 27
individuals in the Genome Aggregation Database (gnomAD) and
has recently been listed in dbSNP Build 151 as rs7648776882°-28.
Sanger sequencing of 200 additional individuals from the same
region as that of our patient’s parents was performed to investi-
gate if the variant was present at a higher frequency in the Sicilian
population but not represented in larger databases. However,
no other individuals with this variant were detected.

Subsequent Sanger sequencing of LDHD in Patient 2 identified
a novel homozygous variant at NM_153486.3:c.1122G>T [https://
www.ncbi.nlm.nih.gov/nuccore/NM_153486.3],  p.(Trp374Cys)
that was not present in any large human population variant
frequency database, predicted to be probably damaging and
deleterious by PolyPhen-2 and SIFT, respectively?>24, and resided
within an area conserved amongst chordates (Fig. 3¢, d). A Gene
Matcher search failed to identify similar patients with LDHD
variants (search performed August 13, 2018)%°. Taken together,
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Fig. 2 Metabolic analysis reveals elevated D-lactate of two patients. The levels of D-lactate in a urine and b plasma are elevated in our patients compared
to controls. Increased levels of D-2-hydroxyisovaleric acid (¢, d) and D-2-hydroxyisocaproic acid (e, f) are also observed in urine and plasma, respectively.
Separate metabolic measurements for Patient 1 and 2 in urine (n=3; n=2) and plasma (n=1; n=2) are shown. Mean and standard deviation shown

we hypothesized that the LDHD variants observed in these
patients resulted in LDHD dysfunction and elevated D-lactate
plasma concentration and urinary excretion.

Zebrafish LDHD knockout and human LDHD microinjection.
We utilized the zebrafish as a model organism to verify the effect
of LDHD loss-of-function and establish the role of LDHD in D-
lactate metabolism. We acquired the Idhd$215623 zebrafish line
through the European Zebrafish Resource Center (KIT-EZRC,
Karlsruhe, Germany). This line carries a disrupted essential donor
splice site following exon 3 resulting in a premature stop codon
(Allele sal5623; Zv9 chr25:g.13920446T>G)30. Since Idhds315623
homozygous fish remain viable and fertile, maternal and zygotic
(MZ) mutant embryos (Idhd—/'~) were used for phenotypic and
metabolic evaluation of LDHD deficiency effects. Phenotypically,
3 dpf (days post fertilization) Idhd—/— embryos showed no visible
abnormalities compared to wildtype (Fig. 4a), and displayed no
ocular abnormalities at 5 dpf (Supplementary Fig. 1). However,
metabolic analysis revealed elevated levels of D-lactate, but not
L-lactate, in Idhd—/— larvae compared to wildtype (Fig. 4b, c).
This confirmed conservation of LDHD function in zebrafish and

demonstrated the biochemical phenotype of LDHD loss-of-
function, without evident clinical phenotype.

To study the effect on LDHD function of the two separate
missense variants present in our patients, we microinjected
LDHD wildtype, LDHD variant Thr463Met or LDHD variant
Trp374Cys human mRNA into 1-cell embryos of either wildtype
or ldhd—/= zebrafish. 3 dpf embryos from the different conditions
were pooled in separate groups of 10 embryos for D-lactate
analysis. Wildtype zebrafish larvae showed no phenotype upon
LDHD wildtype or variant injection. Additionally, physiological
D-lactate levels in wildtype zebrafish were not altered by
microinjections of wildtype LDHD, variant Thr463Met LDHD,
or variant Trp374Cys LDHD, showing that endogenous LDHD is
sufficient to reduce D-lactate levels below the detection level.
However, Idhd~/~ uninjected embryos showed a significant D-
lactate increase that was restored to baseline levels by mRNA
microinjection of the wildtype LDHD sequence. In contrast,
microinjection of variant Thr463Met LDHD or Trp374Cys
LDHD mRNA did not rescue the metabolic phenotype (Fig. 4b).
Finally, levels of L-lactate were not significantly altered among the
different conditions, establishing that LDHD is stereospecific for
D-lactate only (Fig. 4c). This confirmed that LDHD is responsible
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Fig. 3 Identification of human loss-of-function variants in LDHD. a Sanger sequencing of Patient 1 identifies a LDHD homozygous nonsynonymous variant
NM_153486.3:c.1388C>T, p.(Thr463Met). Both the mother and the father are heterozygous carriers of the variant. b The variant p.(Thr463Met) encodes
for the amino acid methionine (M) instead of the normally present amino acid threonine (T) in a region that is highly conserved across multiple species.
¢ Sanger sequencing of Patient 2 identifies a separate novel, homozygous nonsynonymous variant NM_153486.3:c.1122G>T, p.(Trp374Cys). Both the
mother and the father are heterozygous carriers of the variant. d The variant p.(Trp374Cys) is in a region that is conserved across chordates. Sac_c_DLD1
Saccharomyces_cerevisiae_DLD1, Ara_t_AT5G Arabidopsis_thaliana_AT5G06580, Cae_e_F32D8 Caenorhabditis_elegans_F32D8.12, Gal_g_LDHD
Gallus_gallus_LDHD, Hom_s_LDHD Homo_sapiens_LDHD, Mus_m_LDHD Mus_musculus_LDHD

for D-lactate metabolism, and that the homozygous variants
present in our patients both result in decreased LDHD activity.

Discussion

In humans, the ability to metabolize D-lactate to pyruvate has
previously been attributed to D-2-hydroxy acid dehydrogenase.
Mammals were thought to lack a functioning D-lactate dehy-
drogenase, though D-lactate dehydrogenases are present in yeast
and prokaryotes?231-38, D-lactate levels are not routinely studied,
as analysis methods for plasma lactate are based on measuring the
product of enzymatic conversion of L-lactate3*3°. The detection
of D-lactate thus requires specific assays based on bacterial
LDHD or stereospecific mass spectrometry methods, both
methods not routinely applied*?*1. However, increased D-lactate
can be responsible for an anion gap, as we see in our patients, and
could potentially result in a greater risk of developing D-lactate
acidosis. The first cases of D-lactic acidosis were identified in the
late 1970s, with the majority of cases associated with short bowel
syndrome!217:33, While the work presented in this study does not
justify LDHD screening in all patients with D-lactic acidosis,
impairment of this metabolic pathway could conceivably result in
an earlier onset or increased severity of acidosis. However, further
research in this patient group is needed.

Neurologic symptoms commonly identified in D-lactic acidosis
patients include altered mental status, slurred speech, ataxia, gate
disturbance and less frequent manifestations ranging from
aggressive behavior, hallucinations and paranoia to irritability,
headache, and hunger33. The pathophysiological mechanism has
not been clarified. As no clear correlation between D-lactate
concentrations and the neurological phenotype has been demon-
strated, it has been suggested that the neurological symptoms may
be caused by other specific metabolic products of bacterial

overgrowth, such as neurotoxin mercaptans, aldehydes, or others
that may function as false neurotransmitters!13-3342-44 Ppatient 1
presented with intellectual disability and behavioral problems,
which are both observed in 11p deletion syndrome*>. One might
speculate that the deficient D-lactate metabolism in Patient 1
contributed to the intellectual deficit or behavioral problems, and
the neurological phenotype of Patient 2. However, given the
phenotypic differences between our two patients, and the other
genetic findings potentially explaining the rest of their phenotype,
the loss-of-function LDHD phenotype in humans could represent
a metabolic phenotype only. If LDHD loss-of-function is only
associated with a biochemical phenotype, possibly this metabolic
phenotype is overlooked or misclassified as L-lactic acidosis.

The diverse genetic findings in these patients highlight the need
for deep phenotyping and comprehensive genomic analysis to
detect both single nucleotide variants and copy number variants
responsible for the patient phenotype. In the current study, this
was accomplished utilizing a complementary approach of Sanger
sequencing and WES to detect single nucleotide variants and
array CGH/SNParray to identify large copy number variation
(which WES is unable to perform). This is particularly necessary
for those patients with rare complex phenotypes, where multiple
genetic loci may contribute to the phenotype!%20:46:47,

Increased levels of D-2-hydroxyisovaleric acid and D-2-
hydroxyisocaproic acid were observed in both of our patients.
The origin of these metabolites in vertebrate metabolism in
unknown. Increased levels of the L-forms of these metabolites
have been reported in the urine of patients with maple syrup
urine disease (MSUD, MIM #248600)484° lactic acidosis,
ketoacidosis, as well as diabetic ketoacidosis patients®*>1. The
lactate dehydrogenase LDHA has experimentally been shown to
be involved in the formation of the L-forms of these metabolites,
particularly L-2-hydroxyisovaleric acid levels>2. Heemskerk et al.
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Fig. 4 Zebrafish metabolic studies. a Maternal zygotic mutant Idhd—~
zebrafish larvae (3 dpf, lower panel) show no phenotype differences
compared to wildtype zebrafish larvae (upper panel). Scale bar: 250 pm.
Levels of D-lactate (b) and L-lactate (c) in response to LDHD activity.
Wildtype zebrafish larvae (Idhd WT) and Idhd—/~ zebrafish (Idhd—/~) at
the 1 cell stage were subject to four conditions: uninjected (cntrl),
microinjected with human wildtype LDHD RNA (LDHD WT), microinjected
with patient variant Thrd63Met LDHD RNA (LDHD T463M), or Trp374Cys
LDHD RNA (LDHD W374C). Metabolic assays were then performed to
detect D-lactate and L-lactate present at 3 dpf. The conditions where LDHD
are nonfunctional result in higher levels of D-lactate; in contrast, no effect is
seen in the levels of L-lactate. Measurements for each condition were
performed on three batches of 10 embryos. Mean and standard deviation
shown

show that LDHA can convert the ketoacid transamination pro-
ducts of valine, leucine, and isoleucine into L-2-hydroxyisovaleric
acid, L-2-hydroxyisocaproic acid, and L-2-hydroxy-3-methylva-
leric acid, respectively, and hypothesize that this function
is necessary to prevent the accumulation of branched-chain
ketoacids in hypoxic conditions. The increases of D-2-
hydroxyisovaleric acid and D-2-hydroxyisocaproic acid that we
have observed could suggest a role for LDHD in the metabolism
of these D-isomer metabolites, but more research is needed to

clarify the mechanism of this little-known pathway. An intestinal
bacterial origin of the D-2-branched-chain hydroxyacids cannot
be ruled out completely. Spaapen et al. have demonstrated the
presence of excessive amounts of D-2-hydroxyisocaproic acid
in the urine of a patient with a short bowel syndrome, together
with the typical D-lactate and, amongst others, the D-isomers
of phenyllactic acid and 4-hydroxyphenyllactic acid which are
metabolites of the amino acids phenylalanine and tyrosine,
respectively3. Their findings suggest that the formation of D-2-
hydroxyacids from parent amino acids is a common intestinal
bacterial phenomenon. All thus formed D-2-hydroxyacids appear
to be metabolized by endogenous LDHD, which has a limited
overall capacity. In short bowel syndrome patients this limited
capacity may be overwhelmed by excessive bacterial metabolism
and result in accumulation of these D-2-branched-chain hydro-
xyacids. Similarly, in our patients, the accumulation of these
hydroxyacids may be a result of LDHD loss-of-function.

In summary, we report two patients with different homozygous
LDHD missense variants, both resulting in enzymatic loss-of-
function leading to massive D-lactate excretion and increased D-
lactate plasma concentrations. Zebrafish metabolic studies
establish that LDHD loss results in increased D-lactate con-
centration that is rescued by wildtype LDHD, but not by patient
variant LDHD. We therefore conclude that LDHD is essential
for human D-lactate metabolism. As no other phenotype was
observed in Idhd—/~ zebrafish, it remains to be elucidated whe-
ther LDHD deficiency is a biochemical anomaly only, or if it
contributes to a human clinical phenotype. Although plasma
concentrations of D-lactate did not cause acidosis in our patients,
individuals harboring LDHD variants that are detrimental to
enzymatic function may be at risk to develop D-lactic acidosis
due to short bowel resection or gastric bypass, a combination
of factors that could overwhelm the body’s ability to metabolize
D-lactate. LDHD loss-of-function should thus be included in
the differential diagnosis of D-lactate acidosis. Finally, this first
in vivo identification of the role of LDHD in human D-lactate
metabolism demonstrates the value of humans with deleterious
variants in revealing and characterizing gene function.

Methods

Clinical patient reports. Patient 1 was originally described 40 years ago as a novel
case of D-lactic acidurial”. The patient was born of Sicilian parents, at the age
of 1 year his mental and motor development were severely impaired. He was
presented to the clinic at the age of 4 years. Briefly, he had been born of an
uneventful pregnancy at 40 weeks, with microcephaly (OFC 34.5 cm), slanting of
the eyelids, bilateral inguinal hernia, and aniridia. Development quotient at the age
of 1 year was 51 at Griffiths scale and motor development was also severely
impaired. At the age of 40, the family presented again for genetic counseling. By
then he was known to carry a de novo deletion on chromosome 11p13. His medical
history included a severe mental handicap with behavioral problems, cryptorch-
idism, blindness (aniridia, with later onset of cataract and glaucoma) and epilepsy
until the age of 14. He had not developed a Wilms tumor. Upon reexamination
at the age of 40, he was normocephalic (OFC 57 cm), with down slanting eyelids,
a protruding lower lip, mildly dysplastic helices, and patches of greying hair.

The second digits of his feet were longer than the halluces.

Patient 2 was the first child of consanguineous (first cousins) Moluccan parents
(Indonesia), born after an uneventful pregnancy. He had a normal development
until the age of 5 months when he developed seizures fitting West syndrome. He
experienced developmental regression with severe hypotonia including headlag,
slipping through and lost social interaction and remains developmentally delayed.
Physical examination did not reveal other abnormalities or dysmorphic features.
With antiepileptic drugs (Levetiracetam and Vigabatrin), seizure frequency
decreased and interaction improved. His motor development has now significantly
improved, but he remains developmentally delayed.

Patient genetic investigations. For Patient 1, clinical suspicion of 11p deletion
syndrome resulted in array CGH analysis at the Genome Diagnostics Department
of Genetics, University Medical Center Utrecht, The Netherlands. A paternal
deletion 3q24 (260 kb) was detected in the patient, as well as a 11.13 Mb de novo
deletion spanning from 11p14.1 to 11p12, confirming the 11p deletion syndrome.
The patient’s intellectual disability, ophthalmologic features, cryptorchidism, and
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Table 1 Optimized MRM settings

Parent ion
(m per z)

Component Daughter ion

(m per z)

Collision energy (eV) Dwell time (s)

['3C3]-L-lactate 307.95 91.95 8.0 0.1
L/D-lactate 304.95 88.95 8.0 0.1
L/D-2-OH-isovaleric acid 333.00 17.00 8.0 0.1
L/D-2-OH-isocaproic acid 347.00 131.00 8.0 0.1

seizures were consistent with 11p deletion syndrome—also known as WAGR
syndrome (Wilms tumor; Aniridia; Genital anomalies; Retardation)—which was
concluded to be likely causal for most of the patient’s phenotype!83455,

Diagnostic Sanger sequencing of PDHX, a gene in which homozygous or
compound heterozygous variants are known to cause lactic acidemia (MIM
#245349), revealed no causal variants (Department of Genetics, Genome
Diagnostics, University Medical Center Groningen, The Netherlands). At the
age of 40, a high-resolution SNParray was performed to establish the minimal
breakpoints chr11:29651299 to chr11:40817882 of the de novo deletion (GRCh37/
hgl19 genome build). Moreover, several large regions of homozygosity were
observed, confirming relatedness of the parents (Supplementary Table 1). The
largest homozygous stretch contained an 11.1 MB region with 51 genes,
encompassing the 11p13 region including PAX6 and WTI. Genes present in the
identified regions were annotated on function and literature consulted to establish
if the gene could be a candidate for elevated D-lactate levels. Of the genes that were
present in homozygous regions, LDHD was the most likely candidate as it had
previously been identified as a putative D-lactate dehydrogenase (Supplementary
Table 2).

Subsequently, the exonic and exonic/intronic boundaries of LDHD were
screened by Sanger sequencing (primers available in Supplementary Table 3),
identifying the variant NM_153486.3:c.1388C>T, p.(Thr463Met). To determine
if this variant was population specific in the isolated Sicilian community of the
family, 200 additional individuals were screened for variants using Sanger
sequencing. One hundred of these individuals originated from within a 100 km
radius of the town of patient’s birth in the province of Palermo; a further 100
individuals were from neighboring Sicilian areas outside of the 100 km radius.

For Patient 2, whole exome sequencing was performed to attempt to find a
genetic cause of West Syndrome, according to standard diagnostic procedures and
WES quality criteria at UMC Utrecht, The Netherlands. Patient-parent trio whole
exome sequencing in search for a genetic cause of the patient’s seizures identified a
de novo variant in CACNAIB (NM_000718.3: ¢.1429C>T, p.(Arg477Cys); Calcium
channel, voltage dependent, N type, Alpha-1B subunit), a voltage-dependent Ca?*
channel. Variants in CACNA1B have not previously been linked to West
Syndrome, though a different heterozygous CACNAIB missense variant
(NM_000718.3: c.4166G>A, p.(Argl389His)) segregating in affected individuals of
a Dutch family with autosomal dominant dystonia-23 (MIM: 614860) has recently
been reported~®. Additionally, heterozygous variants in paralogous CACNAIA are
known to cause episodic ataxia, type 2 (MIM: 601011), as well as epileptic
encephalopathy (MIM: 617106)>’. Although functional work and identification of
other patients with CACNA1B variants will be essential to establish a molecular
diagnosis for this patient’s seizures, we consider the variant a strong candidate to
explain the epilepsy phenotype of the patient.

To determine if the patient’s high D-lactate levels could be due to LDHD
deficiency, a high-resolution SNParray was performed to identify if LDHD was
present in the regions of homozygosity. The exonic and exonic/intronic boundaries
of LDHD were subsequently screened by Sanger sequencing, identifying the variant
NM_153486.3:c.1122G>T, p.(Trp374Cys).

Informed consent was obtained for both participants and all relevant ethical
regulations were adhered to. Informed consent for whole-exome sequencing as a
part of the diagnostic process (approved by the Medical Ethical Committee of the
University Medical Center Utrecht) was obtained for Patient 2 and parents.

Metabolic studies in zebrafish. The ENU-mutagenized LDHD knockout zebra-
fish line Idhds@19623—/+ was obtained via the European Zebrafish Resource Center
(EZRC; ZFIN ID: ZDB-GENE-030131-6140) at the Karlsruhe Institute of Tech-
nology (KIT) to evaluate the D-lactate levels in zebrafish larvae. The line contains
the variant chr25:g.13920446T>G (Zv9 zebrafish genome build) that disrupts an
essential splice site following exon 3, resulting in a knock-out of LDHD (http://
www.sanger.ac.uk/sanger/Zebrafish_Zmpgene/ENSDARG00000038845#sa15623).
The heterozygous carriers were grown to adults and incrossed to produce the Idhd
~/= line, which is adult viable and fertile. Incrossing the Idhd—/~ line provided the
maternal and zygotic mutant embryos for this study. Animal experiments complied
with all ethical regulations and were approved by the Animal Experimentation
Committee of the Royal Netherlands Academy of Arts and Sciences.

Expression constructs were created using the wildtype human sequence of
LDHD wildtype and the LDHD Thr463Met and Trp374Cys variants to evaluate

if the D-lactate phenotype could be introduced and/or subsequently rescued in
zebrafish larvae. Human LDHD cDNA (accession number NM_194436.1) in the
entry vector pPCMV-ENTRY (Origene, Rockville, MD, USA) was inserted into the
expression vector pCS2+/GW (Thermo Fisher Scientific, Waltham, MA, USA).
Site-directed mutagenesis was performed to introduce the Thr463Met variant by
using primers 5-TCTCCACGGAACGTGCATGGGGGAGCA-3 and 5-TGCTCCC
CCATGCACGTTCCGTGGAGA-3 or for the Trp374Cys variant by using primers
5-GGCACAATGCCTGTTACGCAGCCCTGG-3 and 5-CCAGGGCTGCGTAAC
AGGCATTGTGCC-3. These three plasmids were then linearized by NotI digestion
and the reaction was cleaned up using the Qiaquick PCR purification kit (Qiagen,
Hilden, Germany). RNA was synthesized from the linear DNA using the
mMESSAGE mMACHINE SP6 transcription kit (Thermo Fisher Scientific,
Waltham, MA, USA) and cleaned with the RNeasy mini kit (Qiagen, Hilden,
Germany). Five ng/ul mRNA of the LDHD wildtype, Thr463Met LDHD variant, or
Trp374Cys LDHD variant was used for microinjections into 1-cell stage Idhd—/~ or
wildtype zebrafish embryos. A control group of uninjected wildtype zebrafish and
ldhd—'— zebrafish was also included for every experiment. At 3 dpf, three batches of
10 embryos were collected for each condition, pooled and stored at —80 °C.

For the zebrafish metabolic measurements, 200 uL methanol and 25 pL of
internal standard solution (containing 434.75 pmol L~! [13C;]-L-lactate) was
added to the separate three batches for each of the eight conditions. Next, sample
extracts were homogenized with 0.5 mm zirconium oxide beads (product #ZrOB05,
Next Advance, Inc., Averill Park, NY) using a bullet blender (model BBX24B-CE,
Next Advance, Inc., Averill Park, NY) for 2 x 5 min, speed 8 at 4 °C. The extracts
were centrifuged at 4 °C and 15,871 x g for 5 min. The supernatant was pipetted
into a reaction vial and evaporated completely under a gentle stream of nitrogen at
a temperature of 50 °C. Fifty uL of freshly made DATAN was added. The vial was
capped, vortexed, and heated at 75 °C for 30 min. After 30 min, the vial was allowed
to cool down to room temperature, and the mixture was evaporated completely
with a gentle stream of nitrogen. The derivatized residue was reconstituted with
150 pL Solvent A and chromatography and mass spectrometry were performed
as described above.

To visualize zebrafish sections by hematoxylin and eosin (H&E) staining,
wildtype and MZ Idhd—/~ 5 dpf embryos were fixed in 4% paraformaldehyde in
PBS at 4 °C overnight, washed in PBS-Triton X100 (0.1%v/v), embedded in paraffin
sectioned transversally at 10 um intervals. Sections were subsequently stained
with hematoxylin and eosin according to a standard protocol.

Mass spectrometry methods. Chemicals and reagents were obtained from var-
ious suppliers. Sodium L (+) lactate, sodium D (—) lactate, D-2-hydroxyisovaleric
acid, L-2-hydroxyisovaleric acid, L-2-hydroxyisocaproic acid, (+)-O,0-diacetyl-L-
tartaric anhydride (DATAN), and ammonium formate were obtained from Sigma
Aldrich (St. Louis, MO, USA). [13C;]-Sodium L (+) lactate was obtained from
Cambridge Isotope Laboratories (Tewksbury, MA, USA). Dichloromethane

and acetic acid anhydrous were obtained from Merck (Kenilworth, NJ, USA).
Acetonitrile, methanol, and formic acid (all at ULS/MS grade) were obtained from
Biosolve (Dieuze, France). D-2-hydroxyisocaproic acid was obtained from Bachem
AG (Bubendorf, Switzerland).

For plasma sample preparation, 25 pL of plasma was added to 25 pL of internal
standard solution (containing 434.75 pmol L~! [13C;]-L-lactate). Samples were
mixed thoroughly and subsequently deproteinized with a 600 uL mixture of
methanol:acetonitrile (1:1, by volume) and centrifuged at 4 °C for 5 min at
15,871 x g. The supernatant was pipetted into a reaction vial and evaporated
completely under a gentle stream of nitrogen at a temperature of 50 °C. Fifty uL of
freshly made DATAN (50 mg mL~! dichloromethane: acetic acid (4:1, by volume))
was added. The vial was capped, vortexed, and heated at 75 °C for 30 min. After
30 min, the vial was allowed to cool down to room temperature, and the mixture
was evaporated completely with a gentle stream of nitrogen. The derivatized
residue was reconstituted with 150 pL Solvent A (1.5 mM ammonium formate
(pH =3.6)).

For urine sample preparation, 25 pL of internal standard solution, 25 uL urine,
and 300 pL of methanol were pipetted into a reaction vial. Samples were mixed
thoroughly and evaporated completely under a gentle stream of nitrogen at a
temperature of 50 °C. Fifty uL of freshly made DATAN was added. The vial was
capped, vortexed, and heated at 75 °C for 30 min. After 30 min, the vial was allowed
to cool down to room temperature, and the mixture was evaporated completely
with a gentle stream of nitrogen. The derivatized residue was reconstituted with
300 pL Solvent A.

Samples were analyzed by reversed phase LC-tandem MS using an Acquity
UPLC BEH C18 analytical column (100 x 2.1 mm, 1.7 um; Waters, Milford, MA,
USA). Detection was carried out using a Xevo TQ tandem mass spectrometer
(Waters, Milford, MA, USA), which was operated in negative multiple-reaction-
monitoring (MRM) mode. UPLC analysis was performed using a binary gradient
at a flow of 0.5 mL min~! using an Acquity UPLC (Waters, Milford, MA, USA).
Solvent A was 1.5 mM ammonium formate (pH = 3.6), and solvent B was
acetonitrile. A linear gradient was started at 0.5% B, and ramped to 3% B in 3 min,
further ramped to 40% in 2 min, held at 40% B for 2 min and returned to 0.5% B in
1 min. The column was equilibrated for 1 min at the initial composition. Injection
volume was 10 pL, and column temperature was set at 40 °C. Samples were kept at
6 °C. Chromatograms were acquired and processed with Masslynx V4.1 SCN 843
(Waters, Milford, MA, USA).
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Optimal conditions for all parents were found at a capillary voltage of 1.5 kV and
a cone voltage of 10 V. The source and desolvation temperature were 150 and 600 °C,
respectively. The cone gas flow and desolvation gas flow were 0 and 800 Lh~1,
respectively. To establish the most sensitive daughter ions, the collision energy was
set at 8 eV with a collision gas flow of 0.15 mL min~! (Table 1).

Calibration standard curves for all compounds were made in Milli-Q water.
Calibration curves were obtained by linear regression of a plot of the analyte
concentration versus the peak-area ratio of the analyte/internal standard area. For
all the analytes, [13Cs]-L-lactate was used as an internal standard.

Data availability

The WES dataset for Patient 2 was generated during patient care. The family consented
to deposition of data solely pertaining to this study, therefore the dataset has not been
made publicly available, but is available from the corresponding author upon reasonable
request. The accession codes of the two LDHD variants uploaded to ClinVar are
SCV000840083 and SCV000840084.
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