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Abstract

Background

Establishment of a beneficial microbiota profile for piglets as early in life as possible is impor-
tant as it will impact their future health. In the current study, we hypothesized that resistant
starch (RS) provided in the maternal diet during gestation and lactation will be fermented in
their hindgut, which would favourably modify their milk and/or gut microbiota composition
and that it would in turn affect piglets’ microbiota profile and their absorptive and immune
abilities.

Methods

In this experiment, 33% of pea starch was used in the diet of gestating and lactating sows
and compared to control sows. Their faecal microbiota and milk composition were deter-
mined and the colonic microbiota, short-chain fatty acids (SCFA) production and gut health
related parameters of the piglets were measured two days before weaning. In addition, their
overall performances and post-weaning faecal score were also assessed.

Results

The RS diet modulated the faecal microbiota of the sows during gestation, increasing the
Firmicutes: Bacteroidetes ratio and the relative abundance of beneficial genera like Bifido-
bacterium but these differences disappeared during lactation and maternal diets did not
impact the colonic microbiota of their progeny. Milk protein concentration decreased with
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RS diet and lactose concentration increased within the first weeks of lactation while
decreased the week before weaning with the RS diet. No effect of the dietary treatment, on
piglets’ bodyweight or diarrhoea frequency post-weaning was observed. Moreover, the
intestinal morphology measured as villus height and crypt depths, and the inflammatory
cytokines in the intestine of the piglets were not differentially expressed between maternal
treatments. Only zonula occludens 1 (ZO-1) was more expressed in the ileum of piglets
born from RS sows, suggesting a better closure of the mucosa tight junctions.

Conclusion

Changes in the microbiota transferred from mother to piglets due to the inclusion of RS in
the maternal diet are rather limited even though milk composition was affected.

1. Introduction

Post-weaning diarrhoea is one of the major health problems in pig husbandry worldwide. It is
characterized by a higher risk of infections and a lower feed intake, due to the conversion from
milk to solid feed, which has consequences on the gut morphology like the atrophy of the
small intestinal villi and hyperplasia of the crypts [1-3]. Weaning troubles are also accompa-
nied with an impairment of the immune function, a higher permeability of the gut mucosa to
antigens and lower brush border enzymes activity (lower lactase and sucrase activities), lower-
ing the ability of the piglets to digest feed [1,2,4,5].

Feeding strategies to reduce the risk of post-weaning diarrhoea include the use of prebio-
tics, probiotics and organic acids in newly weaned piglets’ diet [5]. The mode of action of these
feed ingredients relies on their ability to modify favourably the microbiota of the piglets which
is very important for their health. Indeed, beneficial bacteria can act as a barrier against patho-
gens, having the ability to lower the pH of the gastrointestinal tract and produce anti-microbial
compounds [6]. Microbiota fermenting indigestible carbohydrates produces SCFA that are an
important energy source for the animal and butyrate in particular is a gut health-promoting
compound acting as the main energy source for colonocytes and exerting anti-inflammatory
properties [7]. It is thus of interest to modify favourably the microbiota towards fermentative
butyrate-producing and anti-pathogenic bacteria.

Different moments in the life time of piglets for the feed additive supplementation are cur-
rently envisaged in research. The first strategy to favour beneficial bacteria in the gut early in
life is to feed the additives to newly weaned piglets to boost their immunity via the develop-
ment of a beneficial microbiota at weaning. Another strategy is the use of these additives in the
sows’ diet in order to promote a rapid colonization of beneficial bacteria and a long-lasting
effect for the health of the progeny [8-10]. Several mechanisms are hypothesized concerning
the maternal effect. Firstly, acting on the sow’s diet relies on the fact that the microbiota trig-
gering the intestinal immune system in piglets will be acquired from the bacteria present in
sows’ faeces, vagina and in milk [8,9]. The purpose then is to modulate the microbiota of the
sows to shape a beneficial colonizing microbiota in piglets, improving their immune compe-
tence. Secondly, another mechanism that is sought is the modification of the composition of
the milk, for nutrients and immunoglobulins (Igs) composition [11], as it has been shown in
sows fed a high fibre diet [12] or a diet rich in short-chain fructooligosaccharides [13]. As
microbiota impacts the development and maturation of the intestinal immune system [14],
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and as immunoglobulins act as a first passive immunological defence for piglets [15,16], modi-
fying one or another of these components, or possibly both together, could promote a healthy
gut and prepare the piglet for the weaning period.

Resistant starch is the part of starch that escapes enzymatic digestion in the small intestine
and can thus be fermented in the colon of the pig [17,18]. It generally comes in ingredients
with high amylose contents. Resistant starch can be classified in 5 categories depending on its
chemical and physical properties: RS1 (physically inaccessible starch), RS2 (native resistant
starch granules), RS3 (retrograded starch), RS4 (starch that has been chemically modified) and
RS5 (amylose-lipid complex starch) [18,19]. As a non-digestible but fermentable dietary com-
ponent, the inclusion of resistant starch in the diet is expected to reduce the energy content of
the diet [20], potentially reducing performances and/or feed conversion compared to digest-
ible starch. In turn, it should modulate microbiota composition in the distal small intestine
and the large intestine of the animals and subsequently impact fermentation end-products.
The production of butyrate is usually specifically increased as starch fermentation is known
for being butyrogenic [21,22].

Thus, the purpose of this study was to investigate whether maternal pea starch supplemen-
tation could impact the ability of piglets to cope with the weaning period and its associated
stresses by comparing the composition of the faecal microbiota and the milk of sows fed two
diets contrasting in resistant starch contents. Additionally, the performance, health status and
gut immune and morphological status of their progeny was also compared as well as their
intestinal microbiota. Pea starch was used as a source of RS because of its ability to produce a
high ratio of butyrate during in vitro fermentation [23]; it is considered to be a RS2 type
[18,24] and contains 35% of amylose (information provided by the supplier).

2. Materials and methods
2.1. Animals, diets and housing

All experimental procedures led on sows and piglets were in accordance with European and
Belgian regulations concerning laboratory animal welfare. The ethical protocol was reviewed
and approved by the Animal Ethical Committee of Li¢ége University (protocol number: 1661).
Sows and piglets were housed until weaning at the Walloon Agricultural Research Centre
(Gembloux). Landrace sows were inseminated with Piétrain semen and housed in groups on
straw litter from one week after artificial insemination (AI) until one week before farrowing.
Before the diet change, sows were housed all together in a room that was then divided in two
parts to avoid cross contamination after diet change. For farrowing and lactation, they were
moved to individual farrowing units, equipped with wood shavings litter, a heat lamp and an
extra rear space for sows and piglets accessible by day 5 after delivery. Sows were fed a standard
gestation diet until day 88 of gestation, after which they were divided in two dietary groups.
The first group (12 sows) received a diet containing 33% of digestible starch (DS diet) and the
other group (12 sows) received a diet containing 33% of pea starch (Nastar, Cosucra, Belgium),
considered as resistant starch (RS diet). One sow from the RS group had to be removed from
the experiment as she had to be treated with antibiotics because of vulva gangrene after deliv-
ery. Farrowing was induced by the injection of 2 ml of sodium cloprostenol (92 pg/ml) at 114
days of gestation. Within the DS diet, 4 sows were of 1** parity (P1), 2 sows of 2™ parity (P2), 3
sows of 3™ parity (P3) and 3 sows had a parity higher or equal to 4 (P>4). Within the RS
group, the parities distribution was as follows: 4 P1 sows, 2 P2 sows, 4 P3 sows and 2 P>4
SOWS.

Gestation and lactation diets contained 33% of starch, were formulated to be iso-nitroge-
nous and iso-energetic (net energy) according to NRC requirements (Nutrient Requirements
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of Swine, 2012). The composition of the diets is shown in Table 1. Between gestation and lacta-
tion diets, except for the change of barley into wheat, the same ingredients were used. At wean-
ing (day 28), 44 female piglets (4 piglets/sow) were moved to the Animal Productions Centre
in Gembloux and were fed a standard post-weaning diet devoid of antibiotics, prebiotics, pro-
biotics or non-starch polysaccharide (NSP) enzymes. Two littermates were kept together in
the same pen and the temperature the day of arrival was maintained at 26°C.

Table 1. Composition of sows’ diets during gestation for digestible starch (GDS) and resistant starch (RDS) and
during lactation (LDS and LRS) and analyzed chemical composition.

GDS GRS LDS LRS
Pea Starch - 33.0 - 33.0
Maize starch 33.0 - 33.0 -
Wheat bran 12.5 12.5 124 12.4
Beet pulp 10.1 10.1 6 6
Soy meal 5.1 5.1 13.7 13.7
Sunflower cake 10 10 4.5 4.5
Canola cake 5
Palm cake 4 4
Wheat - - 3.7 3.7
Biscuit flour 3.5 3.5 3.5 3.5
Soy hull 3 3 3 3
DDGS maize 3 3 3 3
Barley 2.6 2.6 - -
Maize gluten 2 1.8 1.01 0.81
Soy oil 0.3 1.5 1 2.2
Rapeseed flour 1.5 1.5 1.5 1.5
Molasses 1 - 1 -
Limestone 0.94 0.94 1.58 1.58
Fat 0.79 0.79 1.25 1.25
L-lysine 0.37 0.37 0.26 0.26
Salt 0.36 0.36 0.39 0.39
L-thr 0.08 0.08 0.05 0.05
DL-met 0.07 0.07 0.03 0.03
L-try 0.01 0.01 0.05 0.05
Minerals & Vitamins 0.62 0.62 1.102 1.102
Chemical composition analyzed'
DM (%) 89.56 90.21 89.80 90.42
OM (%) 84.96 85.43 85.11 84.95
CP (%) 15.37 15.78 16.40 15.05
NDF (%) 22.81 18.26 17.86 17.54
ADF (%) 11.84 9.52 8.68 8.18
EE (%) 2.82 4.53 4.59 5.6
GE (kcal/kg DM) 4009 4110 4049 4112
Total starch (%) 344 29.5 31.4 32.8
Resistant starch (%) 0.88 5.41 0.55 8.55

'DM: dry matter; OM: organic matter; CP: crude protein; NDF: neutral detergent fibre; ADF: acid detergent fibre;
EE: ether extract, GE: gross energy.

https://doi.org/10.1371/journal.pone.0199568.t001
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Zootechnical performances

Bodyweight and backfat thickness (Renco lean-meater™ of Secrepro, Québec, Canada) of the
sows were recorded at days 80 and 107 of gestation and day 28 of lactation to determine the
changes between periods. The duration and the piglet expulsion rate of farrowing were deter-
mined by recording the time of birth of every piglet.

Piglets were weighed weekly from birth until weaning. After weaning, the diarrhoea status
of the piglets was assessed by faecal scoring for 15 days, using a scale going from 0 to 4
(0 = hard pellet, 1 = soft dry pellet, 2 = soft shaped wet pellet, 3 = unshaped soft pellet,
4 = watery). This score was given individually and a mean was calculated for the pen. Piglets
were considered to have diarrhoea when the score was 3 or 4. The presence of diarrhoea (score
of 3 or 4) was assigned to a “1” value while the absence of diarrhoea (score of 0, 1 or 2) was
assigned to a “0” value. The occurrence of diarrhoea was then calculated. As daily recording
did not lead to data normality, 3-days data were averaged grouped for analysis. Diarrhoea
occurrence was then calculated as the percentage of piglets having a score of 3 or 4 in each pen
(0, 50 or 100%) over 3-days periods. The average daily gain (ADG) during the post-weaning
period (2 weeks after weaning) was measured by weighing the piglets on a weekly basis.

2.2. Feed chemical analyses

Diets were analysed for organic matter (ashing at 550°C for 6h, AOAC 923.03), dry matter
(drying at 105°C for 24 h, AOAC 967.03), crude protein (N determination with Kjeltec Ana-
lyzer Unit 2300, Foss, Denmark, CP = Nx6.25), ether extract (Soxhlet method using ether
petroleum, AOAC 920.29), ash-corrected neutral and acid detergent fiber (Fibercap system,
Foss, Denmark, Van Soest et al. 1991 [25]) and gross energy (1241 adiabatic bomb calorimeter,
PARR Instrument, USA). Starch (total and resistant) was analysed with the enzymatic kit
D-Glucose-HK (Megazyme, USA), quantifying glucose concentration after hydrolysis of starch
with pancreatic amylase.

2.3. Milk

Colostrum was collected within one hour after the birth of the first piglet. Milk samples were
collected after the intramuscular injection of 2ml of oxytocin on a weekly basis. Samples were
filtered on sterile medical gauze and stored at -20°C until analysis. Protein, lactose and fat con-
tents in milk and colostrum were determined by Fourier transform infrared spectroscopy on a
Standard Lactoscope FT-MIR automatic (Delta Instruments, Drachten, The Netherlands). The
predictive models provided by the manufacturer were originally designed for cow milk and
were consequently adapted for sow milk by a slope and bias correction using a reference set of
sow milk for which composition was analysed by standard wet chemistry methods. The R* for
each parameter reached 0.99. The IgG and IgA concentrations of colostrum were determined
using specific anti-pig antibodies by ELISA (Bethyl Laboratories, Montgomery, USA and R&D
Systems, Oxon, UK), following the manufacturer’s recommendations. The plates were read at
450nm on a 96-wells plate reader (Stat-fax 2100, awareness technology Inc, Palm City, USA).

2.4. Sampling of intestinal tissues and contents

Faeces were collected directly from the rectum of the sows in sterile bags at day 106 of gesta-
tion and day 15 of lactation. They were immediately snap-frozen in liquid nitrogen and stored
at -80°C until DNA extraction. Two days before weaning (day 26 of lactation), 16 female pig-
lets (8 DS, 8 RS, 1 piglet/sow) were euthanized by injection of a mix of Xylazine/Zoletil 100 (4
mg of xylazine, 2 mg of zolazepam and 2 mg of tilamine/kg BW) for anaesthesia followed by
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bleeding. Content from the caecum and the colon as well as tissue from the ileum and colon of
the piglets were collected, snap-frozen and stored at -80°C until further analysis. Tissue sam-
ples of 5 cm were collected from the duodenum, jejunum and terminal ileum, rinsed with a
saline solution and dehydrated in 4% formol prior to long term storage in 70% ethanol. Tissues
were then embedded in paraffin, cut with a microtome using Thermo MX35 Ultra blades
(Thermo Fisher Scientific, USA) and stained with haematoxylin and eosin. Villus heights and
crypt depths were measured on 30 well-oriented couples villus/crypt per animal by 10-fold
magnification microscopy (Olympus BX51 Olympus, Japan).

2.5. Microbiota composition

DNA was extracted from the sows’ faeces (10 sows/treatment) and piglets colon contents (8
piglets/treatment) using Qiagen QIAamp Stool Minkit (Qiagen, Hilden, Germany), following
the manufacturer’s instructions but adding two bead beating steps (FastPrep-24, MP Biomedi-
cals, Illkirsh, France). Quality of DNA was checked on 1% agarose gel and the DNA concentra-
tion was assessed by a Nanodrop (Thermo Scientific NanoDrop 2000, USA). DNA was stored
at -20°C until sequencing. Sequencing was performed by DNAVision (Gosselies, Belgium),
using the Illumina MiSeq (2x300nt) and after amplifying, purifying and tagging the hypervari-
able regions V3-V4 (Forward primer: 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCC
TACGGGNGGCWGCAG-3 and reverse primer: 5'- GTCTCGTGGGCTCGGAGATGTGTATAAG
AGACAGGACTACHVGGGTATCTAATCC-3') following the 16 S Metagenomic Sequencing
Library Preparation protocol (Part # 15044223 Rev. B) from Illumina.

2.6. Bioinformatics analysis

Raw sequences of 16S rRNA were assigned to each sample, quality checked and trimmed using
Basespace default parameters (Illumina). Sequences were assigned to 97% ID OTUs by com-
parison to the Greengenes reference database 13.8 using the QIIME (Quantitative Insights
Into Microbial Ecology) 1.9.0 software. Since samples contained variable number of sequences
(62529 + 4522 for sows, 94139 + 13830 for piglets), diversity analyses were carried out on sam-
ples rarefied at the same sequencing depth (15973 for sows and 53592 for piglets) to avoid bias
in sequencing depth between samples. The Beta_diversity_through_plots.py script was used to
assess differences in bacterial communities between groups of samples. Beta diversity was visu-
alized using un-weighed and weighed UniFrac distances with Principal Coordinate Analysis
(PCoA). The compare_categories.py script, which applied the adonis method on the previ-
ously obtained dissimilarity matrices, was used to determine whether communities differed
significantly between groups of samples. In addition, the PERMANOVA procedure was
performed by period using R studio software (R Studio, Boston, USA), considering the parity
(primiparous vs multiparous) and the treatment as factors. Multiple_rarefactions.py and
alpha_diversity.py scripts were applied to compute alpha diversity metrics, which evaluated
diversity within a sample and generated rarefaction curves. Raw sequences have been uploaded
in the European Nucleotide Archive database under the project number PRJEB25722.

2.7. Short-chain fatty acids determination and calprotectin concentration

Faeces, colon and caecum contents (day 26) were analysed by isocratic HPLC as detailed in
Leblois et al. (2017) [26]. Briefly, 1g of sample was diluted in 5g of ultrapure water to reach a
6-fold dilution. Samples were then vortexed for 1 minute to ensure a good solubility and
homogeneity of the samples. Aliquots of 2 ml were then centrifuged at 13,000 g, acidified with
H,SO, and filtered at 0.22 pm. Samples were then analysed for SCFA concentration on a
Waters system equipped with an Aminex HPX-87H column (Bio-Rad, Hercules, CA, USA)
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combined with a UV detector (210nm) at 58°C. The mobile phase was H,SO, 5mM. Peaks
were integrated with Empower 3 software (Waters, Milford, USA) after the encoding of a stan-
dard curve. Results are expressed as mmol.g"' and molar ratios, taking into account the initial
dilution. Calprotectin concentration in the colon contents of the piglets was assessed using
Porcine Calprotectin ELISA Kit (MyBioSource, San Diego, USA) following the manufacturer’s
recommendations. Absorbance was measured at 450nm.

2.8. Gene expression analysis

RNA was extracted from frozen ileum and colon tissue (day 26) using ReliaPrep™ RNA Tissue
Miniprep System kit (Promega, Madison, USA). RNA concentration was determined with a
Nanodrop (Thermo Scientific NanoDrop 2000, USA) and integrity was checked on a 1% aga-
rose gel. Then, 2 pug of RNA were converted to single-stranded cDNA using GoScript™ Reverse
Transcription Mix (Promega, Madison, USA), following the manufacturer’s instructions. Spe-
cific regions of cDNA coding for housekeeping genes—glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) and beta actin (ACTB)- , tight junction proteins -zonula occludens-protein 1
(Z0O-1) and Occludin (OCLN)- and proteins involved in the inflammatory response—tumor
necrosis factor alpha (TNF-a), interleukin 6 (IL-6), nuclear factor kappa B (NF-xB), transform-
ing growth factor beta (TGFp), interferon gamma (IFNy), interleukin 1 beta (IL-183) and interleu-
kin 10 (IL-10)- were then amplified with qPCR (StepOne Plus, Thermo Fisher Scientific, USA)
using SYBR Premix Ex Taq II (TakaraBio). Primers and their reference are shown in Table 2.
QPCR conditions were optimized to obtain primer efficiency values between 90 and 110%
(denaturation at 95°C for 5s, annealing at 60°C for 30s and elongation at 72°C for 30s) and
primers specificity was verified through melting curves. GAPDH and ACTB were used as

Table 2. Primers used for gene expression analysis.

Primer
ACTB

GAPDH

TNF-a

IL-6

TGFS

IFNy

NF-xB

IL-18

IL-10

Z0-1

OCLN

-~ =R I -~ R Ao - - R - W B~ e - -~ R e - I -~ R R B -~ I = R R~ - o= I B~ - R e - I -~ R e |

=

Sequence (5’->3’) Reference
GGA-CTT-CGA-GCA-GGA-GAT-GG [27]
GCA-CCG-TGT-TGG-CGT-AGA-GG

Accession number
XM_021086047

CAT-CCA-TGA-CAA-CTT-CGG-CA [28] NM_001206359.1
GCA-TGG-ACT-GTG-GTC-ATG-AGT-C

ACT-GCA-CTT-CGA-GGT-TAT-CGG [29] NM_214022.1
GGC-GAC-GGG-CTT-ATC-TGA

AGA-CAA-AGC-CAC-CAC-CCC-TAA [30] NM_214399
CTC-GTT-CTG-TGA-CTG-CAG-CTT-ATC

GAA-GCG-CAT-CGA-GGC-CAT-TC [31] NM_214015
GGC-TCC-GGT-TCG-ACA-CTT-TC

TGG-TAG-CTC-TGG-GAA-ACT-GAA-TG [32] NM_213948
GGC-TTT-GCG-CTG-GAT-CTG

CCT-CCA-CAA-GGC-AGC-AAA-TAG [33] ENSSSCT00000033438
TCC-ACA-CCG-CTG-TCA-CAG-A

ATG-CTG-AAG-GCT-CTC-CAC-CTC [34] NM_214055
TTG-TTG-CTA-TCA-TCT-CCT-TGC-AC

CTG-CCT-CCC-ACT-TTC-TCT-TG [35] NM_214041
TCA-AAG-GGG-CTC-CCT-AGT-TT

TGA-GAG-CCA-ACC-ATG-TCT-TGA-A [30] XM_021098856
CTC-AGA-CCC-GGC-TCT-CTG-TCT

CTA-CTC-GTC-CAA-CGG-GAA-AG [36] NP_001157119.1

ACG-CCT-CCA-AGT-TAC-CAC-TG
https://doi.org/10.1371/journal.pone.0199568.t002
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reference genes and were selected after verification of their stability for all experimental condi-
tions.; gene expression was normalized using the 2**“" method setting the value of the DS

pigs to 1 to allow comparisons.

2.9. Statistical analyses

All statistical analyses were performed on SAS 9.2 (SAS Inc, USA). Gut morphology was ana-
lysed with the NESTED procedure of SAS, with the treatment as fixed class factor and piglet as
random factor; piglets’ bodyweight until weaning was determined with the mixed procedure
of SAS, time being a repeated effect, sow(treatment) being a random effect and treatment and
parity being fixed factors. Milk composition and sows’ performances were analysed with the
repeated MIXED procedure of SAS; treatment and parity were used as fixed effects and time
was used as a repeated factor. Duration of farrowing and expulsion rate were determined with
the MIXED procedure of SAS, using parity and treatment as fixed effects. Calprotectin, gene
expression and SCFA were analysed with the MIXED procedure of SAS, using the maternal
treatment as fixed factor. Diarrhoea score, piglets’ bodyweight and average daily gain (ADG)
post-weaning were analysed with the repeated MIXED procedure of SAS, with time as
repeated factor and maternal treatment as fixed effect. Microbiota results were analysed with
the non-parametric Kruskall-Wallis test added by Benjamini-Hochberg correction; maternal
treatment was included in this test as fixed effect. Pearson’s correlations were determined
between the abundance of Lactobacillus and of other genera with a relative abundance of >1%
of the total microbiota using the proc CORR of SAS. P-values <0.05 were considered as signif-
icant. For microbiota analysis, a 0.05<p<0.10 was considered as a trend.

3. Results

3.1. Zootechnical parameters

No differences between treatments were observed concerning the duration (250 + 27 min for
DS vs 243 + 53 min for RS, p = 0.95) or expulsion rate (one piglet every 1942 and 20+5 min for
the DS and RS groups, p = 0.63) of farrowing. Changes in bodyweight and backfat thickness
between periods were not affected by the dietary treatment either (S1 Table). The survival of
piglets until weaning was not affected by the treatment (86.5% of piglets for DS vs 84.7% for
RS, p = 0.82). No impact of the maternal treatment or the sex was observed for piglets’ body-
weight until weaning (S1 Fig). None of these parameters were impacted by the parity of the
SOW.

3.2. Colostrum and milk

Globally, lower milk protein concentrations were observed in the RS sows than in the DS
group (p = 0.02). An interaction between the treatment and sow parity was observed (see
Table 3, p<0.05), showing that for P3 sows, the milk protein percentage was lower at every
time point for RS sows (Table 4). Fat percentage was not affected by the RS diet, but an interac-
tion between parity and time was significant (p<0.05). Only in colostrum, parity influenced
the fat concentration as the colostrum of first parity sows was richer in fat and then gradually
decreased with parity. Milk lactose percentage was not impacted by the treatment (p = 0.09)
and a significant interaction between time and treatment was observed (p = 0.01). For colos-
trum and milk samples collected during week 1, RS sows secreted more lactose (p<0.05) in
their milk while this concentration was lower during the last week of gestation (p<0.05). Milk
composition changed with time, as protein concentration decreased over time while lactose
and fat increased (Table 4).
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Table 3. P-values of the treatment, time, parity and interactions for protein, fat and lactose content of the milk.

Protein Fat Lactose
Treatment 0.02 0.74 0.14
Time <0.001 <0.001 <0.001
Parity 0.37 0.07 0.30
Treatment*Time 0.11 0.11 0.01
Treatment”parity 0.02 0.13 0.13
Time*parity 0.43 0.02 0.59
Treatment*Time* parity 0.43 0.32 0.93

https://doi.org/10.1371/journal.pone.0199568.t003

Immunoglobulin G, the most abundant Ig in colostrum, was not affected by the dietary
treatment (55.2+4.17 mg/ml for DS group vs 52.1+2.69 mg/ml for the RS group, p = 0.80) but
the parity tended (p = 0.06) to affect the IgG concentration, milk of P>4 sows having higher
IgG concentration than P1 and P3 sows (66.23+5.97 vs 48.93+4.41 and 48.58+2.21 mg/m],
respectively). IgA concentration in colostrum was not affected by the treatment (p = 0.07) but

Table 4. Composition (protein, fat and lactose) of colostrum and milk of sows fed digestible starch (DS) and resistant starch (RS) in function of parity. N = 12 for
the DS group and N = 11 for the RS group after because of removal of one sow from the experiment.

Diet Parity Time
Colostrum Week 1 Week 2 Week 3
Protein (%) DS P1 18.46 6.25 5.63 5.59
P2 18.61 6.32 5.39 5.16
P3 19.76 6.42 6.29 6.78
______________________________ P4 088 7e 588 580
RS P1 17.35 6.09 5.76 5.73
P2 18.36 6.01 5.80 5.97
P3 17.33 5.79 5.41 5.69
P>4 17.99 5.85 5.89 5.63
Global SEM 0.33 0.16 0.1 0.14
Fat (%) DS P1 9.22 8.90 9.29 8.57
P2 7.82 8.37 8.72 7.14
P3 7.78 8.43 9.87 10.46
______________________________ P24 5389 | 846 | 7€
RS P1 8.76 8.69 9.70 9.94
P2 8.39 9.17 8.38 9.54
P3 6.94 8.03 7.55 9.01
P>4 6.01 8.95 8.48 8.74
Global SEM 0.37 0.31 0.28 0.35
Lactose DS P1 2.81 4.75 4.96 4.91
P2 2.75 4.92 5.13 5.17
P3 2.67 4.75 4.86 4.99
______________________________ P24 269 | A | 502 | 518
RS P1 2.88 4.89 4.89 4.86
P2 2.83 4.88 5.13 4.86
P3 3.07 4.98 5.10 4.95
P>4 2.97 4.98 5.02 5.03
Global SEM 0.05 0.03 0.04 0.03
https:/doi.org/10.1371/journal.pone.0199568.t004
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Fig 1. IgA concentration (mg/ml) in colostrum of sow. DS sows are represented with the black bar (N = 12) and RS
sows with grey bars (N = 11) sows. Results are expressed as mean+SEM.

https://doi.org/10.1371/journal.pone.0199568.9001

an effect of the parity was observed (p<0.01), IgA concentration being the lowest for the first
parity (Fig 1).

3.3. Microbiota of sows’ faeces

Microbiota composition of the sows was determined during gestation and lactation; the effects
of treatment and period were assessed. The number of observed OTUs and bacterial diversity
(Shannon and Chaol indexes) did not show any differences between treatments within each
period. However, a different microbiota composition was observed between periods as seen by
the PCoA discriminating gestation and lactation (Fig 2, PCoA based on the weighted Unifrac
distance). Between gestation and lactation, a trend almost reached significance for a higher
bacterial diversity during gestation as represented by the Shannon index (Gestation = 7.8+0.3
and lactation = 7.620.3, p = 0.06). Although bacterial diversity did not differ between treat-
ments (Shannon index, P >0.10), the composition of the microbiota was affected during gesta-
tion as shown by the PCoA analysis (Fig 3). This clustering disappeared during the lactation
period (S2 Fig). Statistical analyses for beta diversity showed the effect of the diet during gesta-
tion (p = 0.001) but no more during lactation (p = 0.56), while the parity did not seem to
impact beta diversity, even though a trend was present (p = 0.09 during gestation and p = 0.07
during lactation).

The clustering between treatments during gestation translated differences in microbiota
composition both at the phylum and genus levels. At the phylum level, the most abundant
phyla during both periods for the two groups were Firmicutes, Bacteroidetes and Spirochaetes.
Differences in microbial composition between treatments were observed during gestation as
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Fig 2. PCoA dicriminating periods. Individual red dots are the fecal samples of sows during gestation (N = 20) while
blue squares are individual fecal samples of lactating sows (N = 20).

https://doi.org/10.1371/journal.pone.0199568.9002

Firmicutes (p<0.01, FDR < 0.05) and Euryarchaeota (p<0.05, FDR = 0.05) proportions in the
faecal microbiota of RS sows increased while Bacteroidetes (p<0.01, FDR<0.05), Spirochaetes
(P<0.01, FDR<0.05) and Tenericutes (P<0.01, FDR = 0.17) relative abundances decreased
compared to the DS treatment (Table 5). During lactation, only the minor Phylum Lenti-
sphaerae (p<0.01, FDR = 0.12) proportion increased in the RS group compared to the DS
group. The ratio Firmicutes:Bacteroidetes was impacted by the dietary treatment during gesta-
tion (1.59+0.07 for DS vs 2.11+0.15 for the RS sows, p = 0.005) while no effect of the dietary
treatment was observed during lactation (2.36+0.32 for DS vs 2.43£0.17 for RS sows, p = 0.84).
At the genus level (Table 5), the major differences in sows’ faecal microbiota composition
between treatments also appeared during gestation. The most abundant genera were an
unclassified Ruminococcaceae, Prevotella, unclassified Bacteroidales and Clostridiales, and Trep-
onema. Within these major components of faecal microbiota, the unclassified Ruminococca-
ceae was increased (p<0.05) and Treponema was decreased (p<0.05) significantly during
gestation in the RS group; this difference disappeared during lactation. Twelve other genera
differed (p<0.05) between gestation while only 6 genera differed during lactation; the relative
abundances of Bifidobacterium, Coprococcus, an Unclassified Clostridiales OTU2, Sharpea,
Methanobrevibacter and an unclassified Peptostreptococcaceae relative abundances were
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Fig 3. PCoA discriminating dietary treatments during gestation. Red squares represent the faecal microbiota
composition of sows fed DS during gestation (N = 10) while blue dots represent microbiota of sows fed RS diet
(N =10).

https://doi.org/10.1371/journal.pone.0199568.9003

increased (p<0.05) in the faeces of sows fed RS during lactation. While Oscillospira decreased
during lactation. An unclassified Clostridiaceae, SMB53 and Turicibacter increased both dur-
ing gestation and lactation. It is worth noting that the proportion of Lactobacilli jumped from
a mean of 2.38+0.42% during gestation to 11.73+1.50% during lactation, but this difference
could not be attributed to the drop of one particular genus as the Pearson correlation analysis
did not reveal absolute r-values higher than 0.6 (data not shown).

3.4. Microbiota of the colonic content of piglets at 26 days of age

The main abundant Phyla in the colon of piglets before weaning were Firmicutes (44.2+2.9%),
Bacteroidetes (39.6£1.8%), Proteobacteria (6.9£1.0%) and Fusobacteria (5.7£1.9%). They were
not impacted by the maternal dietary treatment, neither was the ratio between Firmicutes and
Bacteroidetes (1.35+0.16 for DS piglets; 1.02+0.16 for RS piglets). At the genus level, the micro-
biota was mainly composed of Prevotella, unclassified Ruminococcaceae, Lactobacillus and Bac-
teroides (see Table 6). None of the 10 most abundant genera in the colon of the piglets were
significantly affected by the maternal diet, while only genera present at a lower relative
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Table 5. Relative abundances of the phyla and genera in sows’ faeces. Only genera present at >0.01% in the faecal microbiota of the sows fed either digestible starch
(DS) or resistant starch (RS) -based diets during gestation and lactation were considered.

Genus Gestation SEM Lactation SEM
DS (n=10) RS (n=10) P FDR DS (n=10) RS (n=10) P FDR

Actinobacteria 1.78 2.14 0.08 NS 0.22 1.88 1.90 NS NS 0.25
Bifidobacterium 0.92 1.36 0.02 NS 0.21 1.18 1.15 NS NS 0.23
Bacteroidetes 34.27 29.19 <0.01 0.03 0.96 28.69 27.08 NS NS 1.13
Prevotella 12.11 8.80 NS NS 0.90 10.32 10.39 NS NS 091
Unclassified_Bacteroidales 10.75 8.88 NS NS 0.62 8.54 7.00 NS NS 0.58
Unclassified_S24-7 4.06 4.99 NS NS 0.52 2.90 3.39 NS NS 0.26
Unclassified_RF16 1.53 0.80 0.01 NS 0.16 0.98 0.91 NS NS 0.11
Unclassified_p-2534-18B5 1.44 1.97 0.07 NS 0.16 1.30 1.39 NS NS 0.16
CF231 1.29 0.90 0.07 NS 0.11 1.18 1.32 NS NS 0.14
Euryarchaeota 0.17 0.51 0.05 0.05 0.07 0.16 0.20 NS NS 0.03
Unclassified_R4-45B 0.15 0.12 NS NS 0.01 0.05 0.13 0.02 NS 0.02
Firmicutes 53.25 59.86 0.04 0.04 1.15 62.24 63.70 NS NS 1.27
Unclassified_ Ruminococcaceae 17.75 20.68 0.02 NS 0.59 17.10 17.27 NS NS 0.78
Unclassified_Clostridiales OTU1 7.76 8.54 NS NS 0.28 7.21 8.17 NS NS 0.28
Unclassified_Lachnospiraceae 3.71 3.48 NS NS 0.15 3.92 3.28 0.06 NS 0.14
Phascolarctobacterium 2.90 2.52 NS NS 0.22 2.24 2.15 NS NS 0.12
Unclassified_Christensenellaceae 2.79 3.30 NS NS 0.36 2.50 2.73 NS NS 0.32
Streptococcus 2.74 2.03 NS NS 0.83 1.58 3.37 NS NS 0.58
Oscillospira 2.24 1.92 NS NS 0.10 2.05 1.78 0.04 NS 0.07
Lactobacillus 2.03 2.73 NS NS 0.42 13.11 10.35 NS NS 1.50
Unclassified_Clostridiaceae 1.22 1.84 0.02 NS 0.11 1.59 2.07 0.02 NS 0.12
Coprococcus 0.83 1.22 0.02 NS 0.08 1.28 1.40 NS NS 0.09
Unclassified_Clostridiales OTU2 0.49 0.79 0.01 NS 0.05 0.50 0.56 NS NS 0.03
SMB53 0.49 0.79 0.05 NS 0.07 1.05 1.55 <0.005 NS 0.08
Turicibacter 0.33 1.10 <0.005 NS 0.12 0.65 1.29 0.01 NS 0.12
Sharpea 0.21 0.79 0.03 NS 0.15 0.05 0.11 NS NS 0.03
Methanobrevibacter 0.12 0.46 0.01 NS 0.06 0.13 0.17 NS NS 0.03
Helicobacter 0.12 0.06 0.04 NS 0.02 0.03 0.05 NS NS 0.01
Proteobacteria 2.92 2.29 NS NS 0.24 1.46 1.75 NS NS 0.13
Campylobacter 0.97 0.67 0.07 NS 0.08 0.31 0.34 NS NS 0.04
Unclassified_Peptostreptococcaceae 0.12 0.20 0.02 NS 0.01 0.23 0.33 0.05 NS 0.03
Spirochaetes 5.25 3.60 0.03 <0.01 0.28 3.96 3.50 NS NS 0.26
Treponema 4.20 3.10 0.01 NS 0.23 3.25 2.72 NS NS 0.22
Sphaerochaeta 1.05 0.50 <0.005 NS 0.10 0.71 0.78 NS NS 0.08
Tenericutes 0.35 0.24 0.04 NS 0.03 0.38 0.35 NS NS 0.03
Anaeroplasma 0.18 0.09 0.08 NS 0.02 0.13 0.12 NS NS 0.01
L7A El11 0.11 0.19 0.07 NS 0.02 0.06 0.08 NS NS 0.01

https://doi.org/10.1371/journal.pone.0199568.t005

abundance than 1% of the total microbiota showed a trend (p<0.10), including Veillonella,

unclassified Clostridiales, Pasteurellaceae and Dethiosulfovibrionaceae and Brachyspira.

3.5. SCFA, calprotectin concentration in digesta and gut morphology

Total content and molar ratios of individual SCFA and branched-chain fatty acids (BCFA)
were not affected by the dietary treatment neither in the faeces of sows nor in the intestinal
contents of piglets (S2 and S3 Tables). Calprotectin concentration in the colon of piglets did
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Table 6. Relative abundances in piglets’ colonic contents. Results showed are only for the top 10 genera and the genera with p<0.10 and relative abundance >0.01%.

Genus DS (n=7) RS (n=38) P FDR SEM
Bacteroidetes 41.48 37.88 NS NS 1.76
Prevotella 19.39 14.68 NS NS 1.92
Bacteroides 5.44 8.25 NS NS 1.24
Unclassified_Bacteroidales OTU1 4.51 4.86 NS NS 0.54
Unclassified_S24-7 4.34 3.43 NS NS 0.59
Unclassified_Bacteroidales OTU2 2.84 2.91 NS NS 0.45
Firmicutes 42.73 45.42 NS NS 2.88
Unclassified_ Ruminococcaceae 12.19 13.43 NS NS 1.38
Lactobacillus 5.55 3.94 NS NS 1.02
Unclassified_Clostridiales OTU1 3.18 6.46 NS NS 1.18
Phascolarctobacterium 2.95 3.71 NS NS 0.25
Oscillospira 2.37 2.75 NS NS 0.27
Veillonella 1.09 0.44 0.08 NS 0.20
Unclassified_Clostridiales OTU2 0.03 0.01 0.06 NS 0.00
Fusobacteria 491 6.37 NS NS 1.94
Fusobacterium 491 6.37 NS NS 1.94
Proteobacteria 7.89 6.12 NS NS 1.03
Unclassified_Enterobacteriaceae 3.21 1.92 NS NS 0.74
Unclassified_Pasteurellaceae 0.01 0.03 0.08 NS 0.01
Spirochaetes 0.75 1.46 NS NS 0.33
Brachyspira 0.01 0.00 0.06 NS 0.00
Synergistetes 0.12 0.57 NS NS 0.22
Pyramidobacter 0.11 0.55 NS NS 0.21
Unclassified_Dethiosulfovibrionaceae 0.00 0.01 0.07 NS 0.00

https://doi.org/10.1371/journal.pone.0199568.t006

not differ (p = 0.85) either (39.03 + 2.56 and 38.45 + 1.58 pg/ml for piglets born from DS and
RS sows, respectively). Maternal dietary treatment had no effect on villus height, crypt depth

and the villi/crypts ratio (V:C), either in the duodenum, the jejunum or the ileum of the piglets
(S4 Table).

3.6. Gene expression

In the ileum and colon of piglets, no differences were observed for cytokines involved in
inflammatory processes, but an effect of the maternal diet was observed on tight junction pro-
tein expression. Indeed, ZO-1 was more expressed in the ileum of piglets born from RS moth-
ers (Table 7). OCLN tended to be more expressed in the ileum of RS piglets without reaching
significance (p = 0.08).

3.7. Performances of piglets after weaning

The maternal treatment did not affect the ADG of the piglets (82.07+15.43g/day and
70.48+13.71g/day for the DS and RS piglets respectively during the first week post-weaning,
167.49+20.13g/day and 206.30+21.31g/day for the DS and RS pigs respectively during the
second week post-weaning). Bodyweight of the piglets was not affected by the maternal die-
tary treatment either (6.71+0.31kg and 6.66+0.30kg for DS and RS pigs one week after wean-
ing and 7.88+0.38kg and 8.35+0.36kg for DS and RS pigs 2 weeks after weaning, P for the
treatment = 0.98).
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Table 7. Relative gene expression in the ileum and colon of piglets at weaning, The 2™~ value of DS piglets is set at for each gene 1 to allow comparisons.

Gene

TNF-o
IL-6
NFxB
TGEpB
IFNy
IL-1B8
IL-10
Z0O-1
OCLN

DS (n=7)

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Ileum Colon
RS (n=8) SEM P DS (n=38) RS (n=38) SEM P
0.91 0.07 NS 1.00 1.02 0.16 NS
0.95 0.21 NS 1.00 2.55 1.04 NS
0.99 0.03 NS 1.00 1.06 0.06 NS
0.91 0.04 NS 1.00 1.00 0.11 NS
0.56 0.17 NS 1.00 0.83 0.34 NS
0.84 0.21 NS 1.00 0.52 0.32 NS
1.11 0.23 NS 1.00 2.08 0.66 NS
1.16 0.03 0.02 1.00 1.23 0.08 NS
1.38 0.09 0.08 1.00 0.80 0.20 NS

https://doi.org/10.1371/journal.pone.0199568.t007

A time effect (p<0.001) and an interaction between time and treatment (p = 0.005) was
observed for the faecal scoring practised after weaning (Fig 4). On day 7, RS piglets had a
lower score than DS piglets while they had a higher score on day 13, without reaching signifi-
cance (p<0.10). The diarrhoea occurrence was calculated on 3-days intervals. The diarrhoea
occurrence increased from period 1 to 2 and from period 4 to 5 (p<0.001, S3 Fig).

Discussion

The main objective of this study was to investigate the maternal effect of a diet rich in pea
starch as a source of RS on the intestinal microbiota and gut health-related parameters of the
progeny. The hypothesis was that including resistant starch in the diet of the sows during ges-
tation and lactation would favourably modify their milk and/or microbiota composition and

—e— DS
—0— RS

4.5
4.0
3.5 A

3.0 A

Faecal score

2.5 A

2.0 A

15 T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Days after weaning

Fig 4. Piglets’ faecal score during 2 weeks post-weaning. Score was assessed daily for 15 days.

https://doi.org/10.1371/journal.pone.0199568.g004
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that it would in turn affect piglets’ microbiota profile and their absorptive and immune
abilities.

The unaffected growth performances of sows and piglets observed in our study is desirable
as inclusion of RS, lower in energy content than its digestible counterpart, should not impair
the performances of the animal. Yan et al. (2017) [19] fed sows high amylose maize (65% dur-
ing gestation, 60% during lactation) and observed a lower birthweight for piglets born from
high amylose sows. However, these piglets were able to catch up during lactation thanks to a
higher fat content of the milk. In our study, no impact on the milk fat was observed. A reason
for this discrepancy between the present study and Yan et al.’s (2017) [19] may reside in the
fact that different breeds were used as breed can impact fat concentration [37] and that the
amount of RS incorporation in the diet differed. In our study, parity as only factor did not
affect the milk fat percentage but the interaction between parity and time was significant
(p = 0.02), showing that the colostrum of gilts (parity 1) contained more fat than other parities.

Even though no difference in fat content was observed, other nutritional components of
milk were affected by the sows’ diet. In particular, a decrease in protein concentration was
observed for the RS sows compared to the DS group, together with a higher concentration of
lactose in colostrum and milk collected one week after farrowing, while the opposite was
observed during the last week of lactation. The lower milk protein concentration could be
attributed to a slightly lower analysed protein content of the RS lactation diet. The discrepancy
between our study and Loisel et al. (2013) [12], who did not observe any increase in lactose
concentration in milk during the whole lactation period after feeding sows a high fibre gesta-
tion diet, can be explained by the fact that the type of supplementation given to sows differen-
tially affects lactose concentration [38]. The increase in lactose concentration in RS milk in the
beginning of lactation was probably too small to result in bodyweight difference for the piglets
or to affect gut morphology. However, as the milk yield was not measured in this study, it can-
not be excluded that DS sows had a higher milk yield, compensating the richer milk of RS
sows. In the future, analysing the composition of milk oligosaccharides would be interesting,
as oligosaccharides are considered as prebiotics, shaping the gut microbial communities of the
piglets and are present in 29 forms in sows” milk [39].

Microbiota results showed that in the faeces of the sows, more genera differed between die-
tary treatments during gestation than during lactation, as already observed by Leblois et al.
(2017) [26] when feeding sows a high wheat bran diet. During gestation, even if the bacterial
diversity and richness were not affected by the diet, we observed a clustering per dietary treat-
ment on the PCoA graph that can be explained by differences both at the phylum and genus
levels. Interestingly, during gestation, the RS group had a higher Firmicutes to Bacteroidetes
ratio. As an increased Firmicutes proportion is usually related to a higher extraction of energy
from the diet [39] and an increase in Bacteroidetes in humans has been associated with weight
loss [40]; a higher ratio Firmicutes:Bacteroidetes would be thus desired in animal production.
However, in the short term, the altered ratio observed during gestation did not lead to any
bodyweight gain differences between the two groups of sows. In humans however, Martinez
et al. (2010) [41] observed decreased abundance of Firmicutes and increased Bacteroidetes,
hence a decreased Firmicutes:Bacteroidetes ratio, when adding chemically modified RS4 in the
diet. Surprisingly, this was not observed for native RS starch granules (RS2) supplementation.

In agreement with the study of Sun et al. (2015) [42] who fed growing pigs raw potato starch
and analysed the microbiota in the proximal colon, our study also showed an increase in the
abundance of Turicibacter and Coprococcus and a decrease in Treponema and Oscillospira rela-
tive abundances in sows’ faeces. Interestingly, Turicibacter has been reported to be related to
host gut immune status as this genus decreased or disappeared in immunodeficient animals
[43]. In addition, the increase in the beneficial genus Bifidobacterium due to RS observed
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during gestation is in line with other studies [41,44]. Therefore, the increase in Bifidobacterium
and Turicibacter observed in the current study migh suggest a better gut health. In contrast
with Bird et al. (2007) [44] and Haenen et al. (2013) [17], no effect on Lactobacillus relative
abundance in sows’ faeces was observed. Unfortunately, those microbial changes were not
transferred to the offspring. It is noteworthy that effects and relative abundances of the genera
differ between studies, the main reasons residing in the RS types used, breeds, environment,
age, physiological stage, part of the gut studied, choice of hypervariable region for sequencing,
and DNA extraction protocols/Kits.

While a treatment effect was observed for the sow’s faecal microbiota during gestation,
these differences disappeared during lactation. Even though ADF and NDF differences
between DS and RS diets existed only during gestation, we assume that the microbiota differ-
ence is mainly due to the RS difference, for the following reasons. Firstly, RS is more exten-
sively fermented than cellulose and hemicellulose (represented by ADF and NDF) [22].
Secondly, the observed genera-changes due to the RS treatment (for which ADF and NDF
fractions were lower than in DS diet) during gestation are in line with other studies feeding
pigs with RS [18,44] and are oriented to fermentative-type bacteria (increased Firmicutes and
Ruminococcaceae). Therefore, we assume the observed changes during gestation can be attrib-
uted to the RS rather than the difference in hemicellulose and cellulose content.

The lack of differences in sow’s faecal microbiota between treatments during lactation is
difficult to explain. However, this is in line with our previous study on wheat bran (Leblois
etal., 2017) for which microbiota changes occurred during gestation when feeding sows diets
containing the same ADF content but variable amounts of NDF (22% vs 25%) and wheat bran
(0 vs 24%). Hence, it cannot be excluded that the hemicellulose difference existing during only
gestation could as well have interfered with the absence of microbial changes during lactation.
On the other hand, physiological and environmental changes that the sows face at farrowing
and the stresses they encounter throughout the lactation period (manipulation of piglets, milk-
ing of the sows) might have such an impact on the microbiota that they can mask the effects of
the dietary treatment. Indeed, Paplack et al. (2015) [10] have already shown a more important
time effect (gestation/farrowing/lactation) on the bacterial composition of sows’ faeces than
inulin effect.

The microbiota changes occurring around farrowing and lactation were probably responsi-
ble for the absence of difference between the microbiota of piglets born from DS and RS sows.
The similar microbiota between piglets was reflected by the same total and individual SCFA
production in the caecum and colon of the piglets. Piglets’ microbiota composition consider-
ably differed from the microbiota of the sows, which is in agreement with Leblois et al. (2017)
[26] and resides in the fact that microbiota still did not reach a stable community that can only
be achieved after weaning, maturation and introduction of solid feed. Moreover, piglets’
microbiota is not only acquired from bacteria present in sows’ faeces, but also from bacteria
present in sows’ vaginal tract, milk and in the environment and is unstable in the neonatal gut
until reaching a climax community with aging [45]. It can thus be suggested that changes
induced in sows’ faecal microbiota induce limited alterations in the colonic microbiota of the
piglet.

The immune competence of piglets relies both on the microbial colonization [14] and on
the passive immunity acquired from the mother at birth via immunoglobulins transmitted in
the colostrum [16]. Using seaweed extract, Leonard et al. (2011) [46] observed an increased
concentration of IgG in colostrum of supplemented sows. In another study [12], feeding sows
a high fibre diet during gestation decreased IgA concentration 24h after parturition. In our
study, IgA concentration in colostrum of RS sows showed a trend (p = 0.07) for a decrease,
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while IgG concentration was not affected. A lower concentration of IgA in sows’ colostrum
would be undesirable as IgA contributes to the passive immunity of the piglets.

The effect of the maternal supplementation with pea starch on the piglets was limited, as
the milk composition was barely affected and as the microbiota of piglets was not affected by
the maternal treatment. It is then likely that the performances and immune competence of the
piglets remained unaffected as observed by similar litter bodyweight gains and percentage of
weaned piglets for both treatments. As important as colostrum composition, the microbiota is
crucial for the maturation of the gut immune system and has been shown to be the most
important factor in the development of the intestinal immune system; moreover, different
diets and environments inducing differences in microbiota have been shown to lead to differ-
ential immune cells development [47]. As no difference in microbiota composition was
observed in those piglets raised in the same environment, it seems logical that the immune
parameters of the piglets were not affected by the maternal treatment, as determined by the
gene expression analysis. In contrast, Heim et al. (2015) [48] showed that seaweed-derived
polysaccharides in the diet of gestating and lactating sows impacted the expression of inflam-
matory cytokines (higher expression of IFNy, IL-1, TGFS1 and TNFc and lower expression of
IL-10 and IL-6 in the ileum tissue) of piglets.

However, the protein ZO-1 was more expressed in the ileum of RS piglets, while OCLN
showed a trend (p = 0.08) for a higher expression. ZO-1 is called a “plaque protein” and is
involved in the strengthening of tight junction proteins by interacting with claudins that are
involved in the closure of the gut membrane and also with junctional adhesion molecule Jam-
A that is involved in the reduction of intestinal permeability [49]. A higher expression of ZO-1
is thus beneficial for piglets as this will induce a stronger closure of the gut epithelium and a
lower chance of translocation for pathogens, as tight junction proteins are responsible for
paracellular permeability [36]. It is then likely than RS piglets would be less sensitive to patho-
gens at weaning, together with a lower passage for water loss causing diarrhoea. However, no
significant differences on the faecal score or diarrhoea occurrence during the 2-weeks post-
weaning period were observed for piglets born from DS and RS sows, and bodyweight gain or
ADG were not affected either.

Thus, using pea starch in sows’ diets is not detrimental on piglets’ health but to obtain more
conclusive results, it may be required to record faecal consistency for a longer period and to
collect samples of intestinal tissues and contents further along during the post-weaning phase.
In conclusion, the induced microbiota changes due to the diet of the sow did not affect the
microbiota of piglets at weaning. However, milk composition can be affected by the inclusion
of resistant starch in the diet of sows. Furthermore, the performances of the animals were not
impacted by this supplementation and only minor effects of the tight junctions of piglets’ intes-
tine were observed.

Supporting information

S1 Table. Bodyweight and backfat changes of the sows between periods.
(XLSX)

S2 Table. Total SCFA and molar ratios of acetate, propionate and butyrate in the faeces of
SOWS.

(XLSX)

S3 Table. Total SCFA and molar ratios of individual SCFA and BCFA in piglets’ caecum
and colon contents.
(XLSX)

PLOS ONE | https://doi.org/10.1371/journal.pone.0199568 July 3, 2018 18/22


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199568.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199568.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199568.s003
https://doi.org/10.1371/journal.pone.0199568

@° PLOS | ONE

Resistant starch to sows impacts their microbiota but not progeny’s gut ecology

$4 Table. Gut morphology (villus height, crypt depth, villus/crypt ratio) in the duodenum,
jejunum and ileum of 26-days old piglets.
(XLSX)

S1 Fig. Piglets’ bodyweight from birth until weaning for maternal DS and RS treatments.
(TIF)
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