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Behavioral/Cognitive

Reward Boosts Neural Coding of Task Rules to Optimize
Cognitive Flexibility

Sam Hall-McMaster,> “Paul S. Muhle-Karbe,':> “Nicholas E. Myers,"->* and Mark G. Stokes'->*
'Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, United Kingdom, and 2Wellcome Centre for Integrative Neuroimaging,
University of Oxford, Oxford 0X3 9DU, United Kingdom

Cognitive flexibility s critical for intelligent behavior. However, its execution is effortful and often suboptimal. Recent work indicates that flexible
behavior can be improved by the prospect of reward, which suggests that rewards optimize flexible control processes. Here we investigated how
different reward prospects influence neural encoding of task rule information to optimize cognitive flexibility. We applied representational
similarity analysis to human electroencephalograms, recorded while female and male participants performed a rule-guided decision-making
task. During the task, the prospect of reward varied from trial to trial. Participants made faster, more accurate judgements on high-reward trials.
Critically, high reward boosted neural coding of the active task rule, and the extent of this increase was associated with improvements in task
performance. Additionally, the effect of high reward on task rule coding was most pronounced on switch trials, where rules were updated relative
to the previous trial. These results suggest that reward prospect can promote cognitive performance by strengthening neural coding of task rule
information, helping to improve cognitive flexibility during complex behavior.
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The importance of motivation is evident in the ubiquity with which reward prospect guides adaptive behavior and the striking
number of neurological conditions associated with motivational impairments. In this study, we investigated how dynamic
changes in motivation, as manipulated through reward, shape neural coding for task rules during a flexible decision-making task.
The results of this work suggest that motivation to obtain reward modulates the encoding of task rules needed for flexible behavior.
The extent to which reward increased task rule coding also tracked improvements in behavioral performance under high-reward
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conditions. These findings help to inform how motivation shapes neural processing in the healthy human brain.

J

Introduction

Flexible cognitive control is critical to human intelligence. When
vying to win a card game, we can use arbitrary rules to play the
best hand. When navigating a new city, we can apply navigation
rules to sensory input from the world around us to arrive at the
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next tourist attraction. Controlled processes requiring flexibility
result in slower performance, compared with behaviors that re-
quire less flexible processing (Shen and Chun, 2011; Kleinsorge
and Rinkenauer, 2012). However, this can be improved by moti-
vational factors, such as the prospect of reward for speed and
accuracy (Braem and Egner, 2018). When the prospect of reward
is high, performance improves on flexible rule-based tasks
(Kleinsorge and Rinkenauer, 2012; Etzel et al., 2016), suggesting
that reward might optimize cognitive flexibility by fine-tuning
rule-based neural coding patterns.

The existing neuroimaging literature provides support for this
perspective, indicating that reward prospect leads to stronger re-
cruitment of frontoparietal brain regions implicated in cognitive
control (Parro et al., 2018). When reward cues are presented at
the beginning of each trial, activity in these regions is typically
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enhanced before the onset of a target stimulus, suggesting that
proactive control mechanisms contribute to reward-induced
performance benefits (Engelmann et al., 2009; Padmala and Pes-
soa, 2011; Krebs et al., 2012). Critically, a recent study combining
fMRI with pattern classification methods found that frontopari-
etal activity before target onset encoded abstract task rules with
greater fidelity on reward trials than on no-reward trials (Etzel et
al., 2016). The extent to which reward prospect enhanced the
decodability of task rules also mediated behavioral benefits, sug-
gesting that performance improvements may result from reward-
driven tuning in cognitive control processes that prioritize task-
relevant processing.

This proposal has considerable theoretical appeal. Yet, it is
unknown whether reward prospect differentially influences rule
coding in situations that require more or less flexible processing.
The present study therefore aimed to characterize how changes in
reward influence neural coding of task rule information when
rules must be updated. To do so, we developed a behavioral task
that involved switching between task rules, as reward prospect
was manipulated. We then applied representational similarity
analysis (RSA; Kriegeskorte et al., 2008) to human electroenceph-
alograms (EEGs) to examine changes in neural coding as a func-
tion of reward prospect. Based on the findings of Etzel et al.
(2016), we predicted that task rule coding would be greater with
high reward prospect and that the extent of this increase would
track improvements in behavioral performance. However, the
critical contribution of this work was to consider how reward
prospect would impact rule coding when flexible processing was
needed. Based on prior work showing selective reward enhance-
ments on rule switching (Shen and Chun, 2011; Kleinsorge and
Rinkenauer, 2012), we reasoned that task rule coding should be
greatest on high-reward switch trials, where task rules must be
updated. Switch trials involve the most interference between rule
codes, and thus increased neural separation between them should
support flexible rule updating (Waskom et al., 2014). Reward
prospect could therefore optimize flexible processing by helping
to increase neural dissimilarity between rules, when they come
into conflict. RSA is well suited to test this prediction because it
provides a sensitive index of reward-driven changes in neural
dissimilarity, while allowing clean separation of overlapping task
variables in the lead up to adaptive behavioral responses.

To summarize the main results, we found that high reward
prospect produced significant performance improvements in ac-
curacy and reaction time (RT). Consistent with the view that
reward prospect increases proactive cognitive control, we found a
significant increase in neural coding for task rules under high-
reward conditions before the onset of a target stimulus. The av-
erage difference in rule coding between reward conditions during
this period also correlated with RT improvements. Especially
striking, the effect of reward on rule coding was most pro-
nounced in situations requiring the most flexible processing,
when task rules were updated relative to the previous trial.

Materials and Methods

Participants

We set a target sample size of 30 participants. During recruitment, three
participants were excluded, one due to a corrupt EEG recording and two
due to excessive artifacts thatled to the rejection of >120 of 650 trials. We
therefore collected three more participants to reach the 30 participant
target. The final sample size was composed of participants between 18
and 35 years of age (mean age, 23 years; 19 females), with normal or
corrected-to-normal vision, who reported no history of neurological or
psychiatric illness. Participants received £8/h or course credit for taking
partand could earn up to £10 extra for their performance. This study was
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approved by the Central University Research Ethics Committee at the
University of Oxford, and all participants signed an informed consent
form before taking part.

Materials

Stimuli were presented on a 22 inch screen with a spatial resolution of
1280 X 1024 and a refresh rate of 60 Hz. Stimulus presentation was
controlled using Psychophysics Toolbox-3 (RRID:SCR_002881; Kleiner
et al., 2007) in MATLAB (version R2015b; RRID:SCR_001622). Reward
cues and feedback shown during the task were presented in size 30 Arial
font. Task cues and target stimuli had approximate visual angles of 2.52°
(100 X 100 pixels) and 1.26° (50 X 50 pixels), respectively, with visual
angles calculated based on an approximate viewing distance of 60 cm. F
and J keys on a standard QWERTY keyboard were used to record left and
right hand responses. EEG data were recorded with 61 Ag/AgCl sintered
electrodes (EasyCap), a NeuroScan SynAmps RT amplifier, and Curry 7
acquisition software (RRID:SCR_009546). EEG data were preprocessed
in EEGLAB (version 14.1.1b; RRID:SCR_007292; Delorme and Makeig,
2004), behavioral analyses were performed using JASP (version 0.8.1.3;
RRID:SCR_015823), and EEG analyses were performed in MATLAB
(version 2018b), using the FieldTrip toolbox (RRID:SCR_004849) as
well as custom scripts.

Code accessibility
Task and analysis code, as well as raw and preprocessed data can be
accessed at: https://osf.io/kuzye/.

Experimental design and statistical analysis

In this task (Fig. 1), participants’ overarching goal was to gain as many
points as possible. To do so, participants categorized bidimensional tar-
get stimuli based on their color (yellow vs blue) or shape (square vs
circle). On each trial, only one feature dimension of the target (color or
shape) was relevant to gaining points, while the other feature served as an
irrelevant distractor. The relevant feature dimension was signaled
through a visual task cue before target onset. In addition to a single
relevant feature dimension, each trial offered a high or low reward mag-
nitude for making a correct response. This was signaled to participants at
the beginning of each trial by a single pound sign (£; low reward, 5-10
points) or three pound signs (£££; high reward, 50-100 points).

The experimental sequence consisted of a reward cue, task cue, target,
feedback screen, and an intertrial interval (ITI). The reward cue (£ or
£££) was first presented for 800 ms, followed by a 400 ms delay. The task
cue (one of four possible abstract shapes) was then presented for 200 ms.
The mapping of cues to tasks was counterbalanced between participants.
Task cue offset was followed by a 400 ms delay. The target (a yellow
square, blue square, yellow circle, or blue circle) was then presented and
remained on screen until a response was given or for a maximum of 1400
ms. If the active task rule was color, the correct response mapping was “f”

s

or “j” for yellow or blue targets, respectively. If the active rule was shape,
the correct response mapping was “f” or “j” for square or circle targets,
respectively. The response phase was followed by feedback lasting 200
ms. An incorrect response or omission resulted in feedback showing
“+0” points. A correct response resulted in feedback showing “+X,”
where X was a value within the high or low reward point ranges, the
precise value of which was determined by RT. More specifically, RT
criteria for different points were initialized so that responses faster than
400, 600, 800, 1000, 1200, and 1400 ms earned 100/10, 90/9, 80/8, 70/7,
60/6, and 50/5 points on high and low reward trials, respectively. For
correct trials, the current trial RT was added to an array for its reward
condition. When each array contained more than six values, individual-
ized points criteria were calculated for that condition and were calculated
again every time a new value entered the array. The individualized points
criteria followed criteria outlined by Shen and Chun (2011), in which the
most (to least) points are rewarded for correct responses faster than 95%),
80%, 65%, 50%, and 35% of previous condition RTs. The trial concluded
with a randomly selected ITI duration, drawn from a uniform distribu-
tion with values of 1000, 1100, 1200, 1300, or 1400 ms. Participants were
trained to reach a criterion of 70% accuracy before completing 10 exper-
imental blocks of 65 trials. Excluding the first trial in each block, equal
numbers of reward cues, task cues, stimuli, and ITI durations were pre-
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Task Cue
200ms followed by
400ms blank delay

Reward Cue
800ms followed by
400ms blank delay
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Target Feedback
Until response 200ms followed
or 1400ms by 1000-1400ms ITI

O

»

Time

Figure 1.

Task design. On each trial, a high-reward or low-reward cue was presented followed by a blank delay. A task rule cue was then presented, indicating whether participants should

respond to the upcoming target based oniits color or shape. Following a second blank delay, a bidimensional target (a colored shape) appeared until a response was given or fora maximum duration
of 1400 ms. This was followed by feedback (based on accuracy and reaction time) and a variable intertrial interval.

sented. Presentation was pseudorandomized to ensure that trials were
balanced based on task, target congruency, and task sequence for each
reward condition. Target congruency refers to whether task-relevant and
task-irrelevant target features are mapped to the same (congruent) or
different (incongruent) response hands. Task sequence refers to whether
the task rule was different from the previous trial (switch trial) or the
same as the previous trial (repeat trial).

Behavioral measures. Our main dependent measures were RT and the
proportion of correct responses (accuracy). We calculated median RTs
for the respective design cells to account for the skewness of RT distribu-
tions (Ratcliff, 1979). For all RT analyses, we only included trials in which
the current and previous trials were correct to mitigate potential effects of
posterror slowing, in which participants tend to respond more slowly
after making an error (Notebaert et al., 2009; Dutilh et al., 2012). For
accuracy analyses, we included all trials in which a response was made
within the 1.4 s response window. Behavioral data were analyzed using
2 X 2 repeated-measures ANOVAs with factors of reward and task se-
quence. The task sequence factor consisted of switch trials, where the task
rule was different from the previous trial, and repeat trials, where the task
rule was the same as the previous trial. In addition, we used a paired-
sample t test for normally distributed data and a Wilcoxon signed-rank
test for data showing significant deviation from normality to compare
performance on task-switch trials and cue-switch trials. This analysis
served as a behavioral control. It has been argued that switch costs could
arise simply from processes related to processing the cue stimulus, rather
than changes in the task rule per se (Logan and Bundesen, 2003; Logan
and Schneider, 2006). Comparing trials where both task cue and task rule
changed, with trials where the cue changed but the rule stayed the same
allowed us to delineate the extent to which switch costs were driven by
changes in task rules and task cues. More specifically, if the effect of rule
switching on behavioral performance was primarily driven by rule changes,
we should see greater performance reductions on trials where the rule is
changed relative to trials where the rule is repeated but the cue is changed.

EEG preprocessing. EEG data were down-sampled from 1000 to 250 Hz
and filtered using 40 Hz low-pass and 0.01 Hz high-pass filters. For each
participant, channels with excessive noise were identified by visual inspec-
tion and replaced via interpolation, using a weighted average of the sur-
rounding electrodes. Data were then rereferenced by subtracting the mean
activation across all electrodes from each individual electrode at each time
point. Data were divided into epochs from —1 to +5 s from the onset of the
reward cues. Epochs containing artifacts (e.g., muscle activity) were rejected
based on visual inspection. In the final stage of preprocessing, data were
subjected to an independent component analysis. Structured noise compo-
nents, such as eye blinks, were removed, resulting in the dataset used for

subsequent analyses. Before each analysis, data were z scored over the trial
dimension and baseline corrected using a time window of 200—50 ms before
the trial event of interest (e.g., cue or target presentation).

EEG analyses. We used RSA (Kriegeskorte et al., 2008) to investigate
how reward prospect influenced neural coding for different kinds of
task-relevant information. There were two main advantages of using RSA
to address this question. First, multivariate approaches leverage pattern
information that would normally be averaged out in univariate analyses.
This makes multivariate methods more sensitive to effects based on dis-
tributed patterns of neural activity (Kriegeskorte et al., 2006). Second,
RSA allowed us to examine multiple, overlapping neural codes. In par-
ticular, the combination of RSA with models for different task variables
provided a powerful method for separating neural coding of task rules,
relevant and irrelevant target features, as well as motor responses. This
ability to separate overlapping neural activity would be difficult to
achieve with more traditional EEG methods, such as the analysis of
event-related potentials.

In addition, we selected EEG for its high temporal resolution. Constraints
on the temporal resolution of fMRI can make it challenging to isolate task
rule coding from subsequent perceptual processing because the slow hemo-
dynamic response can make it difficult to pinpoint effects in time and dis-
tinguish sustained anticipatory activity from transient stimulus-evoked
responses. In contrast, high temporal resolution methods such as electroen-
cephalography are needed because their ability to distinguish rapid stimulus-
evoked dynamics makes them ideal for isolating the effects of reward on task
rule coding from subsequent neural coding patterns.

The logic of our approach was to characterize neural coding patterns
elicited by different trial conditions and test whether reward prospect led
to more distinct task representations for the two tasks being performed
(color vs shape judgements; Etzel et al., 2016; Westbrook and Braver,
2016). We were especially interested in the effect of reward on proactive
control mechanisms, wherein goal-relevant information is encoded in
preparation for upcoming task demands. This stands in contrast to reac-
tive control processes, which serve to resolve task demands after their
detection (Braver, 2012). Evidence of reward-modulated proactive con-
trol in our design would be seen as a difference in rule coding between
high and low reward conditions, before target onset. Moreover, the dif-
ference in rule coding during this period should also be associated with
improvements in behavioral performance (Etzel etal., 2016). Building on
the results of Etzel et al. (2016), a central goal in the present work was to
examine the effect reward prospect on rule coding during switch trials,
when rules required flexible updating. Here we reasoned that switch trials
involve the greatest interference between rule representations and thus
reward prospect could improve flexible cognitive control (Shen and
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Chun, 2011; Kleinsorge and Rinkenauer, 2012) A
by increasing neural dissimilarity between rule

codes. As a secondary aim, we performed
theory-driven analyses that tested whether

high reward leads to stronger neural coding for

task-relevant compared with task-irrelevant

target features, and whether relevant feature
prioritization was associated with improved

performance (Pessoa, 2017). Finally, we per-

formed exploratory analyses that tested

whether high reward modulated motor re-

sponse coding and whether reward-induced

changes in task coding were associated with

downstream changes in sensorimotor process- B
ing. All analyses used data from all 61 EEG
channels. While this limits inference about the
regional sources of neural activity, it has the
advantage of including all available data with-
out any assumptions about source localization.
Incorrect and omission trials were excluded
from EEG analyses.

Neural coding across the trial. For each par-
ticipant, trials were divided into conditions
based on reward condition (low, high), as well
as task-relevant and task-irrelevant target fea-
tures. Dividing the trials this way also implicitly
divided trials by task. If the task-relevant target
feature was yellow, for example, then the task
must have been to judge the target color. We
then averaged trials in each condition to get an
array with channels X time points X condi-
tions. To measure neural dissimilarity between
conditions, we used Mahalanobis distances
(MDs). This distance metric shows similar re-
liability to correlation distance measures
(Walther et al., 2016) but explicitly takes cova-
riance into account, making it well suited to
EEG data where channel values tend to be
highly correlated. For EEG data, the MD be-
tween two conditions is computed at each time
point, using two key pieces of information. The
first is the difference in topographies between
two conditions. A topography is a vector of 61
channel values that has been averaged across all
trials in a condition, for a specific time point
(Fig. 2A). The second key piece of information
is the channel covariance matrix. This is computed using a matrix of
trials X channels. For this study, we used within-condition error to com-
pute the channel covariance matrix (Walther et al., 2016). This meant
that before computing the covariance matrix, trials in the trial X channel
matrix were mean centered by subtracting the mean topography for
each condition from all trials within that condition. The covariance
calculation also used a shrinkage estimator (Ledoit and Wolf, 2004),
which has the effect of downweighting noisy covariance estimates.
Using this information, the MD is formally computed as follows:
MD,; = \/(Pattern A — Pattern B)? X Cov ! (Pattern A — Pattern B),
where Pattern A — Pattern B is the difference between topographies, T'is
the transpose and Cov-1 is the inverse of the channel covariance matrix.
This calculation is also presented in Figure 2. MDs were calculated be-
tween all topographies for the 16 conditions, separately at each time
point. This procedure yielded a 16 X 16 representational dissimilarity
matrix (RDM) of multivariate condition distances for each time point
and participant. We then constructed a set of five 16 X 16 model RDMs
to capture neural coding patterns related to different task variables. These
variables included reward coding, task coding, task-relevant feature cod-
ing, task-irrelevant feature coding, and motor coding. The logic of all
models was to place zeroes in cells of a 16 X 16 matrix where conditions
matched on the variable of interest and ones in all remaining cells. For
example, the task coding model was a 16 X 16 matrix containing zeros in

Condition
(relevant and irrelevant target feature)

Figure 2.

Condition A: 1
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Logic of representational similarity analysis (RSA). A, Trials were divided into conditions based on the relevant and
irrelevant features of target stimuli. The dissimilarity between activity patterns was computed as the Mahalanobis distance (MD),
which captures the multivariate distance between topographies. B, MDs between conditions are entered into the relevant cells of
arepresentational dissimilarity matrix (RDM). The process outlined in A is repeated until the MDs between each pair of conditions
have been computed. The process is then repeated at the next time point and for subsequent time points of interest. The data RDM
produced in B is then regressed against model RDMs that reflect predicted differences in dissimilarity structure for different task
variables. For examples of model RDMs see Figure 4.

cells where two conditions involved the same task (e.g., both color judge-
ments) and ones in cells where two conditions involved different tasks
(e.g., shape vs color judgements). The task-relevant feature model was a
16 X 16 matrix containing zeros in cells where two conditions had the
same task-relevant target feature (e.g., both yellow on color trials) and
ones in cells where two conditions had different task-relevant features
(e.g., yellow vs blue or yellow vs square). Data RDMs (not z scored and
averaged over time) and model RDMs for all task variables are presented
for illustration (see Figure 4). For analysis, data and model RDMs were z
scored. As RDMs are symmetric, the upper triangular portion of each matrix
was transformed into a vector. The resulting data and model distance vectors
were then entered into a multiple regression analysis that was conducted at
each time point (4 ms apart after downsampling). The data-derived distance
vector was the dependent variable and the model-derived distance vectors
were independent variables. The regression also included a constant to
model the intercept of the linear regression equation. This led to the follow-
ing general linear model (where DV stands for distance vector):

Data DV = B0(intercept) + (81 X reward DV) + (2 X task DV)
+ (B3 X task-relevant feature DV) + (B4 X task-irrelevant

feature DV) + (B5 X motor response DV) + g(residual error)
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The regression procedure was performed three times, once with a base-
line window before reward cue onset, once before task cue onset and once
before the target onset. Running the regression procedure at each time
point produced a time course of regression coefficient estimates, one for
each coding model. We refer to coefficient estimates as “model fit to
neural dissimilarity matrix” in subsequent figures. We interpret the mag-
nitude of these coefficient estimates to reflect the magnitude of neural
dissimilarity/neural coding for each of the task variables across time.

Neural coding as a function of reward prospect. We repeated the analyses
above separately for high-reward and low-reward trials. For each partic-
ipant, trials were divided based on the task-relevant and task-irrelevant
features of the target. Conditions were then averaged over the trial di-
mension. Mahalanobis distances were calculated between all scalp topog-
raphies for the eight conditions, separately at each time point, generating
a set of 8 X 8 RDMs. For these analyses, model RDMs were generated to
reflect condition differences based on task coding, the task-relevant fea-
ture of the target, the task-irrelevant feature of the target, and the motor
response. These models followed the same logic as those described in the
previous section: zeroes were placed in cells of an 8 X 8 matrix where two
conditions did not differ in the variable of interest (e.g., the task-relevant
target feature), and ones were placed in cells where conditions differed in
the variable of interest. Model and data RDMs were z scored. Like the
previous section, RDMs were transformed into vectors and entered into
a multiple regression (including a constant), that was conducted at each
time point. The regression procedure was performed twice, once using
only low-reward trials and once using only high-reward trials. For this set
of analyses, it was particularly important to match the number of high-
reward and low-reward trials, so that regression coefficients were not
higher for high-reward conditions because more data were being in-
cluded in the regression. To address this, these analyses subsampled trials
to match the number of high-reward and low-reward trials. One hun-
dred iterations were performed per participant, and final regression co-
efficients resulted from averaging the estimated regression coefficients
over iterations. For task coding, we performed a theory-driven one-tailed
t test to assess whether tasking coding was significantly greater under
high-reward conditions during the pretarget period (averaged from 1400
to 1800 ms). This test was based on the results of Etzel et al. (2016) and
remained significant when nondirectional. For reward-modulated cod-
ing of the relevant target feature, we tested whether the observed results
could be driven by correlations with other coding models. To do so, we
ran a control analysis in which we first regressed task coding, task-
irrelevant feature coding, and motor coding against participants’ neural
dissimilarity matrices. We then regressed the task-relevant feature coding
model against the residual variance, which had not been accounted for by
the other models.

Neural coding as a function of rule updating. We examined reward-
modulated neural coding separately on switch and repeat trials. This was
motivated by previous work showing that reward prospect benefits
switching performance (Shen and Chun, 2011) and can exert a greater
performance benefit on switch trials (Kleinsorge and Rinkenauer, 2012),
where there is the highest interference between task sets and thus where
neural separation between task rules could be particularly important in
determining behavioral performance. These analyses followed the pro-
cedure outlined in the previous section but only used switch or repeat
trials, instead of all trials.

Neural coding and cognitive performance. To test relationships between
neural coding and cognitive performance, we averaged regression coef-
ficients over time windows of interest and correlated them with behav-
ioral scores using nonparametric Spearman correlations. For task
coding, we correlated the difference between regression coefficients av-
eraged over the pretarget period (1400-1800) and the difference in
switch costs between reward conditions. We undertook the same proce-
dure for reward coding averaged from 0 to 5000 ms from the reward cue.
To control for the influence of reward coding when correlating reward-
modulated task coding with the changes in performance, we regressed
out variance that could be explained by reward coding (averaged from 0
to 5000 ms) from the reward-task coding effect (high—low reward) and
the reward-behavioral effect (e.g., RT low reward—RT high reward). We
then correlated the residual variance from the reward-task coding effect
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(averaged over the pretarget period: 1400-1800 ms or the post-target
period: 1800-2000 ms), with the residual variance in the reward-
behavioral effect. We also tested whether the effect of reward on task
coding as function of rule updating was correlated with the difference in
switch cost between reward conditions. For this analysis, the reward-task
sequence interaction term (see Fig. 6C) was averaged over the pretarget
period (1400-1800 ms).

In addition to time-averaged correlations, we performed time-
resolved brain—behavior correlations. To do this, we took participants’
regression coefficients for different task variables at each time point along
the trial and correlated this value with their difference in RT (low—high
reward) and accuracy (high—low reward). Specifically, these analyses cor-
related a vector of 30 regression coefficient scores at a single time point
with a vector of 30 behavioral scores. The same correlation approach was
then performed at the next time point until a correlation had been per-
formed at each time point along the window of interest. The false-
positive rate for this time-resolved correlation approach was controlled
using a cluster-based permutation procedure (detailed in Statistical test-
ing for neural analysis), in which subjects’ behavioral scores were ran-
domly shuffled over many permutations. With the exception of reward
coding (see Fig. 4C), which used the regression coefficient estimate di-
rectly, the neural data for these correlations were differences in regression
coefficients between reward conditions. The behavioral data, such as the
RT difference between reward conditions, were computed based on all
trials used for the behavioral results section. In other words, these behav-
ioral scores did not necessarily use identical trials used in EEG analyses,
but instead made use of all behavioral trials available. The correlation
analyses performed included neural data reflecting the difference in task
coding (see Fig. 5B), relevant feature coding (see Fig. 8A), the interaction
between reward and relevant feature prioritization (see Fig. 8C), as well
as motor coding locked to the response (see Fig. 9B). Time-resolved
correlations involving reward differences in neural regression coeffi-
cients used the same test windows as their corresponding figure, from
which differences were computed. All analyses applied nonparametric
Spearman correlations to reduce the influence of outliers in behavioral
difference measures, which were more than three scaled median absolute
deviations away from the median (RT difference distribution: two outli-
ers, lower threshold = —42 ms, upper threshold = 68 ms, median = 13
ms; accuracy difference distribution: no outliers, lower threshold =
—0.06, upper threshold = 0.10, median = 0.02).

Relationships among neural coding of task, sensory, and motor informa-
tion. To test whether reward-induced sensorimotor modulations arose
from upstream changes in task coding, we performed a series of correla-
tions between average task and sensorimotor coding regression coeffi-
cients. To do so, we selected time windows of interest based on results
from the previous analysis section. For task coding, we averaged regres-
sion coefficients for each participant from 1400 to 1800 ms. We did not
include 1200-1400 ms in this average due to a stimulus-evoked signal
artifact shown in (see Fig. 5B). For feature coding and motor coding, we
averaged regression coefficients from 2000 to 2400 ms, where we ob-
served the peak difference between reward conditions (see Figs. 84, 9A).
For motor coding locked to the response, we averaged regression coeffi-
cients —200 to 0 ms from the response, within which we found the peak
difference in motor coding between reward conditions. As initial tests,
we correlated average task coding with average feature coding and aver-
age motor coding, independent of reward. Significant correlations from
this first step were followed up by correlating the mean difference in task
coding (high-low reward) with the mean difference in the relevant sen-
sorimotor variable (high—low reward). All correlations were nonpara-
metric Spearman correlations. The Bonferroni-Holm correction was
used to correct for multiple comparisons (Holm, 1979). When using this
procedure, corrected p values can become larger than 1. To avoid confu-
sion, corrected p values larger than 1 were rounded to p = 1.

Statistical testing for neural analyses. Data were smoothed with a 12 ms
Gaussian kernel immediately before nonparametric cluster-based per-
mutation testing, which was used to correct for multiple comparisons
(Maris and Oostenveld, 2007; Spaak et al., 2017; Sassenhagen and Dra-
schkow, 2019). This nonparametric approach is preferable to parametric
statistical alternatives because it does not assume a particular distribution
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of the data. Cluster-based permutation testing computes a t statistic at
each point in the observed data and many times in permuted data. Each
permutation involves shuffling labels for the data, creating a permutated
dataset that preserves temporal correlations within the EEG signal. Re-
sulting ¢ statistics are thresholded at an a-level of 0.05. Considering only
the  values that remain, the cluster of time points with the largest abso-
lute sum of 7 statistics (the largest cluster mass) from each permutation is
placed into the null distribution. This null distribution shows the likeli-
hood of obtaining a particular cluster mass due to chance. As a final step,
candidate clusters from the observed data can then be compared against
the null distribution. If the candidate cluster is larger than the 95th per-
centile of the null distribution, then the effect is considered significant at
an « level of 0.05. Ten thousand permutations were performed to gener-
ate null distributions for each analysis in the present study.

Results

High reward decreased reaction time and improved accuracy
To assess the impact of reward prospect on behavioral perfor-
mance, we performed a2 X 2 repeated-measures ANOVA on RT,
with factors of reward (low X high) and task sequence (switch X
repeat). This revealed a significant main effect of reward (Fig. 3;
F(1 .0y = 18.676, p < 0.001, m2p = 0.392), which reflected lower
RTs on high-reward trials (mean = 415 ms, SD = 55.45) com-
pared with low-reward trials (mean = 438 ms, SD = 62.28).
There was also a significant effect of task sequence (F, 5oy =
35.546, p < 0.001, n2p = 0.551), driven by lower RT's on repeat
trials (mean = 412 ms, SD = 57.64) compared with switch trials
(mean = 440 ms, SD = 59.36). While switch costs were numer-
ically reduced on high-reward trials compared with low-reward
trials, the interaction between reward and task sequence did not
reach significance (F(, 59, = 2.662, p = 0.114, n2p = 0.084). A
control analysis comparing switch trials with repeat trials involv-
ing different task cues showed significantly higher RTs on switch
trials, confirming that the main effect of task sequence was driven

by genuine changes in task set and not simple changes in visual
cues (Shapiro-Wilk test for normality: W = 0.822, p = 0.003;
Wilcoxon signed-rank test: T = 438.0, p < 0.001, matched rank
biserial correlation = 0.884).
The equivalent 2 X 2 ANOVA for proportion correct showed
the same pattern of results. In particular, the analysis showed a
significant main effect of reward (F, 59y = 14.268, p < 0.001,
mn2p = 0.330), driven by greater accuracy on high-reward trials
(mean = 0.87, SD = 0.06) compared with low-reward trials
(mean = 0.85,SD = 0.07). It also showed a significant main effect
of task sequence (F,,9) = 51.894, p < 0.001, n2p = 0.642),
reflecting greater accuracy for repeat trials (mean = 0.89, SD =
0.06) compared with switch trials (mean = 0.84, SD = 0.07). We
did not detect a significant interaction between reward and task
sequence (F(, ,o) = 0.317, p = 0.578, n2p = 0.011). Like RT, a
control analysis comparing switch trials with repeat trials involv-
ing different task cues showed significantly lower accuracy on
switch trials, confirming that the effect of task sequence on accu-
racy was driven by genuine changes in task set (Shapiro—Wilk test
for normality: W = 0.977, p = 0.744; t,4) = —6.110, p < 0.001,
d = —1.116). To summarize, our behavioral analyses show that
high reward prospect improved both RT and accuracy perfor-
mance.

Neural coding across the trial

Having established the beneficial impact of reward prospect on
cognitive performance, we tested the neural coding of task vari-
ables across the trial. Reward coding emerged shortly after reward
cue onset and was sustained throughout the trial (Fig. 4; window
tested = 0-3500 ms from reward cue onset, cluster window =
68-2940 ms, p = 0.0002). Task coding peaked shortly after the
task rule cue was presented and continued into the response
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phase (window tested = 1200-3500 ms from reward cue onset;
first cluster = 1260-2220 ms, first cluster p = 0.0002; second
cluster = 2420-2948 ms, second cluster p = 0.0094). Finally, the
coding of task-relevant and task-irrelevant target features, as well
as motor response coding rose shortly after target presentation
(relevant feature coding: window tested = 1800—4500 ms; clus-
ter window = 1900-3016 ms; p = 0.0002; irrelevant feature cod-
ing: window tested = 1800—4500 ms from reward cue onset;
cluster window = 1892-2284 ms; cluster p = 0.0036; motor cod-
ing: window tested = 1800—4500 ms; cluster window = 2004 -
3952 ms; cluster p = 0.0002). In summary, we verified that our
multivariate analysis approach was sensitive to dynamic tempo-
ral changes in the neural coding of task variables at sensible stages
within the trial.

Task coding as a function of reward prospect

Reward prospect increased proactive task coding. Having verified
that core task variables were encoded in the EEG signal at the
plausible stages within the trial, we tested which variables were
influenced by the reward manipulation. We found that average
task coding was significantly greater on high-reward trials before
target onset (Fig. 5A; window averaged = 1400—1800 ms; Shapi-
ro—Wilk test for normality: W = 0.973, p = 0.633; theory-driven
one-tailed test based on Etzel et al. (2016): t,q, = 2.881, p =

0.004, d = 0.526). Time-resolved permutation analyses con-
firmed robust encoding of task rules before the target under both
reward conditions (Fig. 5B; window tested = 1200-2500 ms; first
low-reward cluster = 1280-2008 ms; low reward p = 0.0002;
second low-reward cluster = 2020-2168 ms; high-reward clus-
ter = 1272-2032 ms, high reward p = 0.0002; difference clus-
ter = 1876-1968 ms; p = 0.0460).

Task coding as a function of rule updating

Reward-induced increases in task coding were higher on switch
trials. Having shown reward prospect-modulated task coding
overall, we tested whether the effect of reward was amplified dur-
ing rule updating, where interference between competing rules is
highest and thus increased the separation between rules that
could benefit flexible behavior. This analysis revealed a signifi-
cant increase in task coding on high-reward switch trials com-
pared with low-reward switch trials (Fig. 6A; window tested =
1200-2500; difference cluster = 1456-2024 ms; p = 0.0002). By
contrast, we did not detect a difference in task coding as a func-
tion of reward on repeat trials (Fig. 6B; window tested = 1200—
2500 ms; longest candidate cluster = 1224—1244 ms; p = 0.6825).
The interaction between reward and task coding, as a function of
rule updating, was significant when averaged over the pretarget
interval (1400—1800 ms; t,9y = 2.9247, p = 0.0066) and showed
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a trend toward significance when fully time resolved (Fig. 6C,
window tested = 1200-2500 ms; longest candidate cluster =
1464-1544 ms; p = 0.0824).

Task coding and cognitive performance

Neural encoding of task rules was associated with performance
improvements. To understand the strong performance benefits
observed in behavior, we tested whether task coding was associ-
ated with performance improvements (Etzel et al., 2016). The
difference in task coding between reward conditions showed a
significant correlation with reward-induced changes in RT (Fig.
7A; window tested = 1200-2500 ms; RT difference: cluster win-
dow = 1860-1968 ms; mean rho = 0.4927; p = 0.0225), but not
with accuracy (longest candidate cluster = 2280-2320 ms; mean
rho = —0.4083; p = 0.5382). Control analyses confirmed the
relationship between reward-induced changes in task coding,
and RT reflected the difference in RT between reward conditions,
rather than either reward condition individually (window
tested = 1200—1800 ms; high-reward RT only: longest candidate

cluster = 1928-1948 ms; mean rho = —0.4004; p = 0.3030;
low-reward RT only: longest candidate cluster = 1636-1664 ms;
mean rho = 0.4602; p = 0.3502). We did not detect significant
associations between the reward-rule updating interaction (Fig.
6C) and the change in switch costs between reward conditions for
RT or accuracy (window averaged = 1400—1800; RT switch cost
difference: Spearman’s rho = —0.2725; p = 0.1449; accuracy
switch cost difference: Spearman’s rho = —0.3351; p = 0.0703).

Reward coding itself also showed a strong relationship with
changes in performance. The magnitude of reward coding was
significantly correlated with participants’ difference in RT on
high-reward compared with low-reward trials (Fig. 7B: window
tested = 0—5000 ms; first cluster window = 392-1992 ms, mean
rho = 0.5049, p = 0.0008; second cluster window = 2000-3456
ms, mean rho = 0.6001, p = 0.0004; third cluster window =
3496-3892 ms, mean rho = 0.5278, p = 0.0078; fourth cluster
window = 4072—4524 ms, mean rho = 0.5483, p = 0.0100; fifth
cluster = 4588—4748 ms, mean rho = 0.4487, p = 0.0415; sixth
cluster = 4848 -4996 ms, mean rho = 0.4112, p = 0.0459). Con-
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trol analyses correlating reward coding with RT separately on
high-reward or low-reward trials confirmed that this reward—
coding association was specific to the difference in performance
(window tested = 0—5000 ms; high-reward RT only: longest clus-
ter = 1188-1248, mean rho = —0.4113, p = 0.3258; low-reward
RT only: longest cluster = 4484—4512 ms, mean rho = 0.3939,
p = 0.3656). We did not detect a significant correlation between
reward coding and the difference in accuracy between reward
conditions (window tested = 0—5000 ms; longest candidate clus-
ter = 4—8 ms; mean rho = —0.3822; p = 0.7373). Similarly, we
did not detect significant relationships between reward coding
and the difference in switch cost between reward conditions for
RT (window averaged = 0-5000 ms; Spearman’s tho = 0.2912;
p = 0.1185) or accuracy (window averaged = 0—-5000 ms; Spear-
man’s rho = 0.0472; p = 0.8045).

To test whether the relationship between reward-driven
changes in task coding and improved RT performance was driven
by reward coding itself, we ran a control analysis that regressed
out variance associated with reward coding (averaged from 0 to
5000 ms) from the reward-task coding effect (high—low) and the
reward-RT effect (low—high). We then tested the association be-

tween the residual variance in the reward-task coding effect and
the residual variance in the reward-RT effect, using nonparamet-
ric Spearman correlations. This control indicated that reward-
modulated task coding during the pretarget period (averaged
from 1400 to 1800 ms) was associated with the change in RT
performance, even after removing variance that could be ac-
counted for by reward coding (Fig. 7C; Spearman’s rho = 0.4554,
p = 0.0122). This was also the case for reward-modulated task
coding during the 1800-2000 ms post-target period (Fig. 7D;
Spearman’s rho = 0.3971, p = 0.0306). As a final control, we
applied this procedure to cluster windows taken from Figure 7, A
and B (task difference cluster range = 1860-1968 ms; reward
cluster range = 392—4996 ms). This confirmed that the significant
time-resolved correlation cluster identified for reward-modulated
task coding (Fig. 7A) was associated with reward-driven changes in
RT, independent of reward coding itself (Spearman’s rho = 0.5075,
p = 0.00469).

Feature coding as a function of reward prospect
Reward prospect increased the coding of task-relevant target fea-
tures. After evaluating the impact of reward prospect on task
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coding, we examined the effect of reward prospect on neural
coding of task-relevant and task-irrelevant target features. Rele-
vant feature coding was observed shortly after target presentation
on both high-reward and low-reward trials (Fig. 8A; window
tested = 1800—3000 ms; low-reward cluster = 1920-2812 ms,
p = 0.0002; first high-reward cluster = 1916-2892 ms, p =
0.0002). In addition, neural coding for task-relevant features was
significantly higher under high-reward conditions (window
tested = 1800—3000 ms; first difference cluster = 2036-2172,
p = 0.0100; second difference cluster = 2252-2404 ms, difference
p = 0.0052). A control analysis that regressed the task-relevant
feature model against the residual variance, which was not ex-
plained by any of the other coding models, confirmed that this
result was not driven by correlated regressors (window tested =
1800-3000; low reward cluster = 1920-2812 ms, p = 0.0002;
high-reward cluster = 1916-2892 ms, p = 0.0002; first difference
cluster = 2036-2172 ms, p = 0.0120; second difference cluster =
2252-2404, p = 0.0058). Task-irrelevant information was also
represented following target onset for both reward levels (Fig. 8B;
window tested = 1800-3000 ms; low-reward cluster = 2008 —
2284 ms, p = 0.0002; second low-reward cluster = 2460-2560
ms, p = 0.0470; high-reward cluster = 1916-2208 ms, p =
0.0008). However, the strength of these coding patterns did not
differ as a function of reward (window tested = 1800—3000 ms,
no candidate clusters). As a consequence of these target-related
effects, reward prospect showed a significant interaction with the
difference in task-relevant and task-irrelevant feature coding.
This reflected a greater difference between task-relevant and task-
irrelevant coding under high-reward conditions (Fig. 8C; win-
dow tested = 1800-3000 ms; interaction cluster = 2240-2364
ms, p = 0.0258). In summary, we found evidence that high re-
ward prospect increased the difference in neural coding for task-
relevant and task-irrelevant target information. This difference
was due to a selective increase in the neural coding of task-
relevant feature information in high-reward contexts.

Feature coding as a function of rule updating

Reward—feature coding modulations did not differ on switch tri-
als. While high reward prospect increased the neural coding of
task-relevant feature information overall (Fig. 8), the difference
in relevant feature coding between reward conditions was not
significant when switch and repeat trials were analyzed separately
(window tested = 1800—3000 ms; switch trials: longest candidate

cluster = 2144-2172 ms, p = 0.2274; repeat trials: longest can-
didate cluster = 2104-2148 ms, p = 0.1902).

Feature coding and cognitive performance

Reward—feature coding modulations were not linked to perfor-
mance improvements. In contrast to the relationships between
task coding and performance improvements, we did not detect
significant associations between reward-induced changes in fea-
ture coding and reward-induced changes in cognitive perfor-
mance. This was the case for relevant feature coding (window
tested = 1800—-3000 ms; correlation with RT: longest cluster =
1880-1884 ms, mean rho = —0.3809, p = 0.8172; correlation
with accuracy: longest cluster = 26602676 ms, mean rho =
—0.3842, p = 0.6628), as well as the interaction between reward
and relevant feature prioritization (Fig. 8C; window tested =
1800-3000 ms; correlation with RT: longest cluster = 1868 —1880
ms, mean rho = —0.4230, p = 0.6568; correlation with accuracy:
longest cluster = 2752-2764 ms, mean rho = 0.3789, p =
0.7073).

Motor coding as a function of reward prospect

Reward prospect increased the neural encoding of task-relevant
motor output. Having established that reward prospect modu-
lated neural activity coding for task-relevant target features, we
examined the effect of reward prospect on activity patterns re-
lated to the upcoming motor response. When the analysis was
locked to the onset of the reward cue, motor coding appeared
after target presentation during both high-reward and low-
reward conditions (Fig. 94; window tested = 1800—4500 ms;
low reward cluster = 1996-3716 ms, low reward p = 0.0002;
high-reward cluster = 2016—3792 ms, high reward p = 0.0002)
and showed a trend toward higher motor coding under high-
reward conditions (Fig. 9A; window tested = 1800—4500 ms,
difference cluster = 2040-2152 ms, p = 0.0900). When the anal-
ysis was locked to the onset of the motor response itself, we observed
significantly higher motor coding on high-reward trials (Fig. 9B;
window tested = —500 to 2000 ms from response; low reward clus-
ter = —220-1636 ms, low reward p = 0.0002; high-reward cluster =
—180-1784 ms, high reward p = 0.0002; difference cluster = —36—
164 ms, p = 0.0158).
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Figure 9. General linear model regression coefficients for coding of the upcoming motor response as a function of reward. A, Motor model regression coefficients for data locked to reward cue
onset. The vertical line indicates target onset. B, Motor model regression coefficients for data locked to the response. The vertical line indicates the point at which responses were made. Shading

around principle lines indicates the SEM. Cluster-corrected p values are shown below time courses.

Motor coding as a function of rule updating

Reward prospect modulated motor coding on switch and repeat
trials. Based on the reward—motor coding effect observed in our
response-locked analysis (Fig. 9B), we tested whether this effect
differed on switch and repeat trials. Motor coding was signifi-
cantly greater on high-reward compared with low-reward switch
trials (window tested = —500 to 2000 ms from response, longest
difference cluster = —72 to 180 ms, p = 0.0040), as well as high-
reward compared with low-reward repeat trials (window tested =
—500 to 2000 ms from response; first difference cluster = —84 to
120 ms, p = 0.0200; second difference cluster = 1512-1748 ms, p =
0.0240).

Motor coding and cognitive performance

Reward-motor coding modulations were not linked to perfor-
mance improvements. When testing whether the reward boost in
motor coding (Fig. 9B) was associated with changes in perfor-
mance, we did not detect a significant association between the
increase in motor coding (high reward-low reward) and the
change in RT between reward conditions (window tested =
—500 to 2000 ms; longest difference cluster = —192 to —152 ms;
mean rho = —0.4415, p = 0.3505). Similarly, we did not detect a
significant association between the reward boost in motor coding
and the change in accuracy between reward conditions (window
tested = —500 to 2000 ms; longest difference cluster = 468524
ms; mean rho = —0.4618, p = 0.1985).

Relationships among neural coding of task rule, feature, and
motor information

Reward-induced changes in task coding were not associated with
sensorimotor effects. Having established that reward prospect
modulated proactive coding of task information, we investigated
whether such proactive changes could account for modulations
in post-target processing. To do so, we first tested whether aver-
age task coding during the pretarget interval (1400—1800 ms) was
associated with average feature coding (2000—2400 ms), as well as
average motor coding locked to the reward cue (20002400 ms)
and the response (—200 to 0 ms). Task coding was significantly

correlated with coding of the relevant target feature (Spearman’s
rho = 0.5355, Bonferroni-Holm corrected p = 0.0156) and the
difference between task-relevant and task-irrelevant features
(Spearman’s rho = 0.4719, Bonferroni-Holm corrected p =
0.0455), indicating that participants with greater task coding also
tended to exhibit greater prioritization of task-relevant target
features. We did not detect significant correlations between task
coding and motor coding locked to the reward cue (Spearman’s
rho = —0.1511, Bonferroni-Holm corrected p = 1) or the re-
sponse (Spearman’s rho = —0.1448, Bonferroni-Holm cor-
rected p = 1). Having established these relationships, we tested
whether reward modulations in task coding during the pretarget
period (high reward—low reward, 1400-1800 ms) were correlated
with reward modulations in relevant feature coding following
target onset (high reward-low reward, 2000-2400 ms). This
analysis did not detect a significant correlation between reward-
modulated task and reward-modulated feature coding (Spear-
man’s rho = 0.1097, Bonferroni—-Holm corrected p = 0.8870).
The same pattern of results was found when testing the associa-
tion between reward-modulated task coding (high reward—-low
reward, 1400-1800 ms) and the extent to which high reward
increased the representation of the relevant target feature over the
irrelevant feature (2000—2400 ms; Spearman’s rho = 0.2957;
Bonferroni-Holm corrected p = 0.4512).

Discussion

The present study aimed to investigate how rewards modulate the
neural coding of task rule information to support flexible cogni-
tive control. We used RSA to examine changes in the neural
coding of tasks as the prospect of reward changed dynamically
from trial to trial. Using this method, we were able to track neural
representations for reward prospect, task rules, task-relevant and
task-irrelevant perceptual features of target stimuli, and neural
representations related to accurate motor output. We found that
high reward prospect boosted the encoding of multiple task vari-
ables. Critically, reward increased encoding of the active task rule
in preparation for the target, and the extent of this increase was
associated with reward-based reductions in RT. In addition, the
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modulatory effect of reward on rule coding was amplified on
switch trials, where more flexible processing of rules was needed.
Following the target, we observed increased encoding of task-
relevant perceptual and motor information under high-reward
conditions.

Consistent with the results of previous fMRI decoding studies
(Woolgar et al., 2011; Waskom et al., 2014; Wisniewski et al.,
2015; Etzel etal., 2016; Qiao et al., 2017), RSA successfully tracked
neural representations for task rule information. In using this
approach, our results replicate the fMRI findings of Etzel et al.
(2016) in human electroencephalographic data, showing that
high reward prospect increased average task coding before target
onset, and that the difference in task coding between reward con-
ditions was associated with improvements in cognitive perfor-
mance. The effect of reward on task coding was most pronounced
on switch trials, where task rules needed to be updated relative to
the previous trial. This could suggest that dynamic increases in
reward prospect primarily promote flexible rule updating, as op-
posed to maintenance of existing task rule representations in
prefrontal regions. Such updating might be mediated by phasic
dopamine release in the striatum, which is thought to be impor-
tant for driving flexible and targeted updating of contextual in-
formation in PFC (Westbrook and Braver, 2016; Yee and Braver,
2018). Inlight of our neural results, showing a larger reward effect
on switch trials, it is surprising that there was not a significant
corresponding effect in behavior. We believe that this behavioral
result should be interpreted with caution, as there was a clear
trend in the expected direction, and previous studies have ob-
served robust reward effects on rule switching (Shen and Chun,
2011; Kleinsorge and Rinkenauer, 2012). Overall, the present re-
sults provide evidence that high reward prospect can improve
cognitive performance by increasing proactive neural represen-
tations for task rule information. Moreover, these results seem to
be consistent with the theoretical view that reward prospect could
help separate the representations of competing task rules, which
is especially critical during transitions between different behav-
ioral contexts (Waskom et al., 2014). Indeed, such a mechanism
could account for the selective effects of reward on switching that
has been observed in previous studies (Shen and Chun, 2011;
Kleinsorge and Rinkenauer, 2012).

One interesting aspect of these results was that reward-driven
changes in task coding were primarily associated with improve-
ments in RT but not in accuracy. This result is distinct from the
findings of Etzel et al. (2016), who found that reward-driven
increases in task coding mediated improvements in accuracy but
not in RT. A simple explanation for this could be our RT incen-
tive manipulation, which made RT a more informative behav-
ioral measure in the current study. On top of this, RT values have
a wider dynamic range than accuracy, which could have made it
easier to detect associations between neural measures and RT
performance. From a theoretical perspective, the asymmetry be-
tween our RT and accuracy correlation results might be viewed as
an optimal control problem, in which subjects maximize ex-
pected value over time through balancing speed and accuracy
(Bogacz, 2007; Manohar et al., 2015). In our task, accuracy rates
were relatively high, and, while reward significantly increased
accuracy, the effect was much smaller than for RT. One possible
explanation for this comes from Manohar et al. (2015), who
propose an optimal control model to account for the effects of
reward on neural noise and behavioral performance. One impor-
tant prediction of this model is that when the signal-to-noise
ratio in a neural system is high, rewards will have a dispropor-
tionate effect on response vigor and the reduction of RT. These
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signal-to-noise conditions might well have reflected our task con-
ditions, in which accuracy rates were high and stimuli were
unambiguous.

Consistent with the results from previous studies focusing on
neural responses to perceptual targets (Serences, 2008; Serences
and Saproo, 2010; Padmala and Pessoa, 2011; Hickey and Peelen,
2015), we found that reward enhanced the representation of task-
relevant perceptual features. The present results complement this
literature in two ways. First, many previous studies have focused
on perceptual stimuli associated with reward over many trials
(Serences, 2008; Serences and Saproo, 2010; Hickey and Peelen,
2015). Here we show that transient changes in prospective reward
can also modulate task-relevant perceptual feature representa-
tions. Second, research using prospective reward cues has led to
the proposal that reward motivation might benefit attentional
filtering, either by enhancing task-relevant perceptual represen-
tations or suppressing task-irrelevant representations (Pessoa,
2017). Hickey and Peelen (2015) found evidence for both of these
mechanisms, showing that reward could either enhance or sup-
press perceptual representations as a function of task relevance.
In the present study, we report a more selective effect on percep-
tual representations, wherein high reward prospect increased the
neural representation of task-relevant information without im-
pacting the representation of irrelevant information. This might
suggest that transient reward coupling with sensory target fea-
tures has a different impact on perceptual encoding than reward
associations established over many trials.

While task coding and the prioritization of task-relevant tar-
get features were strongly correlated, we did not find evidence
that reward-driven modulations in these variables were associ-
ated. We are cautious not to overinterpret these null effects.
These results do not rule out the possibility that reward-
modulated task coding affects downstream perceptual represen-
tations. However, they do raise the possibility of an alternative
mechanism, wherein reward prospect acts independently on
multiple neural variables. Among these variables, our results sug-
gest that neural encoding of reward prospect and task rule infor-
mation are important factors associated with dynamic shifts in
improving performance. The present results do not permit con-
clusive interpretations about the functional role of reward-driven
perceptual and motor changes; although we did not detect signif-
icantassociations between perceptual representations and behav-
ioral measures, this does not imply that these variables were
functionally irrelevant to task performance.

How might reward motivation translate into performance im-
provements more broadly? Previous studies have pointed to the
idea that reward motivation might upregulate attention (Pessoa
and Engelmann, 2010; Padmala and Pessoa, 2011; Etzel et al,,
2016). For instance, reward and attention have been shown to
recruit overlapping frontoparietal control regions (Pessoa and
Engelmann, 2010) and have analogous effects on electrophysio-
logical signatures of task preparation (van den Berg et al., 2014).
One possibility in our study is that reward prospect had addi-
tional effects that were not captured by the conditions of our task.
For instance, high reward prospect could have increased alertness
and temporal attention to information proximal to reward cue
presentation. This may explain why associations between behav-
ioral measures and downstream reward effects, such as target
feature and motor representations, could be noisier and less reli-
able than the strong correlation between behavior and reward
itself.

To conclude, previous work has shown that reward motiva-
tion may improve cognitive performance by boosting the neural
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coding of task rules (Etzel et al., 2016). Here we demonstrate that
high reward prospect can increase proactive coding of task rule
information and that this proactive effect has a strong relation-
ship with performance improvements. In addition, the effect of
reward on rule coding was heightened during switch trials, where
task rules were updated relative to the previous trial. This suggests
that reward prospect might optimize flexible control processes by
increasing the neural separation between task rules.
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