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Introduction

Thiopurine drugs, including Azathioprine (AZA) and 
6-mercaptopurine (6-MP) are cytotoxic drugs used in the 
treatment of several serious diseases such as childhood 
acute lymphoblastic leukemia (ALL) and inflammatory 
bowel disease (Krynetski and Evans, 2003).

AZA is almost completely converted to 6-MP via a 
non-enzymatic reaction(Dubinsky, 2004);(Bradford and 
Shih, 2011). Subsequently, 6-MP is metabolized by three 
competing enzyme systems (Figure 1), xanthine oxidase 
(XO), thiopurine S-methyltransferase (TPMT) and 
hypoxanthine phosphoribosyl transferase (HPRT). The 
enzyme XO catalyses the transformation of 6-MP into 
the inactive metabolite 6-thiouric-acid (6-TUA) which is 
excreted in the urine, whereas the enzyme TPMT methylates 
6-MP into 6- methyl mercaptopurine (6-mMPN) which 
is associated with hepatotoxicity. The HPRT enzyme is 
responsible for the conversion of 6-MP into 6-thioinosine-
monophosphate (6-TIMP) which is converted via multiple 
steps to 6-thioguanine nucleotides (6-TGN) including 
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6-thioguanine monophosphate (6-TGMP), diphosphate 
(6-TGDP) and -triphosphate (6-TGTP) which are the 
active products that are incorporated into DNA, resulting 
in cell apoptosis (Louis and Belaiche, 2003; Sahasranaman 
et al., 2008; Bradford and Shih, 2011). TPMT activity 
determines the balance between two active metabolites, the 
myelosuppressive 6-TGNs and the potentially hepatotoxic 
6-mMPNs (Derijks et al., 2006). It has been demonstrated 
that there is a significant negative correlation between 
6-TGNS levels in RBCS and TPMT activity(Balis and 
Adamson, 1999). Therefore, patients with high 6-TGNs 
levels and low TPMT activity are more susceptible for the 
myelosuppression or even death in some cases (Katsanos 
and Tsianos, 2008; Nguyen et al., 2011). TPMT is encoded 
by a 34 kb gene consisting of ten exons and nine introns 
and has been known to be polymorphic in the general 
population (Szumlanski et al., 1996). The distribution of 
alleles is trimodal with homozygote allele (two low TPMT 
metabolizing alleles;0.3%), heterozygote allele (one high 
and one low metabolizing TPMT allele; 11.1%) and wild 
type with two high metabolizing TPMT allele type; 88.6% 
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(Louis and Belaiche, 2003; Hanai et al., 2010).
So far, twenty-eight variant alleles have been identified 

(Garat et al., 2008), however 4 variant alleles [TPMT*2 
(c.238G>C), TPMT*3A (c.460G>A and c.719A>G) and 
TPMT*3C (c.719A>G)] and TPMT*3B (c.460G>A) have 
been intensively studied both according to their molecular 
mechanisms and/or clinical implications(Wang et al., 
2010). Genotyping for the TPMT*3 family of variant 
alleles detect more than 92% of deficient activity alleles 
of TPMT enzyme, addition of TPMT*2 genotyping pushes 
this to over 95%(Schaeffeler et al., 2004; Wang and 
Weinshilboum, 2006). On the other hand, concordance 
between low TPMT activity and a mutant heterozygote 
phenotype was reported to be 83%(Ford et al., 2009).

In heterozygote individuals with intermediate TPMT 
activity, the initial doses of thipurines should be reduced 
by 30-70%, whereas in homozygote non-functional 
allele carriers the doses of thiopurine drugs should be 
reduced by 90%, or patients should receive another 
treatment (Peregud-Pogorzelski et al., 2011). Therefore, 
analysis of TPMT genotypes can provide an important 
molecular biomarker that predicts drug response in 
patients treated from hematological malignancies 
and autoimmune diseases(Sahasranaman et al., 2008; 
Budhiraja and Popovtzer, 2011). The aim of this study was 
to determine the frequency of the most common TPMT 
gene polymorphisms (238G>C), 460G>A and 719A>G), 
among children with ALL in Jordan and to compare it 
with other ethnic groups.

Materials and Methods

Study subjects
Fifty-two children who were diagnosed with ALL, 

attending the outpatient clinic at King Hussein Cancer 
Centre (KHCC), and receiving 6-MP were recruited in the 
study. The study was approved by the research committee 
in King Hussein Cancer Centre (KHCC), Reference 
number (15KHCC 57). Patients’ data and blood sample 
were collected after obtaining a parental consent form. 
Recruitment was commenced over a period of one year 
from September, 2015 to September, 2016.

An aliquot of 2 ml blood was obtained from a routine 
clinical blood sample withdrawn from the patient at the 
clinic using K3 EDTA coated tubes and stored in ice box 
during transportation. All blood samples were processed 
within four hours of blood withdrwal. 

Genotyping
Peripheral blood mononuclear cells (PBMC) were 

extracted from anticoagulated whole blood using 
“Promega-Wizard genomic DNA purification kit, 
Promega Corporation, USA” according to manufacturer’s 
instructions. A total of 52 DNA samples were analyzed. 
Total genomic DNA extracted blood samples was 
processed either immediately or stored at -20°C until being 
used. Four TPMT SNPs (G460A (TPMT*3B), A719G 
(TPMT*3C), (G460A and A719G (TPMT*3A) andG238C 
(TPMT*2) were tested by Polymerase chain reaction 
(PCR) followed by sequencing using the Primers showed 
in the Table1. All customized primers were synthesized 

by Princess Haya Biotechnology Centre (Irbid, Jordan). 
Sequences were analyzed using the sequencing analysis 
software (Chromas Lite, version 2.1.1).

PCR amplifications were done in a reaction volume 
of 20 µL containing 50-200ng of genomic DNA, final 
concentrations of 0.5 µMforward and reverse primers, 10 
µL of 2X KAPA2 Fast ReadyMix (Kapabiosystem, USA).

All PCR reactions started with denaturation for 5 
minutes at 95, followed by 39 cycles of 30 seconds at 
94ºC, then 30 seconds at 58ºC annealing temperature, and 
finally for 30 seconds at 72ºC as extension temperature.

PCR products were analyzed and resolved using 
agarose gel (2 %). The resolved DNA bands are detected 
by staining the gel with safe-red dye, followed by 
photographing under ultraviolet (UV) illumination. A 
50-bp ladder was used as a convenient marker to estimate 
the size of the amplified product.

Samples with sharp PCR products are good candidates 
for sequencing. The Sanger sequencing technique was 
used in our study by GENEWIZ Technical Support Group, 
USA (http://www.genewiz.com).

Statistical analysis
Online Encyclopedia for Genetic Epidemiology 

studies (http://www.oege.org/software/hwe-mr-calc.
shtml) was used to test Hardy-Weinberg equilibrium 
(HWE) for genotype distributions in ALL cases. Data 
was analysed using Fisher’s exact test to evaluate the 
difference in allele frequencies between populations. 
Differences were considered significant if p-value <0.05. 
SPSS, version 22.0, was used for the analysis of the 
statistical data. 

Results

Genotype and allele frequencies
In this study, the frequencies of TPMT variants were 

Figure 1. 7 Metabolism of Thiopurine Drugs. AZA 
is converted to 6-MP by a nonenzymatic route. Initial 
6-MP transformation occurs via competition of xanthine 
oxidase (XO) and thiopurine methyltransferase (TPMT) 
and the hypoxanthine phosphoribosyltransferase 
(HPRT) enzymatic pathway. Once produced, 6-thiosine 
5'-monophosphate (6-TIMP) may be transformed either 
into 6-TGN or 6-mMP(R) by the rate-limiting enzymatic 
pathways, inosine monophosphate dehydrogenase 
(IMPDH) and [guanosine monophosphate synthetase 
(GMPS). The production of high levels of 6-TGN and 
6-mMP (R) increases the risk of myelosuppression and 
hepatotoxicity associated with therapy. Adapted from 
Bradford and Shih (2011) 
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and heterozygous variant. For TPMT (rs1142345), the vast 
majority of patients were carriers for the homozygous wild 
type genotype AA (N=47, 98%), while one patient was a 
carrier for the heterozygous AG (N=1, 2%) Figure 3 shows 
chromatograms of the wild and heterozygous variant.

None of the patients carried the TPMT*3A or 
TPMT *2 allele.Genotype and allele frequencies in our 
study were matched to expectation by Hardy-Weinberg 
Equilibrium of the tested polymorphisms.

investigated in 52 patients with ALL. Mean age of children 
was 8.90 years (SD= 4.44) and 40.4% of patients were 
female.

Table 2 shows the studied genotypes and allele 
frequencies. The most predominant genotype of TPMT 
(rs1800460) was the homozygous wild type genotype 
GG (N=51, 98.08%) followed by the heterozygous GA 
(N=1, 1.92%), whereas the homozygous variant AA was 
not detected. Figure 2 shows chromatograms of the wild 

Gene Rs Forward primer Reverse primer 
TPMT G460A 1800460 AGGCCACACAGCTTGAAAGT CCCAGGTCCACACATTCCTC
TPMT A719G 1142345 AATCTGCAAGACACATAGGCA AGGTTGATGCTTTTGAAGAACGA
TPMT G238C 1800462 ACCTTAAATACTTTGGTTCCAGG GCTTACTCTAATATAACCCTCT

Table 1. Primers Used for the DNA Sequencing of TPMT SNPs

rs Variant Genotype / Allele Observed 
frequency N(%)

Expected 
frequency* N(%)

P- 
value

MAF 
(%)

rs1800460 (*3B) c.460G > A GG 51 (98.08%) 51 (98.08%) 0.99 1.00%
GA 1 (1.92 %) 1 (1.92 %)
AA  0 (0.0 %)  0 (0.0 %)

rs1142345 (*3C) c.719A > G AA 47 (98%) 47 (98%) 0.99 1.00%
AG 1 (2%) 1 (2%)
GG 0 (0.0%) 0 (0.0%)

rs1800462 (*2) c.238G>C GG 51 (100%) 51 (100%) 1 0.00%
GC 0 (0.0%) 0 (0.00%)
CC 0 (0.0%) 0 (0.00%)

rs1800460 
& rs1142345

TPMT*3A (c.460G>A 
and c.719A>G)

Carriers of both TPMT*3B 
and TPMT*3C alleles

0 (0.0%) 0 (0.00%) - -

Figure 2. Chromatograms of (*3B) c.460G > A(rs1800460): (1) Heterozygote Genotype (GA). (2) Wild Type Genotype 
(GG)

*, Using Hardy-Weinberg Equilibrium; MAF, minor allele frequency; N, numbe; %, percentage

Table 2. Genotypes and Minor Allele Frequencies among Recruited ALL Patients

Figure 3. Chromatogram(*3C) c.719A > G (rs1142345): (1) Heterozygote Genotype (AG). (2) Wild Type Genotype 
(AA)
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Country Total number 
of alleles

Frequency 
of TPMT *2

Frequency of 
TPMT *3B

Frequency of 
TPMT *3C

Frequency of 
TPMT *3A

Healthy or patients Reference

Jordan 96-104 0.00% 1.00% 1.00% 0.00% ALL patients This study

Jordan 338 0.00% 0.00% 0.30% 0.59% Healthy (Hakooz et al., 2010)

Jordan 500 0.00% 0.40% 0.00% 0.40% Healthy (Elawi et al., 2013)

Middle eastern

Egypt 400 0.00% 0.00% 1.30% 0.30% Healthy (Students and staff 
at Cairo University)

(Hamdy et al., 2003)

Iran 1000 0.10% 0.00% 2.50% 0.00% Healthy (Moini et al., 2012)

Iran 1664 2.16% 1.62% 0.54% 1.68% Healthy (Bahari et al., 2010)

Iran 254 3.93%* 0.00% 1.57% 0.79% Healthy (Azad et al., 2009)

Turkey 212 0.00% 0.00% 0.90% 0.90% ALL patients (Tumer et al., 2007)

Palestine 112 0.00% 0.00% 0.00% 0.89% ALL patients (Ayesh et al., 2013)

European countries

British-
Caucasians 

2298 0.22% 0.00%* 0.70% 4.50%* ALL patients (Lennard et al., 2013)

French -
Caucasians

938 0.70% 0.00% 0.40% 3.00% n=304 healthy, n=147 
children hospitalized for 

day care surgery
n=18 neonates (cord 

bloods)

(Ganiere-Monteil et 
al., 2004)

Italian 1886 0% 0.32% 0.32% 2.20% Healthy (Serpe et al., 2009)

German-
Caucasians

2428 0.20% 0.00%* 0.40% 4.40%* Healthy (Schaeffeler et al., 
2004)

Russia 1990 0.10% 0.00%* 0.40% 2.30% n=446 children with 
malignant diseases, n= 549 
children and adults without

malignant disease

(Samochatova et al., 
2009)

Spain (Spanish) 276 - 1.45% 1.45% 3.26% Healthy (Corominas et al., 
2006)

Sweden 1600 0.06% 0.13% 0.44% 3.75%* n=800 DNA samples ob-
tained from a data bank

(Haglund et al., 2004)

Countries of North, Central and South America 

Argentina 294 0.70% 0.00% 0.00% 3.06% Healthy (Larovere et al., 2003)

Brazil 408 2.20% 0.20% 1.00% 1.50% ALL n=2, non-ALL n=202 (Boson et al., 2003)

Bolivia 230 0.00% 0.00% 0.00% 6.52%* NS (Lu et al., 2005)

Mexico 216 0.90% 2.30% 1.40% 3.24% Healthy (Taja-Chayeb et al., 
2008)

Mexico 78 2.70% 0.00% 2.50% 7.60%* ALL (Taja-Chayeb et al., 
2008)

USA-African 496 0.40% 0.00% 2.42% 0.81% n=196 healthy, n=52 ALL (Hon et al., 1999)

USA-Caucasian 564 0.17% 0.00% 0.18% 3.19% unrelated white subjects (Hon et al., 1999)

African countries 

Ghana 434 0.00% 0.00% 7.60%* 0.00% Healthy (Ameyaw et al., 1999)

Ghana 232 0.00% - 6.47%* 0.00% Healthy (Schaeffeler et al., 
2008)

Kenyan 202 0.00% 0.00% 5.45%* 0.00% Healthy (McLeod et al., 1999)

Libya 492 0.00% 0.00% 1.02% 0.61% Healthy (Zeglam et al., 2015)

Mozambique 500 0.00% - 3.80% 0.20% Healthy (Alves et al., 2004)

Angola 206 0.00% 0.00% 3.90% 0.00% Healthy (Oliveira et al., 2007)

Asian countries

Chinese 1402 0.00% 0.00% 1.05% 0.42% Healthy (Zhang et al., 2006)

Chinese 426 0.00% 0.00% 0.23% 0.00% Healthy (Zhang et al., 2004)

Japanese 302 0.00% 0.00% 0.33% 0.00% Healthy (Kubota and Chiba, 
2001)

Korean 1800 0.00% 0.00% 1.40% 0.00% Patients (type of disease 
not reported)

(Kim et al., 2015)

*Significant p-value<0.05 

Table 3. Frequency of Selected TPMT Variant Allels Across the World in Healthy or ALL Patients
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Discussion

Interracial variations in the frequency of genes 
encoding for drug metabolizing enzymes, transports and 
receptors are well documented in the literature (Phan 
et al., 2009). Genetic variations can account for a large 
proportion of the variability observed in drug response, 
thus elucidating these variations and understanding their 
roles in drug disposition is of paramount importance 
for individualizing patient care. Among various races, 
the Arab race, due to significant genetic admixture, is 
considered one of the distinct races (Hamdy et al., 2003). 
Among Arabs, we focused on the present study on the 
Jordanian population, and we aimed to investigate the 
frequency of the TPMT deficient alleles in children with 
ALL in Jordan and to compare with other ethnic groups.

None of the ALL children included in the present 
study carried the TPMT*2 allele. This finding comes in 
line not only with the results of previous Jordanian studies 
conducted in healthy volunteers (Hakooz et al., 2010; 
Elawi et al., 2013), but also with the results of all studies 
conducted in Asian countries and the majority of studies 
conducted at Middle-eastern countries such as Palestine 
and Turkey (Table 3). Interestingly, a higher frequency 
of this variant has been reported by an Iranian study 
(3.9%) (Azad et al., 2009), this frequency was statistically 
different than our frequency (p<0.05). Furthermore, two 
later larger sample-sized studies conducted in South Iran 
reported lower frequency of this variant allele 0.1% and 
2.2% (Bahari et al., 2010; Moini et al., 2012). Finally, as 
shown in Table 3 there was no significant difference in the 
frequency of the TPMT*2 between our study and studies 
conducted in Europe and Africa.

The TPMT*3A allele, which contains two genetic 
variations [G460A in exon 7 and A719G in exon 10], 
has not been detected in the present study. The *3A is a 
common variant allele in Caucasians (Barik et al., 2017). 
Many white/Caucasian populations have reported a 
significantly higher frequency of this allele compared to 
this study. For instance, the *3A allele has been found in 
a frequency of 4.5% in British Caucasians and a similar 
frequency has been also reported in German-Caucasians. 
Furthermore, compared to our results the frequency of the 
*3A was also significantly higher in certain populations of 
the Americas (Table3). On the other hand, the frequency 
of the *3A allele was not significantly different than our 
frequency in Asian, African and other Jordanian studies 
in healthy volunteers.

TPMT*3B is a rare allele that is usually absent in 
most populations. The Mexican population has been 
reported to harbor a high frequency of this variant 
allele, as its frequency has mounted to 2.3% in healthy 
volunteers (Rossino et al., 2006). Studies conducted in 
the Jordanian population reported a frequency of this 
allele ranging between 0.0% and 1% (Table 3). Amongst 
the European countries, a relatively high frequency has 
been reported in the Spanish population (1.5%), and a 
statistically significant lower frequency of this variant 
has been detected in the Russian (0/1990 alleles), the 
British population (0/2298 alleles) and German population 
(0/2428 alleles) compared to our population. 

The early work of Yates et al., (1997) suggested that the 
TPMT*3C allele might be more prevalent in black subjects 
as opposed to white subjects, with the accumulation 
of knowledge from subsequent investigations this 
information has been repetitively confirmed, as noted 
in Table 3. The TPMT*3C allele accounted for more 
than 60% up to 100% of the TPMT *2 *3A*3B and *3C 
alleles in African studies, and its frequency in the Ghanian 
and Kenyan population was significantly higher than its 
frequency at our population. In lower frequencies, this 
variant has been also detected in Asian populations (0.23% 
- 1.44%), European populations (0.32% - 1.45%), and the 
Jordanian population (0.0%-1.0%) (Table 3). 

Individuals who are homozygous for the TPMT variant 
alleles or who are compound heterozygotes (i.e. carriers 
of two different alleles; TPMT*2/3C, TPMT*2/*3B or 
TPMT*2/*3A), have been shown to be associated with 
low TPMT activity and severe bone marrow toxicity 
when treated with mercaptopurine (Brouwer et al., 2001; 
Belen et al., 2014). We could not detect any individual 
carrying these genotypes; however, due to their rarity, our 
statistical power is inadequate to preclude their presence 
in the Jordanian population.

The present study is limited by the small sample size, 
which is related to the small pediatric ALL population 
at KHCC. Nevertheless, it provides the first insight of 
TPMT variations in ALL patients. Furthermore, the 
current results, pose a serious question regarding the 
value of initiationTPMT genotyping service in Jordan for 
patients initiating the thiopurine drugs. This question can 
be only answered by conducting a large scale genetic study 
combined with a pharmacoeconomic study.

In conclusion, in this study wedetermined, for the first 
time, the frequency of four major TPMT mutant alleles 
in a Jordainan children with ALL. The overall frequency 
of TPMT mutant alleles was low (3.8%) of patients, with 
equal distribution of the two mutant alleles TPMT*3B and 
TPMT*3C, (1%). Nevertheless, it did not show differential 
distribution compared to Jordainian healthy population or 
other middle-eastern countries.The presentstudy open new 
horizons for investigating the value of TPMT genotyping 
for monitoring patients in Jordan to be treated with doses 
of thiopurine drugs.
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