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Abstract 

Rationale: Competitive endogenous RNA (ceRNA) networks play important roles in posttranscriptional 
regulation. Their dysregulation is common in cancer. However, ceRNA signatures have been poorly examined 
in the invasive and aggressive phenotypes of mesenchymal glioblastoma (GBM). This study aims to characterize 
mesenchymal glioblastoma at the mRNA-miRNA level and identify the mRNAs in ceRNA networks (micNET) 
markers and their mechanisms in tumorigenesis. 
Methods: The mRNAs in ceRNA networks (micNETs) of glioblastoma were investigated by constructing a 
GBM ceRNA network followed by integration with a STRING protein interaction network. The prognostic 
micNET markers of mesenchymal GBM were identified and validated across multiple datasets. ceRNA 
interactions were identified between micNETs and miR181 family members. LY2109761, an inhibitor of 
TGFBR2, demonstrated tumor-suppressive effects on both primary cultured cells and a patient-derived 
xenograft intracranial model. 
Results: We characterized mesenchymal glioblastoma at the mRNA-miRNA level and reported a ceRNA 
network that could separate the mesenchymal subtype from other subtypes. Six genes (TGFBR2, RUNX1, 
PPARG, ACSL1, GIT2 and RAP1B) that interacted with each other in both a ceRNA-related manner and in 
terms of their protein functions were identified as markers of the mesenchymal subtype. The coding sequence 
(CDS) and 3'-untranslated region (UTR) of TGFBR2 upregulated the expression of these genes, whereas 
TGFBR2 inhibition by siRNA or miR-181a/d suppressed their expression levels. Furthermore, mesenchymal 
subtype-related genes and the invasion phenotype could be reversed by suppressing the six mesenchymal 
marker genes.  
Conclusions: This study suggests that the micNETs may have translational significance in the diagnosis of 
mesenchymal GBM and may be novel therapeutic targets. 
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Introduction 
Competitive endogenous RNAs (ceRNAs) were 

recently reported to play a role in posttranscriptional 
regulation. Recent findings indicate that RNA 
transcripts can communicate with each other via 

common microRNA (miRNA) response elements 
(MREs) [1]. This hypothesis provides a powerful 
explanation for the inconsistencies in RNA levels 
compared to protein levels. This new biological 

 
Ivyspring  

International Publisher 



 Theranostics 2018, Vol. 8, Issue 17 
 

 
http://www.thno.org 

4734 

language has given rise to novel insights on human 
development and disease. The muscle-specific 
transcription factors (TFs) MAML1 and MEF2C are 
upregulated by the long noncoding RNA linc-MD1 in 
a ceRNA-related manner, leading to muscle 
differentiation [2]. Dysregulation of the ceRNA 
network has been reported in several cancers [3-5]. 
PTENP1, a pseudogene of PTEN, functions as a tumor 
suppressor by upregulating PTEN in a ceRNA-related 
manner [6, 7]. Further studies are needed beyond 
profiling the imbalance of ceRNA networks in cancers 
to investigate the role of ceRNAs in tumor 
progression. Regulation of established oncogenic 
pathways in glioblastoma by miRNA-RNA 
interactions was first described by Sumazin et al., 
whom reported that PTEN is a core-hub regulated by 
13 miRNAs in glioblastoma multiform (GBM) [5].  

GBM is the most common malignant primary 
brain tumor in adults and has a median survival of 
12.2 to 18.2 months despite tumor resection followed 
by radiation and chemotherapy [8, 9]. Temozolomide 
(TMZ) is a widely used and virtually unique 
chemotherapeutic drug for GBM [10]. Molecular 
alteration profiles of GBM could shed light on its 
pathogenesis and potential therapeutic targets. Chen 
et al. systematically identified somatic genomic 
alterations in glioblastoma. GBM cells commonly 
exhibit amplification of chromosome 7 and deletion of 
chromosome 10, along with sustained activation of 
the PI3K/AKT/RAS, p53 and cell cycle pathways 
[11]. The most widely accepted molecular subtypes 
were presented in 2010 as proneural, neural, classical 
and mesenchymal based on integrated genomic 
analysis [12]. Although all subtypes share the same 
essential characteristics, there are some differences in 
features among subtypes. The proneural subtype has 
alterations in PDGFRA and a point mutation in IDH1. 
The proneural subtype might be the only subtype that 
benefits from first-line bevacizumab treatment [13]. 
The mesenchymal subtype correlates with poor 
outcome and resistance to irradiation [14, 15]. In vivo, 
hypoxic stress stimulates 3444glioblastoma to 
transform into the mesenchymal subtype to adapt to 
the microenvironment [16, 17]. The transcriptional 
network for mesenchymal transformation was first 
reported by Maria et al. in 2011, whom identified 
C/EBPβ and STAT3 as initiators and master 
regulators [18]. However, systematic descriptions of 
the mesenchymal subtype are still needed.  

Transforming growth factor-β (TGF-β) is a 
pluripotency cytokine that plays a dominant role in 
epithelial-to-mesenchymal transition (EMT) [19]. The 
TGF-β pathway is the putative oncogenic driver of 
group 3 in medulloblastoma [20]. TGF-β treatment 
induced a mesenchymal subtype in serous ovarian 

cancer [21]. In glioma, TGF-β drives proliferation, 
promotes migration and invasion, and stimulates 
angiogenesis [22]. TGF-β receptor type 2 (TGFBR2) is 
the sole ligand-binding receptor of TGF-β1-3. This 
function gives TGFBR2 a key position in the TGF-β 
pathway and indicates that TGFBR2 is a potential 
therapeutic target that cannot be ignored.  

In this study, we characterized mesenchymal 
glioblastoma at the mRNA-miRNA level and reported 
a ceRNA network that could separate the 
mesenchymal subtype from other subtypes. Six genes 
(TGFBR2, RUNX1, PPARG, ACSL1, GIT2 and RAP1B) 
that interacted with each other in both a 
ceRNA-related manner and in terms of their protein 
functions were identified as markers of the 
mesenchymal subtype. The coding sequence (CDS) 
and 3'-untranslated region (UTR) of TGFBR2 
upregulated the expression of these genes, whereas 
TGFBR2 inhibition by siRNA or miR-181a/d 
suppressed their expression levels. Furthermore, 
mesenchymal subtype-related genes and the invasion 
phenotype could be reversed by suppressing the six 
mesenchymal marker genes, which indicated that 
these marker genes are key mRNAs in ceRNA 
networks (micNETs) of the mesenchymal subtype and 
identified the TGF-β pathway as a therapeutic target 
for patients with mesenchymal GBM.  

Methods 
Glioblastoma dataset  

The glioblastoma dataset was collected from 
TCGA data portal (https://tcga-data.nci.nih.gov/ 
tcga/), CGGA data portal (http://www.cgga.org 
.cn/), and Rembrandt dataset (https://caintegrator 
.nci.nih.gov/rembrandt/). The sequencing platform 
of the database and the number and subtype of the 
patients are recorded in Table S1.  

ceRNA network construction 
First, 583 GBM gene expression datasets (Agilent 

microarray) were downloaded from TCGA legacy 
database. Then, 560 out of 583 GBMs with matched 
whole-genome gene expression (Agilent microarray 
platform) and miRNA expression data were 
downloaded from TCGA database. A Spearman 
correlation test was applied to calculate the 
correlation coefficient and P values of the genes and 
miRNAs, and the P values were corrected by the 
Benjamini and Hochberg method. Gene-miRNA pairs 
with corrected P values less than or equal to 0.05 and 
correlation coefficients less than 0 were retained. 
Gene-miRNA pairs that were not included in public 
miRNA target databases, such as miRanda, 
miRTarBase, or TargetScan, were removed. Gene 
pairs (ceRNA pairs) with less than 10 shared miRNAs 
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were filtered out. For each ceRNA pair, a 
hypergeometric test was applied using the following 
formula: 

𝑃𝑃 = ∑ �𝐾𝐾𝑖𝑖 ��
𝑁𝑁−𝐾𝐾
𝑛𝑛−𝑖𝑖 �/�𝑁𝑁𝑛𝑛�

min (𝐾𝐾,𝑛𝑛)
𝑖𝑖=𝑐𝑐 , where N is the total 

number of miRNAs, K is the number of miRNAs 
interacting with the specified gene, n is the number of 
miRNAs interacting with the candidate ceRNA of the 
chosen gene, and c is the number of miRNAs shared 
between these two genes. A Benjamini and Hochberg 
multiple comparison was applied to calculate the 
corrected P value. ceRNA pairs with corrected P 
values greater than 0.05 were removed. 

Cell lines, clinical samples and patient-derived 
xenografts 

The human GBM cell lines U87 and LN229 were 
purchased from ATCC. U87 and LN229 cells were 
cultured in complete DMEM containing 10% FBS, 100 
units/mL penicillin, and 50 μg/mL streptomycin and 
incubated at 37 °C and 5% CO2. Cells at ~70% 
confluence were transfected with CDS, the 3‘UTR or 
siRNA of TGFBR2, or a miR-181a/d overexpression 
vector, as indicated. The TGFBR2-CDS and 
TGFBR2-3’-UTR plasmids were synthesized by 
Shanghai Integrated Biotech Solutions. siRNA of 
TGFBR2 and mimics of miR-181a and miR-181d were 
ordered from GenePharma. The transfection reagent 
Lipofectamine® 3000 was purchased from Thermo 
Fisher.  

The tumors were surgically resected from 
patients diagnosed with GBM. After resection, tumor 
tissues were cut into 1-mm3 blocks. A portion of the 
blocks was treated with DMSO or LY2109761 (Selleck) 
for 48 h in complete DMEM. The remaining portion of 
the blocks was surgically implanted into mice to 
establish patient-derived xenografts (PDX). All 
patients signed a consent form.  

Real-time PCR 
After the indicated treatments, GBM cells or 

tissue blocks were lysed in TRIzol reagent 
(Sigma-Aldrich). The lysate was mixed well with 
chloroform and centrifuged for 15 min at 13000 ×g at 4 
°C. RNA in the top aqueous phase was collected and 
mixed with propan-2-ol to precipitate total RNA. The 
cDNA was synthesized with 1 µg of total RNA 
following the protocol of a Promega reverse 
transcriptional kit. The results of real-time PCR were 
normalized to the corresponding GAPDH mRNA 
levels. Relative gene expression was analyzed by the 
2∆∆-Cq method. The primers were as follows: 

TGFBR2-CDS: forward: 5'-GTCTGTGTGGCTGT 
ATGGAGA-3', reverse: 5'- ACAAGTCAGGATTGCT 
GGTGT-3' 

TGFBR2-3‘UTR: forward: 5'-CTCTAGGCACCC 
TCCTCAGT-3', reverse: 5'- CCCTACGGTGCAAGTG 
GAAT-3' 

RUNX1 forward: 5'-TTTCCAGTCGACTCTCAA 
CGG-3', reverse: 5'- GCCGTAGTACAGGTGGTAGG- 
3' 

PPARG: forward: 5'-AACTTTGGGATCAGCTC 
CGT-3', reverse: 5'- TGAGGGAGTTGGAAGGCTCT- 
3' 

GIT2: forward: 5'-TTCAACGCCCATGAGTTT 
GC-3', reverse: 5'- GCTGTCATAGTCGGGCTGA-3' 

ACSL1: forward: 5'-ACCTCAAGGTGCTTCAA 
CCC-3', reverse: 5'- CACCATCAGCCGGACTCTTC-3' 

RAP1B: forward: 5'-TGCACAACAGTGTATGC 
TTGAAA-3', reverse: 5'- ATGTGGACTGTGCTGTGA 
TGG-3' 

RUNX2 forward: 5'-GAACCCAGAAGGCACA 
GACA-3', reverse: 5'- CCTAGGCACATCGGTGAT 
GG-3' 

LIF: forward: 5'-TCTTGGCGGCAGTACACAG- 
3', reverse: 5'- GAGGTGCCAAGGTACACGAC-3' 

SHC1: forward: 5'-CCGGGACCTGTTTGACAT 
GA-3', reverse: 5'- TGCAAGCCAGTGAGCACATA-3' 

NRP2: forward: 5'-CACCAGAACTGCGAGTGG 
AT-3', reverse: 5'- ATGGAGCCCGAGGAGATGAT-3' 

SOCS3: forward: 5'-CAGCTCCAAGAGCGAGT 
ACC-3', reverse: 5'- TGTCGCGGATCAGAAAGGTG- 
3'OSMR: forward: 5'-TACGCGTCAGAGTTTGCA 
CT-3', reverse: 5'- CTCAGGGAACTTGGCATCGT-3' 

BACE2: forward: 5'-CCTTCTTCGACTCCCTGG 
TG-3', reverse: 5'- CGCATCAAACACCTTCTGGG- 
3'PLAU: forward: 5'-AGGCTTAACTCCAACACG 
CA-3', reverse: TTTCCACTGTGGGTCAGCAG-3' 

SERPINH1: forward: 5'-CCTGCTAGTCAACGC 
CATGT-3', reverse: 5'- GGATGATGAGGCTGGAG 
AGC-3' 

COL4A1: forward: 5'-CCACCAGGACAAAAGG 
GTGA-3', reverse: 5'- GCATCCTGGAATACCTGG 
GG-3' 

ACTN1: forward: 5'-GCTGCACCCTTCAACAA 
CTG-3', reverse: 5'- GATCTCCTGAGGCGTGATGG- 
3' 

PDPN1: forward: 5'-GAACCAGCGAAGACCG 
CTAT-3', reverse: 5'- CCTTCCCGACATTTTTCGCA- 
3' 

SERPINE1: forward: 5'-GAGAACCTGGGAATG 
ACCGA-3', reverse: 5'- CCACAAAGAGGAAGGGTC 
TG-3' 

ITGA5: forward: 5'-CACCACCAGCAAAAACG 
GGA-3', reverse: 5'- TGCCTTGGTCCATTGCACA-3' 

RNA-binding protein immunoprecipitation 
and RIP-qPCR assays 

RNA immunoprecipitation (RIP) experiments 
were performed following the instructions of the 
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RIP™ RNA-Binding Protein Immunoprecipitation 
system (Merck Millipore). Rabbit anti-AGO2 antibody 
(1:50, Abcam) was used to precipitate RNAs in U87 
cells. Lysates were incubated with the antibody for 4 h 
at 4 °C. The coprecipitated RNAs were detected by 
real-time PCR [23]. 

Preparation of plasmids and determination of 
3'-UTR activity 

The 3'-UTR reporters of the 6 core genes were 
obtained from Ibsbio (Shanghai, China). The 
sequences of the reporters are shown as follows: 

TGFBR2: GCTAGCAGTTTCTTTTGCTTATATG 
TTAATAGTTTTACCCTCTGCATTGGAGAGAGGA
GTGCTTTACTCCAAGAAGCTTTCCTCATGGTTAC
CGTTCTCTCCATCATGCCAGCCTTCTCAACCTTT
GCAGAAATTACTAGAGAGGATTTGAATGTGGG
ACACAAAGGTCCCATTTGCAGTTAGAAAATTTG
TGTCCACAAGGACAAGAACAAAGTATGAGCTT
TAAAACTCCATAGGAAACTTGTTAATCAACAA
AGTCGAC 

PPARG: GCTAGCCAGAGAGTCCTGAGCCAC 
TGCCAACATTTCCCTTCTTCCAGTTGCACTATTC
TGAGGGAAAATCTGACACCTAAGAAATTTACT
GTGAAAAAGCATTTTAAAAAGAAAAGGTTTTA
GAATATGATCTATTTTATGCATATTGTTTATAAA
GTCGAC 

RUNX1: GCTAGCTTGTTTATTTTAGACTTTA 
AAATGAGCTACTTCTTATTCACTTTTGTAAACAG
CTAATAGCATGGTTCCAATTTTTTTTAAGTTCAC
TTTTTTTGTTCTAGGGGAAATGAATGTGCAAAA
AAAGAAAAAGAACTGTTGGTTATTTGTGTTATT
CTGGATGTATAAAAATCAATGGAAAAAAATAA
ACTTTCAAATTGAAATGACGGTATAACACATCT
ACTGAAAAAGCAACGGGAAATGTGGTCCTATT
GTCGAC 

GIT2: GCTAGCAAGAGTTCCTTAGAGAGTGT 
GCTCTAGCTGGCTGCCTGCTACCCCAAAGCTCT
GAAAGAGTAAGGTTGAAGTGCTGGAACATGCT
CAGATTGTTTTTTAGTTACTCAAAAGCCCCTTCT
TGTTCTGAATGTGAAAGCTCTTCCCGTTCCTGCT
TACTGCAGCCATTCTGTGTGTGTGGTTCAGACCC
TGGCCTAGGGCCGGTGATGTGGATGAGTGAAG
GGAGCCAGGTACACGGCAGCAGGGCAGAGGA
GTCGAC 

ACSL1: GCTAGCTATATACAAGCACAACAG 
GGCTTGCACTAAAGAATTGTCATTGTAATAACA
CTACTTGGTAGCCTAACTTCATATATGTATTCTT
AATTGCACAAAAAGTCAATAATTTGTCACCTTG
GGGTTTTGAATGTTTGCTTTAAGTGTTGGCTATT
TCTATGTTTTATAAACCAAAACAAAATTTCCAA
AAACAATGAAGGAAAGTCGAC 

RAP1B: GCTAGCCTTGCTCATGCATAAGTGT 
ATTTGCAATACCAAATATACAGGTTTAGTATTTT
TGCCTGTTAGTGATTGTTTCACATGTGTAACGTT

TTGGTTGAGATGTTAAATGGTGGACGAGTACTG
TGGATGTGAATGTGGGAAGTAATTTTAATCATA
TGTAATTGGTCACAAGGCCTAATTTGCAGTAAC
TATTGCTGTTTTATTTAACAATGCCTTGTTGCTTT
GTATGCATTAATGTTTGGATGTAAAGATTGTCG
AC 

The vector of the reporter plasmids was 
pmirGLO. To analyze 3'-UTR activity, ~95% confluent 
U87 cells in 96-well plates were cotransfected with the 
3'-UTR reporters of the six genes and either 
TGFBR2-3'-UTR or si-TGFBR2. Twenty-four hours 
after transfection, the cells were lysed and used to 
determine firefly and Renilla luciferases activities 
using the Dual-GLO® Luciferase Assay System from 
Promega (E2920). 

Immunohistochemical staining 
Immunohistochemistry was performed on PDX 

tissues by subjecting 4-µm paraffin sections to a 
three-step process and a DAB staining kit 
(ZSGB-BIO). In brief, formalin-fixed, paraffin- 
embedded tissue sections were dried at 80 °C for 15 
min and dewaxed in xylene, rinsed in graded ethanol, 
and rehydrated in double-distilled water. For antigen 
retrieval, slides were pretreated by steaming them in 
sodium citrate buffer (10 mM sodium citrate, pH 6.0) 
for 15 min at 100 °C. After the sections were washed 
with phosphate-buffered saline for 3 min, they were 
immunostained with primary antibodies against 
Ki-67, TGF-β and CD34 from ZSGB-BIO and 
incubated at 4 °C overnight. After 3 washes in PBS 
buffer, the tissues were covered by HRP-conjugated 
anti-mouse/rabbit antibodies for 30 min at room 
temperature (RT). Staining reactions were performed 
by covering the tissue samples with the prepared 
DAB chromogen solution and incubating them for 
approximately 10 min to allow proper brown color 
development [24]. 

Immunofluorescence staining  
U87 cells were seeded into a confocal Petri dish 

until ~90% confluence was reached. Then, the cells 
were fixed in 4% paraformaldehyde for 30 min at RT. 
Immunofluorescence staining was conducted with 
antibodies against TGFBR2 (R&D, 1:200), RUNX1 
(Abcam, 1:200), PPARG (Proteintech, 1:200), GIT2 
(Abcam, 1:200), ACSL1 (Proteintech, 1:200) and 
RAP1B (R&D, 1:200). The cells were washed with PBS 
and incubated with Alexa Fluor 594 (Life 
Technologies, 1:200). Then, phalloidin (Life 
Technologies, 1:200) was employed to stain the F-actin 
in the cells. Nuclei were stained with DAPI, and the 
cells were visualized by an FV-1200 laser scanning 
confocal microscope.  
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Statistical analysis 
We developed a predictive model for the 

mesenchymal subtype and a risk score model for 
patient survival based on the expression level (expr) 
of six micNETs and the corresponding β values from 
logistic regression analysis or the regression 
coefficients derived from univariate Cox regression 
analysis. The predictive model score = 2.268 × 
exprTGFBR2 + 0.827 × exprRUNX1 - 0.019 × exprPPARG + 
0.469 × exprGIT2 + 0.279 × exprRAP1B + 0.454 × exprACSL1 
- 0.835. The survival risk score = 0.001 × exprTGFBR2 + 
0.057 × exprRUNX1 + 0.048 × exprPPARG + 0.238 × exprGIT2 

+ 0.024 × exprRAP1B + 0.041 ×exprACSL1 [25]. 
Receiver operating characteristic (ROC) curves 

were constructed to determine the discriminatory 
capacity of micNETs or TFs for diagnosis. 
Kaplan-Meier analysis was performed to estimate the 
survival time of different subgroups, and a log-rank 
test was used to determine prognostic differences. 
Cox proportional hazards regression analyses and 
Pearson correlation tests were used to determine 
significant differences. Comparisons of binary and 
categorical patient characteristics between subgroups 
were performed using Fisher’s exact test. STRING, a 
database of protein-protein interactions, was also 
used. STRING takes a list of gene products and 
returns a diagram of known and potential interactions 
[26]. Gene Ontology (GO) and KEGG Pathway 
analyses were performed when gene sets (Pearson r > 
0.4) were submitted to the DAVID website 
(http://david.abcc.ncifcrf.gov/home.jsp). ClueGO 
[27], a Cytoscape APP, was used to perform 
functional analysis. Biological processes were further 
analyzed through gene set enrichment analysis 
(GSEA) [28]. Single-sample GSEA (ssGSEA) was used 
to calculate the enrichment score of every gene set for 
every sample [29]. Heatmaps were constructed and 
produced by Gene Cluster 3.0 and Gene Tree View 
software. All statistical computations were performed 
with the statistical software environment R version 
3.4.1 (http://www.r-project.org/), GraphPad Prism 
Version 6.01 or Microsoft Excel 2013. P < 0.05 was 
considered statistically significant.  

Results 
Identification of a ceRNA network enriched in 
the mesenchymal subtype 

We collected 560 GBMs with matched 
whole-genome gene expression and miRNA 
expression data from TCGA database to establish the 
ceRNA network for GBM. Correlations between genes 
and miRNAs were calculated using Spearman 

correlations, and then, gene-miRNA pairs that were 
not included in public databases, miRanda, 
miRTarBase, or TargetScan were removed (Figure 
S1). We used a stringent cutoff of 10 miRNAs shared 
between any two ceRNA pairs and relaxed the 
number of miRNAs shared between ceRNA pairs to 
eight and five. For the cutoff of five miRNAs shared 
between any two ceRNA pairs, we obtained a ceRNA 
network of 600397 connections and 5355 genes (Table 
S2). For the cutoff of eight miRNAs shared between 
any two ceRNA pairs, we obtained a ceRNA network 
of 101545 connections and 2587 genes (Table S3). The 
ceRNA networks under different numbers of shared 
miRNAs between two ceRNA pairs also retain key 
features: the ceRNA networks are characterized by 
two distinct, highly connected subnetworks and 
sparse connections between them. Interestingly, 
58.5% of the genes (blue nodes) in the subnetwork 
were significantly enriched in the mesenchymal 
subtype, whereas 41.5% of the genes (yellow nodes) 
were mutually exclusive in the mesenchymal subtype 
(Figure S2A-D). Additionally, genes in the ceRNA 
network were not enriched in specific chromosomes 
but were instead uniformly distributed throughout 
the genome, suggesting their universal and powerful 
roles in tumorigenesis (Figure S2E-F). Overall, the 
ceRNA networks we constructed are robust with 
regard to the number of miRNAs shared between two 
ceRNA pairs.  

After gene pairs with fewer than 10 shared 
miRNAs were filtered out, gene pairs in the ceRNA 
network were finally determined based on 
hypergeometric test results. This process led to a GBM 
ceRNA network of 1525 mRNAs and 188 miRNAs 
(Figure 1A), which were characterized by two 
distinct, highly connected subnetworks and sparse 
connections between them (Figure 1B). Interestingly, 
831 genes (88% of the blue nodes) in the subnetwork 
were significantly enriched in the mesenchymal 
subtype, while 446 genes (77% of the yellow nodes) 
were mutually exclusive in the mesenchymal subtype 
(P = 1.32×10-7, Table S4). GO and KEGG pathway 
enrichment analyses revealed that the subnetwork 
with genes highly expressed in the mesenchymal 
subtype was enriched in EMT-related pathways 
(Figure 1C and Table S5), whereas the subnetwork of 
lowly expressed genes was associated with proneural 
functions (Figure 1C and Table S6). Additionally, 
genes in the ceRNA network were not enriched in 
specific chromosomes but were instead uniformly 
distributed throughout the genome, suggesting their 
universal and powerful roles in tumorigenesis (Figure 
1D).  
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Figure 1. Global landscape of mRNA-miRNA interactions in glioblastoma. (A) Genes that interacted with each other in a ceRNA-dependent manner are presented 
in a cluster arranged by proneural, neural, classical and mesenchymal subtypes. The ceRNA network included 1525 mRNAs and 188 miRNAs. Several genetic alterations are listed 
in the middle of the heatmap. NF1 mutations were primarily enriched in the mesenchymal subtype. (B) The ceRNA genes formed a network in which the highly expressed 
micNETs in the mesenchymal subtype are labeled blue, and genes with low expression are labeled yellow. (C) Functions of micNETs in the blue ceRNA hub or yellow ceRNA 
hub were profiled by GO and KEGG pathway analyses. (D) The circus plot shows the genomic location of micNETs in the ceRNA network. 

 
We collected three ceRNA networks, including 

the Hermes GBM ceRNA network (Figure S3A) [5], 
hallmark-associated ceRNA networks in 20 major 
cancers (including GBM) (Figure S3B) [30], and 
cancer-associated ceRNA networks from starBase v2 
(Figure S3C) [31]. The Hermes GBM ceRNA network 
was established by the information-theoretic Hermes 
algorithm [5], which predicts ceRNA coupling 
between two mRNAs based on the relative size of 
their shared miRNA regulatory program, as predicted 
by the Cupid algorithm [5, 32, 33], and the conditional 
mutual information between each mRNA and each of 
their shared miRNAs [34]. In the hallmark-associated 
cancer ceRNA network, AGO-CLIP data were used to 
support miRNA-target interactions during ceRNA 
network construction [30]. The ceRNA network from 
starBase v2 [31] was manually extracted with the 
default parameter settings for genes covered in our 

ceRNA network. We first compared the three ceRNA 
networks and discovered that a small percentage of 
connections was shared between any two ceRNA 
networks (6.25% of connections shared between the 
Hermes GBM ceRNA network and starBase v2, 2.2% 
between the Hermes GBM ceRNA network and the 
hallmark-associated cancer ceRNA network, 4.55% 
between the hallmark-associated cancer ceRNA 
network and starBase v2). We also compared our 
ceRNA network with the three networks and found 
that 6.83%, 0.5% and 6.66% of the connections were 
shared by our ceRNA network with the Hermes GBM 
ceRNA network, the hallmark-associated cancer 
ceRNA network, and the cancer ceRNA network in 
starBase v2, respectively. Considering the different 
methods used to establish the three cancer ceRNA 
networks, we established a high-confidence ceRNA 
network based on our ceRNA network by extracting 
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connections reported in at least one of the three other 
ceRNA networks (Table S7). The high-confidence 
ceRNA network consists of two distinct subnetworks 
(Figure S3D): the subnetwork of genes highly 
expressed in the mesenchymal subtype that are 
enriched in EMT-related pathways, and the 
subnetwork of lowly expressed genes that are 
associated with proneural functions (Figure S3E). 
Additionally, genes in the ceRNA network were not 
enriched in specific chromosomes but were instead 
uniformly distributed throughout the genome (Figure 
S3F), suggesting their universal and powerful roles in 
tumorigenesis. 

Genes with high degrees of connectivity tended 
to be at the center of each ceRNA subnetwork (Figure 
2A). A total of 26 out of 27 genes with connection 
degrees higher than 300 were associated with the 
mesenchymal subtype (Figure S4). A protein-protein 
interaction subnetwork including 26 genes was 
extracted from the STRING database. Six genes 
(TGFBR2, RUNX1, PPARG, GIT2, ACSL1 and RAP1B) 
were mutually connected with each other in both the 
ceRNA network (Figure 2A) and the protein 
interaction network (Figure 2B). Pearson correlation 
analysis indicated that TGFBR2 might play a key role 

in the six micNETs, whereas RAP1B might weakly 
interact with the other micNETs (Figure 2C).  

As shown in Figure 3A, the 26 highly expressed 
genes in the ceRNA network were predicted to bind 
51 miRNAs. Their six core genes were targeted by a 
total of 44 miRNAs, including all members of the 
miR-181 family (Figure 3B). According to a report by 
Kim et al. [35], none of these 44 miRNAs were 
enriched in the neuro-mesenchymal precursor cluster, 
which was consistent with our results on all 44 
miRNAs highly expressed in the nonmesenchymal 
subtypes. miR-181 family genes were 
characteristically downregulated in the mesenchymal 
subtype and were negatively associated with the six 
core genes in GBMs (Figure 3C). TGFBR2 was found 
to have a high degree of connectivity (> 300) in the 
ceRNA network, and its expression levels were 
significantly correlated with those of the other five 
micNETs. TGFBR2 is also an indispensable receptor in 
the TGF-β pathway [36]. We overexpressed the CDS 
and 3’-UTR of TGFBR2 in U87 and LN229 cells to 
investigate whether TGFBR2 could regulate the other 
micNETs. Real-time PCR analysis indicated that the 
expression of micNETs was enhanced by TGFBR2 in 
both a CDS and 3'-UTR transfection-dependent 

 

 
Figure 2. Identification of six micNETs as a coregulated hub of mesenchymal glioblastomas. (A) The micNETs with more than 100, 200 or 300 connections are 
highlighted in the ceRNA network. (B) STRING analysis of micNETs with greater than 300 connections identified six genes (TGFBR2, RUNX1, PPARG, GIT2, ACSL1 and 
RAP1B) that were mutually connected with each other. (C) The heatmap shows the correlations of the six micNETs: TGFBR2, RUNX1, PPARG, ACSL1, GIT2 and RAP1B. 
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manner (Figure 3D-E). To further confirm the ceRNA 
interactions of the six micNETs, we referred to a 
previous work [5] and constructed 3'-UTR luciferase 
reporters of TGFBR2, RUNX1, PPARG, GIT2, ACSL1 
and RAP1B. TGFBR2 siRNA inhibited the activity of 

the 3'-UTRs of these genes, while overexpression of 
TGFBR2 3'-UTR significantly upregulated the 
luciferase activity of these constructs (Figure S5), 
suggesting the presence of ceRNA interactions among 
the six micNETs. 

 

 
Figure 3. mRNAs-miRNAs form the hub in the ceRNA network. (A) Integrated circus profile of the ceRNA hub in chromosomes. The inner ring represents 27 core 
micNETs, whereas the outside ring represents their targeting miRNAs. (B) Six core micNETs and their bridge miRNAs are displayed in a Cytoscape network. (C) Six core 
micNETs were highly expressed, whereas their targeting miRNAs were lowly expressed in the mesenchymal subtype, as presented in the heatmap. (D-G) Relative mRNAs levels 
from three independent experiments are shown. The CDS and 3'-UTR of TGFBR2 were cloned into pcDNA3.1 vectors. U87 and LN229 cells were transfected with the indicated 
plasmids or miRNA mimics for 48 h, and mRNA was extracted for micNET analysis. (H) The scheme of RIP analysis. (I) After overexpression of miR-181a and miR-181d in U87 
cells, AGO2 proteins were pulled down by an antibody. The expression levels of TGFBR2 and RUNX1 were measured by real-time PCR assays. 
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As the 3'-UTR of TGFBR2 could not enhance its 
own expression, upregulation of the other micNETs 
by TGFBR2-3'-UTR tended to affect the ceRNA 
network. miRNAs function as bridges in the ceRNA 
network. Then, we knocked down TGFBR2 by siRNA 
or overexpressed miR-181a/d, which were predicted 
to target key micNETs in the ceRNA network. The 
mRNA levels of the six micNETs were inhibited by 
downregulation of TGFBR2 or overexpression of 
miR-181a/d (Figure 3F-G). It is known that miRNAs 
and their target mRNAs can form a complex with 
AGO2 protein. miR-181a/d was predicted to target 
the six micNETs and exhibited low expression levels 
in the mesenchymal subtype, suggesting that the 
miR-181 family may participate in EMT by mediating 
the expression levels of TGFBR2 and the other five 
micNETs. We overexpressed miR-181a and miR-181d 
in U87 cells and examined micNET-AGO2-miR- 
181a/d complex binding to further investigate ceRNA 
regulation between TGFBR2 and other micNETs. RIP 
analysis indicated that miR-181a/d promoted the 

binding of micNETs to the AGO2 complex, which 
partly explained the opposite expression patterns of 
micNETs and miRNAs in mesenchymal subtypes and 
confirmed the ceRNA interactions among micNETs 
(Figure 3H-I).  

Six micNETs, TGFBR2, RUNX1, PPARG, 
GIT2, ACSL1 and RAP1B, predict the GBM 
mesenchymal subtype 

We applied the six micNETs to TCGA (1119 
samples), CGGA (272 samples) and Rembrandt (227 
samples) databases to investigate whether the six 
micNETs could predict the mesenchymal subtype. 
Previous studies have reported that six TFs (STAT3, 
C/EBPβ, RUNX1, FOSL2, BHLHE40 and ZNF238) 
[18] are marker genes of the mesenchymal subtype. 
ssGSEA enrichment analysis revealed that the six 
micNETs and six TFs were significantly enriched in 
the mesenchymal samples (Figure 4A-B and Figure 
S6A-B), suggesting that the micNETs could act as 
surrogate markers of mesenchymal subtypes.  

 

 
Figure 4. Expression levels of six micNETs predicted the mesenchymal subtype. (A-B) ssGSEA enrichment analysis was employed to evaluate the expression pattern 
of six micNETs and six TFs in the proneural, neural, classical and mesenchymal subtypes in TCGA Agilent and HiSeq databases. (C-D) ROC curve analysis based on the risk score 
was used to evaluate the predictive value of the six micNETs and six TFs for the mesenchymal subtype in TCGA Agilent and HiSeq databases. (E-F) The pie plot shows that 
mesenchymal samples predicted by micNETs were mainly consistent with the mesenchymal subtype reported by Verhaak et al. in TCGA Agilent and HiSeq databases. 
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Figure 5. GBM patients with low risk scores had a greater benefit from TMZ chemotherapy than GBM patients with high risk scores. (A-D) Patients with 
low micNET risk scores received a significant benefit from TMZ treatment in TCGA Agilent database, TCGA RNA-seq database, TCGA u133a database and CGGA RNA-seq 
database. (E-H) Patients with high micNET risk scores showed a poorer treatment effect than patients with low risk scores in the same database. 

 
We used the risk score method to construct a 

model for the prediction of survival or subtype based 
on these six genes and investigated their prognostic 
and predictive value [25, 37]. The signature risk score 
was calculated for each of the 481 patients with 
glioblastoma in TCGA Agilent dataset and was then 
applied to validate samples in other datasets.  

ROC curves were generated based on the risk 
score model to evaluate the performance of the 
micNETs and TFs. The micNETs performed slightly 
better than the TFs in classifying samples as 
mesenchymal subtypes in TCGA Agilent GBM 
database (micNETs: AUC = 0.8883, sensitivity = 
80.13%, specificity = 84%; six TFs: AUC = 0.8647, 
sensitivity = 83.33%, specificity = 76.92%, Figure 4C-D 
and Figure S6C-D). The optimal cutoff for the risk 
score was determined according to the ROC curve, 
revealing that 94.3% and 87.2% of the mesenchymal 
samples were successfully classified as the 
mesenchymal subtype in TCGA HiSeq and 
Rembrandt databases, respectively; meanwhile, the 
frequencies of the six TFs were 79.2% and 80.7%, 
respectively, in TCGA HiSeq and Rembrandt 
databases (Figure 4E-F and Figure S6E-F).  

Survival analysis revealed that patients with a 
high-risk score of micNETs had poor overall survival 
in all databases (Figure S7A-D, TCGA Agilent: P = 
0.0332, TCGA u133a: P = 0.0234, TCGA RNA-seq: P = 
0.0171 and CGGA RNA-seq: P = 0.0105). The 
distribution of risk score and the corresponding cutoff 
are shown in Figure S7A-D. After adjustments for 
chemotherapy, age at diagnosis and Karnofsky 

performance score (KPS), Cox regression analysis 
revealed that the risk score of micNETs was still 
correlated with the overall survival of patients with 
GBM (Figure S7E-H, TCGA Agilent: P = 4.30×10-2, HR 
= 1.626, TCGA u133a: P = 3.66×10-2, HR = 1.301, TCGA 
RNA-seq: P = 7.03×10-3, HR = 1.290 and CGGA 
RNA-seq: P = 3.72×10-2, HR = 2.276). 

Patients with a low-risk score significantly 
benefited from TMZ chemotherapy in TCGA Agilent 
GBM dataset (Figure 5A, P < 0.0001). In addition, we 
confirmed the results in TCGA RNA-seq (P = 0.0461), 
TCGA u133a (P = 0.0005) and CGGA RNA-seq (P < 
0.0001) datasets, further demonstrating the good 
prognosis of groups with low-risk scores after TMZ 
treatment (Figure 5B-D). Although patients in the 
high-risk score group also benefited from TMZ 
treatment, their treatment effect was much worse than 
that of the low-risk score group in TCGA Agilent (P = 
0.0222), TCGA RNA-seq (P = 0.3139), TCGA u133a (P 
= 0.0663) and CGGA RNA-seq (P = 0.0025) datasets 
(Figure 5E-H).  

TCGA subtypes are associated with particular 
signaling pathways and distinct immune response 
statuses [12, 38]. Thus, exploring the roles of micNETs 
involved in the immune response could provide new 
potential agents to target mediators of tumor-induced 
immunosuppression in GBM. We parsed TCGA and 
CGGA datasets to show that patients with high 
micNET scores had a significantly higher correlation 
with immunosuppressors and immune effectors than 
patients with low micNET scores [12, 39] (Figure S8). 
For further comprehensive study of micNET-related 
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immunological processes in malignant brain tumors, 
we downloaded the classifier gene sets for specific 
immune cell lineages [40, 41], which were 
subsequently defined as metagenes. Based on the 
single-sample GSEA, we observed that the micNET 
score was positively associated with immune cell 
lineages, such as B cells (r = 0.669), helper T cells (r = 
0.587), cytotoxic T cells (r = 0.488), myeloid cells (r = 
0.807), monocytes (r = 0.683), NK cells (r = 0.647), 
dendritic cells (r = 0.691) and T-cell lineages (r = 0.557) 
in TCGA GBM Agilent dataset (Figure S9A). A 
similar pattern of GBM in TCGA GBM RNA-seq, 
TCGA GBM u133a and CGGA GBM RNA-seq 
datasets was observed (Figure S9B-D). As revealed 
above, the six micNETs play a key role in 
immunosuppression in GBM. We overlapped 
micNET-related genes (r > 0.4) of the CGGA and 
TCGA datasets with immunosuppressors (Figure 
S10). The six micNETs were significantly correlated 
with ARRB2, BTK, CASP4, CD4, CD59, ELF4, LAIR1, 
LYN, MR1, MSR1, NFKB1, NLRP3, PML, RAB27A, 
REL, SWAP70, TGFB1, TGFBR2, and TRPM2. Our 
results indicated that the six micNETs provide new 

evidence regarding immunotherapy and the 
infiltration of immune cells into glioma tumors. 

The TGF-β pathway is a potential therapeutic 
target for the GBM mesenchymal subtype 

In 2010, Carro et al. reported that C/EBPβ, 
STAT3 and four other TFs participate in the activation 
of mesenchymal gene expression in malignant glioma 
and showed that activation of this small regulatory 
module is necessary to initiate and maintain an 
aberrant phenotypic state in cancer cells [18]. 
MicNETs with connection degrees of more than 200 
were subjected to ClueGO analysis and shown to be 
enriched in positive regulation of EMT (P = 8.27×10-3) 
and the transforming growth factor beta receptor 
complex (P = 4.41×10-4) (Figure 6A and Table S8). 
Based on the COMPARTMENTS subcellular 
localization database [42], we predicted the 
subcellular locations of the six micNET proteins 
(Figure 6B). The TGFBR2 protein was primarily 
located in the cell membrane (evidence: 100%); most 
of the RAP1B, ASCL1 and GIT2 proteins were 
enriched in the cytosol (evidence: 100%, 99.7%, and 

 

 
Figure 6. TGFBR2 promotes the mesenchymal phenotype in GBM cells. (A) micNETs with connection degrees of greater than 200 were subjected to ClueGO 
analysis, and major mesenchymal-related signatures are presented. (B) The locations of six micNETs were predicted by the COMPARTMENTS subcellular localization database. 
(C) Mesenchymal subtype-related genes were selected according to the report by Carro et al. in 2011 [18]. (D) U87, LN229 and U251 cells were transfected with the CDS and 
3'-UTR of TGFBR2 (2.5 µg/well in a six-well plate) for 48 h. U87 and LN229 cells were transfected with si-TGFBR2 (50 nmol/mL) for 48 h. Mesenchymal subtype-related signature 
genes were measured by real-time PCR. 
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99.9%, respectively); and most of the RUNX1 and 
PPARG proteins were in the nucleus (evidence: 94.0% 
and 99.8%, respectively). We also used 
immunofluorescence to validate the subcellular 
localization of proteins in glioblastoma cells (Figure 
S11). 

The six TFs reported by Carro et al. can bind the 
promoter regions of the 41 “mesenchymal” genes. 
ClueGO analysis of these target genes 
(“mesenchymal” genes) revealed that they are 
involved in cell adhesion mediated by integrin (P = 
7.11×10-6), positive regulation of the JAK-STAT 
cascade (P = 6.63×10-4), and the integrin-mediated 
signaling pathway (P = 8.06×10-5) (Figure 6C and 
Table S9). After overlapping these two gene sets, we 
selected 14 mesenchymal subtype-related genes that 
potentially drive the phenotypic transition. 
Overexpression of the CDS and 3'-UTR of TGFBR2 
upregulated the expression levels of these 
mesenchymal-subtype related genes. LIF, SERPINE1 
and RUNX2 are micNETs with high connectivity in 
the ceRNA network and are sensitive to the 
expression levels of the 3'-UTR of TGFBR2. 
Furthermore, inhibition of TGFBR2 expression levels 
by siRNA led to downregulation of these micNETs 
(Figure 6D), confirming that the TGF-β pathway 
participates in the regulation of mesenchymal genes.  

We generated xenografts from tumor tissues 
resected from two patients with GBM to further 
validate the functional roles of the TGF-β pathway in 
mesenchymal glioblastoma (Figure 7A). Thirteen 
1-mm3 tumor tissues were cultured in complete 
DMEM and treated with either DMSO or LY2109761, 
an inhibitor of TGFBR2. Real-time PCR analysis 
indicated that the mesenchymal-related gene 
expression pattern was downregulated by LY2109761 
(Figure 7B). Tissue blocks of TBD0207 and TBD0220 
were subjected to RNA-seq and miRNA-seq analysis. 
The sequencing results revealed that LY2109761 could 
upregulate miR-181a/b expression and downregulate 
the expression of mesenchymal genes, such as MET, 
LIF, IL-6 and OSM (Figure 7C). GO and KEGG 
pathway analyses of the differentially expressed 
genes (FDR < 0.001, log2FC > 1) revealed that they are 
involved in EMT (P = 5.77×10-6, Figure 7D and Table 
S10), positive regulation of mesenchymal cell 
proliferation (P = 5.49×10-7), the TGF-β signaling 
pathway (P = 4.23×10-2), cytokine-cytokine receptor 
interactions (P = 2.80×10-6), and the PI3K-Akt 
signaling pathway (P = 3.15×10-3). 

Then, we employed the PDX model to test the 
efficiency of LY2109761 in vivo. The drug was 
intraperitoneally administered (Figure 7E), and the 
mice were sacrificed on the 31st day. Tumor volume 
was clearly reduced in the LY2109761 treatment 

group and was accompanied by decreased Ki-67, 
TGF-β and CD34 staining (Figure 7F). Then, the 
tumors were excised and subjected to RNA-seq. All 
groups had similar expression density distributions. 
Hierarchical clustering showed that the same 
processing groups had the closest distances (Figure 
7G). The expression profiles of clusters determined by 
Mfuzz showed that the genes of mesenchymal 
subtype-related micNETs were downregulated by 
LY2109761 (Figure 7H and Table S11). 

Discussion 
In the present study, a ceRNA network was 

constructed for GBM based on TCGA GBM Agilent 
microarray data. mRNAs in ceRNA networks in 
glioblastoma were designated micNETs. In the 
ceRNA network, these micNETs were assembled into 
two subnetworks that were each characterized by 
hubs linked with genes with a low degree of 
connectivity. Recently, Yang’s team performed 
paired-end RNA sequencing and microarray analyses 
to obtain the expression profiles of mRNAs, lncRNAs, 
circRNAs and miRNAs of three glioblastoma and 
matched normal samples. They found that 501 
lncRNAs, 1999 mRNAs, 2038 circRNAs and 143 
miRNAs were differentially expressed between 
glioblastoma and matched normal brain tissues [43]. 
Cao et al. analyzed the lncRNAs regulating mRNAs 
as ceRNAs in glioblastoma and constructed a long 
noncoding RNA-mediated ceRNA network by 
integrating genome-wide lncRNA and mRNA 
expression profiles. Survival analyses demonstrated 
that the lncRNAs and network module are potential 
prognostic biomarkers for GBM.  

In our work, the two subnetworks of micNETs 
had different gene expression levels in the 
mesenchymal subtype, suggesting that they might 
have different biological functions in shaping GBM 
phenotypes. In addition, the expression patterns of 
micNETs in the two ceRNA subnetworks are 
completely opposite between the proneural and 
mesenchymal subtypes, suggesting different 
biological functions in the two GBM subtypes. Most 
non-GCIMP mesenchymal GBMs were reported to 
arise from a proneural-like precursor. Loss of NF-1 
could convert the proneural subtype to a 
mesenchymal subtype [44]. It is not surprising that 
NF-1 is present in the proneural subtype-enriched 
subceRNA network. Therefore, low expression of 
NF-1 appears to not only promote the mesenchymal 
subtype by eliminating the suppression of the RAS 
pathway but also participate in posttranscriptional 
regulation.  
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Figure 7. The TGF-β pathway could be a therapeutic target for the mesenchymal subtype of GBM. (A) Operations were performed on patients with diagnosed 
GBM. Tumors were obtained and evaluated by histopathological examination. (B) Tumor tissues were cut into 1-mm3 blocks and separated into two groups. One group was 
treated with DMSO, whereas the other group was treated with LY2109761, an inhibitor of TGFBR2. RNA was extracted from the tissue blocks, and mesenchymal-related 
signature genes were evaluated by real-time PCR. (C) The tissue blocks of TBD0207 and TBD0220 were subjected to RNA-seq and miRNA-seq. (D) The differentially expressed 
genes (FDR < 0.001, log2FC > 1) were subjected to GO and KEGG pathway analyses. (E) PDX models were established to test the efficiency of LY2109761 in vivo. (F) 
Immunohistochemistry was performed to detect Ki-67, TGF-β and CD34 expression. (G) Tumors derived from the PDX model were tested by RNA-seq analysis. (H) Mfuzz 
was performed to detect alternative expression profiles. 

 
There were more highly expressed micNETs in 

the mesenchymal subtype than in the proneural 
subtype. A total of 26 out of the 27 genes with degrees 
greater than 300 were in the hubs of the ceRNA 
subnetwork associated with the mesenchymal 
subtype. However, a set of 26 genes is still too large 

for clinical applications. We employed STRING 
protein-protein interaction networks to narrow down 
the micNET and establish core micNET signatures. 
TGFBR2, RUNX1, PPARG, GIT2, ACSL1 and RAP1B 
were identified as the core micNET signature as they 
interacted with each other in both the ceRNA and 
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protein-protein networks. TGF-β was reported to 
stimulate the expression and function of RUNX1 [45]. 
Thus, it makes sense that the CDS of TGFBR2 
upregulated the expression of RUNX1 (Figure 3D-E). 
The six micNETs are directly sponged by 44 miRNAs 
in the network, accounting for a quarter of the total 
miRNAs in the ceRNA network. Notably, the miR-181 
family and several other miRNAs had decreased 
expression in the mesenchymal subtype. Many 
studies have been conducted on the miR-181 family in 
glioblastoma [46]. Specifically, in our previous study, 
miR-181d was shown to have great prognostic value 
and was recommended for use as a molecular 
biomarker for gliomas by Chinese Glioma 
Cooperative Group (CGCG) clinical practice 
guidelines [47]. As the promoter of the miR-181 family 
has many methylation sites, epigenetic regulation of 
miR-181ds might be present in the mesenchymal 
subtype. Tri-methylation of H3K27 was reported to be 
facilitated by the RTK/EGFR/AKT pathway in GBM 
[48], whereas EGFR overexpression plus NF-1 
mutation were common in the mesenchymal subtype 
[12]. These genomic phenotypes might trigger the 
silencing of miR-181s and other miRNAs, leading to a 
deregulated ceRNA network (Figure 8).  

The six micNETs were enriched in the 
mesenchymal subtype and could also predict the 
mesenchymal subtype, as verified in 1618 clinical 
patient samples (Figure 4 and Figure S6), suggesting 
their great potential for clinical diagnosis. Microarray 
chips or PCR kits with these micNETs may rapidly 
characterize glioblastoma samples. The proteins of 
these six micNETs have different cellular locations. As 
a cytokine receptor, TGFBR2 is indispensable for 
TGF-β1, TGF-β2 and TGF-β3 signal transduction [49]. 
RUNX1 is a TF that regulates multiple functions and 
is a potential therapeutic target for leukemia [50-52]. 
RUNX1 functions as a miRNA hub in hematopoiesis 
in both a transcriptional and posttranscriptional 
manner [53]. In glioblastoma, RUNX1 is also involved 

in a miRNA-mRNA interaction network that 
regulates oncogenic pathways [5] and is considered a 
key TF in the mesenchymal subtype [18]. PPARγ is a 
nuclear hormone receptor transcription factor that has 
a well-known role in lipid metabolism [54]. Recently, 
PPARγ was found to regulate EMT after internal 
radiation (IR) of glioma, which leads to 
radioresistance [55]. ACSL1, which initiates cellular 
long-chain fatty acid metabolism, was reported to 
enhance the proliferation of hepatoma cells [56]. GIT2 
is a multifunctional protein that was recently 
discovered to promote DNA repair induced by IR [57] 
and indicates a potentially poor prognosis in 
radiotherapy. RAP1B mediates TMZ resistance in 
GBM cells by cytoskeletal remodeling, and this effect 
could be reduced by miR-181 [58]. Thus, the marker 
micNETs selected by bioinformatics analysis reveal 
complex tumor-promoting functions.  

As the TGF-β pathway impacts the micNET 
signature and major ceRNA networks, targeting the 
TGF-β pathway could be valuable in the 
mesenchymal subtype. Although TMZ is still a 
first-line chemotherapy for patients with GBM, our 
results indicated that patients with high expression 
levels of micNET signatures responded poorly to 
TMZ. TMZ induces cytotoxicity by methylating the O6 
and N7 positions of guanine and causing 
O6-methylguanine lesions. Meanwhile, DNA damage 
repair confers resistance to TMZ [59, 60]. Indeed, 
TGF-β was shown to promote an effective DNA 
damage response [61, 62]. Blockade of the TGF-β 
pathway enhanced the radiation response and 
prolonged the survival of glioblastoma in a U87 
subcutaneous model and GBM-derived CSLC [63]. 
Inhibiting TGF-β can abolish the radiation resistance 
mediated by the tumor microenvironment in GBM 
[64]. Tumors with active TGF-β signaling exhibit 
resistance to DNA-damaging agents by regulating 
DNA repair genes [65, 66]. Our research confirmed 
the effect of LY2109761 in glioblastoma tissue blocks 

 

 
Figure 8. Scheme of mesenchymal GBM subtype progression. 
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and GBM PDX. PDX models have the advantage of 
retaining key characteristics of clinical tumors [67]. 
Indeed, the PDX models in this study possessed the 
same characteristics of invasiveness and rapid 
progression as the source tumor in the patient. 
LY2109761 suppressed the expression of 
mesenchymal signatures in tissue blocks and PDX in 
vivo. Genes (such as LIF, RUNX2 and SERPINE1) 
were inhibited in both tissue blocks, which was 
consistent with our measurements in GBM cell lines.  

Although TMZ remains a first-line 
chemotherapy for patients with GBM, our results 
indicated that patients with high expression levels of 
micNET signatures responded poorly to TMZ. 
Therefore, a treatment combining TMZ with TGF-β 
pathway inhibitors is a better therapeutic strategy for 
patients with the mesenchymal subtype than TMZ 
treatment alone. Recently, immunotherapy with 
PD-1/PD-L1 inhibitors showed great promise for 
cancer treatment. Nivolumab, pembrolizumab and 
atezolizumab are the listed drugs for tumor therapy 
[68-70]. PD-1/PD-L1 are highly expressed and have 
predictive value for the mesenchymal glioblastoma 
subtype [71, 72]. The mesenchymal subtype of GBM 
tends to exhibit low purity and exhibits an intensive 
immune phenotype [73]. Together, this evidence 
indicates that the mesenchymal glioblastoma subtype 
might benefit from anti-PD-1/PD-L1 immunotherapy. 
However, the TGF-β pathway tends to drive immune 
evasion when tumors are treated with PD-1/PD-L1 
blockade [74, 75]. Therefore, combined treatment 
targeting the TGF-β pathway and PD-1/PD-L1 
immune check point will provide new possibilities for 
mesenchymal glioblastoma therapy. 

In conclusion, our study revealed that the 
ceRNA signature of mesenchymal glioblastoma is 
enriched in the TGF-β pathway and characterized this 
subtype at the mRNA-miRNA level. We found that 
key micNET signatures could be used to diagnose 
mesenchymal GBM and discovered that the TGF-β 
pathway is a potential therapeutic target for 
mesenchymal glioblastoma.  
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