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Structural characterization of antibiotic
self-immunity tRNA synthetase in plant
tumour biocontrol agent
Shaileja Chopra1,*, Andrés Palencia2,*,w, Cornelia Virus1, Sarah Schulwitz1, Brenda R. Temple3,

Stephen Cusack2 & John Reader1,w

Antibiotic-producing microbes evolved self-resistance mechanisms to avoid suicide. The

biocontrol Agrobacterium radiobacter K84 secretes the Trojan Horse antibiotic agrocin 84 that

is selectively transported into the plant pathogen A. tumefaciens and processed into the toxin

TM84. We previously showed that TM84 employs a unique tRNA-dependent mechanism to

inhibit leucyl-tRNA synthetase (LeuRS), while the TM84-producer prevents self-poisoning

by expressing a resistant LeuRS AgnB2. We now identify a mechanism by which the

antibiotic-producing microbe resists its own toxin. Using a combination of structural,

biochemical and biophysical approaches, we show that AgnB2 evolved structural changes so

as to resist the antibiotic by eliminating the tRNA-dependence of TM84 binding. Mutagenesis

of key resistance determinants results in mutants adopting an antibiotic-sensitive phenotype.

This study illuminates the evolution of resistance in self-immunity genes and provides

mechanistic insights into a fascinating tRNA-dependent antibiotic with applications for the

development of anti-infectives and the prevention of biocontrol emasculation.
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M
icrobes that produce antimicrobial agents often
prevent cell suicide by co-expressing self-immunity
proteins that employ a variety of different resistance

mechanisms1. Genes encoding self-immunity proteins can also
act as a source of antibiotic resistance in the environment when
they are horizontally transferred to microbial pathogens2. This
threatens not only the successful treatment of human pathogens
but also prevention of important animal and crop diseases3. One
mechanism of self-immunity is to encode resistant variants of the
enzyme targeted by the antibiotic. A fascinating example of such
an antibiotic-producing organism is Agrobacterium radiobacter
strain K84, which is used as a biocontrol agent of the plant
pathogen A. tumefaciens that causes plant tumours in a
number of agriculturally important species4–6. The biocontrol
produces the ‘Trojan Horse’ antibiotic agrocin 84 (refs 7–9) that
mimics a plant tumour-derived substrate to gain entry by
subterfuge into the pathogen10,11, where it is processed into a
toxin termed TM84 (refs 10,12) (Figs 1 and 2a). We recently
identified the molecular target of TM84 in A. tumefaciens as
leucyl-tRNA synthetase (LeuRSAt) which catalyses an essential
first step in protein synthesis12. To prevent cell suicide,
A. radiobacter K84 contains a second, non-essential LeuRS,
termed AgnB2, which is resistant to TM84 (refs 12–14) (Fig. 1).
The agnB2 gene is encoded on the 44 kb plasmid pAgK84,
along with all the genes required to biosynthesize agrocin 84
(refs 14,15). Importantly, horizontal gene transfer of the pAgK84
plasmid from A. radiobacter K84 to the pathogen has been
previously reported to occur in the field, resulting in agrocin
84-resistant strains of A. tumefaciens encoding the agnB2
gene5,16,17. Thus, understanding the molecular mechanisms by
which AgnB2 provides immunity to agrocin 84 is crucial for
combating antibiotic resistance.

The molecular target of TM84, LeuRSAt, is an essential
enzyme that specifically ligates leucine to its cognate tRNALeu

isoacceptors, a critical step before protein synthesis at the
ribosome. The aminoacylation of tRNALeu is catalysed in a
two-step mechanism in all LeuRSs: in the tRNA-independent first

step, leucine is activated by ATP to form the essential obligate
intermediate leucyl-adenylate (Leu-AMP) that is stably bound to
the enzyme. In the second step, a bound tRNALeu repositions its
CCA 30-end into the LeuRS active site where activated-leucine is
transferred to the tRNA. The essential catalytic nature of LeuRSs,
and the 19 other canonical aminoacyl-tRNA synthetases
(AARSs), has led to these enzymes emerging as prominent
targets for anti-pathogens18,19, ranging in the prevention of
fungal diseases in humans20 to bacterial plant pathogens12.
A substantial amount of work has been performed on stable
analogues of aminoacyl-adenylates that bind tightly to an AARS
active site, and preventing activation of the amino acid with
ATP21,22. However, these molecules often cannot be transported
efficiently into cells and can lack discrimination between
microorganism and the intended host18.

We recently showed that TM84 does not behave like other
stable aminoacyl-adenylate analogues but, instead, employs a
unique tRNA-dependent inhibition mechanism23,24. TM84 binds
only weakly to the LeuRS-active site on its own and requires the
presence of tRNALeu to form a tight binding ternary inhibition
complex23. The X-ray crystal structure of the Escherichia coli
LeuRSEc�tRNALeu�TM84 ternary complex shows TM84 bound in
the Leu-AMP-binding site of the catalytic domain. The tRNALeu

is bound to LeuRS in an ‘aminoacylation-like’ conformation with
the CCA 30-end of the tRNALeu entering into the active site with
the terminal adenosine hydrogen bonding (H-bonding) directly
with TM84 (ref. 23). The positioning of the tRNALeu acceptor
stem is accompanied with a substantial movement of the catalytic
K619MSK622S motif. The K619 sidechain bonds to the
penultimate tRNALeu cytidine base, while K622 extends across
the adenylate analogue and interacts with the phosphate of TM84
via a non-bridging oxygen. The repositioning of the Lys-Met-Ser-
Lys-Ser (KMSKS) loop and tRNALeu combine to effectively bury
the bound TM84, thus explaining how the presence of tRNALeu

induces the tight binding of LeuRSs to TM84.
AgnB2 exhibits a high degree of resistance to TM84 (ref. 12)

despite the close similarity of TM84 to Leu-AMP (Fig. 2a) and the
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Figure 1 | Biology of agrocin 84 produced by biocontrol A. radiobacter strain K84. Pathogenic A. tumefaciens possesses a TiC58 plasmid that upon

infection of the host plant makes the plant produce a carbon and phosphate source agrocinopine. The pathogen takes up agrocinopine via an agrocinopine

permease encoded on pTiC58. This transporter also recognizes the uptake moiety on agrocin 84, an antibiotic produced by the plant tumour biocontrol,

A. radiobacter strain K84. Upon entry of agrocin 84 into the pathogen, it is cleaved into the toxic moiety TM84 and the transport moiety. TM84 targets

the leucyl tRNA synthetase, thereby inhibiting the aminoacylation of tRNALeu. This subsequently leads to the cessation of protein synthesis in the

pathogen and leads to cell death. TM84 however has no effect on the aminoacylation reaction of a self-immunity LeuRS called AgnB2 that is encoded by

the pAgK84 plasmid in A. radiobacter K84.
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need for AgnB2 to adopt a true aminoacylation complex
as exhibited in a recent LeuRSEc�tRNALeu�Leu-AMS crystal
structure25. These observations raise the question of how does
AgnB2 achieve resistance to TM84 without dramatically
interfering with the catalysis of the aminoacylation reaction.
This is particularly intriguing as primary sequence alignments of
AgnB2 and TM84-sensitive LeuRSs show a high similarity of
residues, including catalytic motifs (except a single Q instead of
M at the KMSKS motif). Here, we examine the TM84 resistance
mechanisms employed by AgnB2 using both thermodynamics
and steady-state enzyme kinetics. We also present the X-ray
crystal structure of AgnB2 in complex with tRNALeu and a stable
leucyl-adenylate analogue and reveal tertiary interactions unique
to AgnB2. We finally identify key TM84 immunity determinants
in AgnB2 and the TM84-sensitive LeuRSAt and show that it is
possible to partially inter-convert the TM84 sensitivity properties
of these enzymes.

Results
Analysis of AgnB2 steady state enzyme kinetics. The ability of
AgnB2 to discriminate between TM84 and the obligate reaction
intermediate Leu-AMP prompted us to examine differences
between the two molecules. As shown in Fig. 2a, TM84 contains a
stable N-acyl phosphoamidate bond, instead of the reactive
phosphoanhydride linkage in Leu-AMP. In addition, TM84 has a
deoxy-arabinose sugar group, instead of a ribose with subsequent
loss of a 30-hydroxyl (OH) and a repositioned 20-OH above the
sugar ring, and replacement of the primary amine with another
OH group. For TM84-sensitive LeuRSs, these subtle differences
between toxin and reaction intermediate allow TM84 to employ a
tRNA-dependent inhibition mechanism where the CCA 30-end of
the tRNALeu binds in an ‘aminoacylation-like conformation’ into
the active site of the enzyme and directly hydrogen bonds with
the antibiotic23. The ‘aminoacylation-like’ conformation of tRNA
in the LeuRSEc�tRNALeu�TM84 ternary inhibition complex
exhibits a high degree of similarity with the tRNALeu in the
true LeuRS aminoacylation conformation25. Since the tRNALeu

bound to AgnB2 still has to reposition its CCA 30-end into the
active site during catalysis of the aminoacyl transfer reaction, we
questioned whether destabilization of the TM84 ternary complex
in AgnB2 might be reflected in the kinetic properties of AgnB2.

Our steady-state kinetic analysis of AgnB2 examined both the
overall aminoacylation reaction and the first step, the amino acid
activation reaction, using the ATP/PPi exchange reaction.
We firstly determined the apparent TM84 inhibition constant

(Ki) for AgnB2 in the aminoacylation reaction by altering the
ATP concentrations of the substrate and pre-incubating the
AgnB2�tRNALeu complex before initiating the reaction. The data
revealed an apparent Ki of 4.72±0.75 mM (Supplementary Fig. 1).
We then determined the apparent TM84 Ki for AgnB2 by altering
the leucine concentration and keeping the ATP fixed giving a
value of 1.38±0.28 mM (Supplementary Fig. 1a,b). Both values
are more than three orders of magnitude weaker than the Ki

app

determined previously for the natural target LeuRSAt (ref. 23).
Importantly, TM84 acted as a weak competitive inhibitor of
AgnB2 with regards to both ATP and leucine (Supplementary
Fig. 1a,b, respectively) and therefore still binds to the synthetic
active site and not at an alternative site. We also found that
AgnB2 is resistant to TM84, but is still potently inhibited by
Leu-AMS (a non-hydrolysable analogue of the Leu-AMP reaction
intermediate), for both the amino acid activation (Supplementary
Fig. 2) and overall aminoacylation reactions (Fig. 2b). Substantial
weakening of the binding of the aminoacyl adenylate to AgnB2
did not evolve as a solution to generating resistance to TM84,
as this would severely affect the catalysis of amino acid activation.

As shown in Table 1, AgnB2 and LeuRSAt share similar kcat

values for all substrates. The higher Km for tRNALeu in AgnB2
may reflect an alteration in the interactions of AgnB2 with

TM84

a

Leu-AMP

N

NN

N

NH2

OOPO

O–

O

O

NH2
OH OH

N

NN

N

NH2

O
HO

OP
H
N

O–

O

O

OH
HO

b 5

4

3

2

1

0

0 5 10 15 20 25
Time (min)

Le
u 

tR
N

A
Le

u  (
pm

ol
)

AgnB2

AgnB2 + Leu-AMS

AgnB2 + TM84

Figure 2 | AgnB2 discriminates between a stable Leu-AMP analogue and TM84. (a) Chemical structures of Leu-AMP and TM84 with differences

highlighted in green. A non-hydrolysable adenylate analogue called Leu-AMS, which contains a N-sulfamoyl linkage in place of the phosphoanhydride of

Leu-AMP, was used in biophysical and crystallography experiments. (b) Effect of TM84 and Leu-AMS on the aminoacylation reaction of wt AgnB2.

Aminoacylation reactions were carried out using 2 nM wt AgnB2 only (K) and wt AgnB2 in the presence of 1 mM TM84 (’) and 20 nM Leu-AMS (m) at

28 �C, pH 7.4 and initiated using 1 mM ATP. Error bars represent s.d. (n¼ 3).

Table 1 | Kinetic parameters obtained for the aminoacylation
and ATP-PPi exchange reactions catalysed by LeuRSAt and
AgnB2 at 28 �C at pH 7.4.

Enzyme Substrate Km (lM) kcat (s� 1)

Aminoacylation
AgnB2 ATP 95.4±18.3 0.43±0.02

Leucine 28.7±7.3 0.35±0.03
tRNA 1.48±0.25 0.43±0.02

LeuRSAT
* ATP 396±83 0.33±0.02

Leucine 38±3.2 0.38±0.01
tRNA 0.94±0.19 0.36±0.02

ATP-PPi Exchange
AgnB2 ATP 1047±140 67±8.9

Leucine 12±2 73±3.6
LeuRSAT ATP 357±22 87±1.5

Leucine 9.7±0.7 85±1.6

All data in this table were average values obtained from three independent experiments with
error±values representing s.d.
*From reference Chopra, et al.23.
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tRNALeu that is relevant to resistance to the tRNA-dependent
TM84 inhibitor. The Km for ATP is a small 3.8-fold higher
affinity value for AgnB2 than for LeuRSAt, while the leucine
affinities show minimal differences. In the case of ATP/PPi
exchange reaction, AgnB2 showed a higher Km for ATP
compared with the aminoacylation reaction (10-fold increase).
Interestingly, these kinetic comparisons represent only small
energetic differences between the two enzymes, yet still lead to
enzymes with pronounced differences in TM84 sensitivity. In
addition, the steady-state kinetic properties shows that the ATP
saturation plot for the overall aminoacylation reaction shows a
degree of substrate inhibition, whereas the ATP/PPi exchange
shows no substrate inhibition for ATP (data not shown) when
tRNALeu is absent. One possibility is the population of a second
unproductive ATP-binding site in the AgnB2 active site that may
in part explain the differences between the apparent TM84 Ki’s
determined for AgnB2 when varying leucine and ATP
(Supplementary Fig. 1). Interestingly, we do not observe any
ATP substrate inhibition for LeuRSAt. The data suggest that
different substrate-dependent conformations populated by
AgnB2 may be important for TM84 resistance.

tRNALeu has reduced effect on the affinity of TM84 to AgnB2.
If resistance of AgnB2 is based on abolishing of the normal
tRNA-dependent inhibition mechanism employed by TM84
(ref. 23) then one would expect to see a decrease in the affinity for
TM84, tRNALeu and/or for TM84 in the presence of tRNA or vice
versa. To test these possibilities, we used isothermal calorimetry
(ITC) (Supplementary Table 1) to investigate the ligand binding
modes to AgnB2 (ref. 23). Kd values of 1052 nM for TM84 and
310 nM for tRNA were obtained, indicating reductions in AgnB2-
binding affinities for both TM84 (6.9-fold) and tRNA (3.7-fold),
compared with LeuRSAt (ref. 23). Further examination of
TM84 binding to AgnB2 (with pre-bound tRNA) showed
a Kd of 332 nM, which suggests a substantial destabilization of
the ternary complex (AgnB2�tRNA�TM84) (B330-fold decrease)
as compared with the LeuRSAt�tRNA�TM84 complex
(Supplementary Table 2). Interestingly, we also see no evidence
of a binary isotherm for TM84 binding to AgnB2�tRNALeu

species, unlike LeuRSAt. Thus, AgnB2 has a significantly wea-
kened affinity for TM84 as compared with LeuRSAt. Since TM84
and the Leu-AMP analogue bind to the same active site but
potentially to different conformations, we examined if AgnB2-
binding affinity for Leu-AMS had been substantially weakened.
Our results show that Leu-AMS binds to AgnB2 with low
nanomolar binding affinity (Kd¼ 4.4 nM), which is slightly
weaker than to LeuRSAt (1.6 nM). The fact that AgnB2 binds
tightly to Leu-AMS is not so surprising since, firstly, AgnB2 has
highly conserved residues at the synthetic site compared with
other LeuRSs and, secondly, the enzyme must bind tightly to the
Leu-AMP intermediate to catalyze the aminoacylation reaction.
This result was supported by our enzyme kinetic observations
above which showed that Leu-AMS is a low nanomolar inhibitor of
both the AgnB2-catalyzed aminoacylation and amino acid activa-
tion reactions, demonstrating that the analogue efficiently com-
petes with ATP and leucine substrates (Supplementary Fig. 1).

Our thermodynamic results suggest that AgnB2 may achieve
resistance to TM84 by not simply weakening the affinity for
TM84 (and/or tRNALeu) but most significantly by destabilizing
the formation of the AgnB2�tRNALeu�TM84 complex.
Interestingly, this is accomplished with only minimal change to
affinity for the adenylate, allowing the enzyme to still efficiently
carry out aminoacylation.

Structure of AgnB2�tRNALeu�Leu-AMS ternary complex. To
identify structural interactions in AgnB2 that may contribute to

resistance, we performed extensive crystallizations trials with
AgnB2, agrobacterium tRNALeu and multiple combinations of
substrates or inhibitors. We obtained an X-ray crystal structure of
AgnB2 in complex with tRNALeu and Leu-AMS; the final model
was refined to a final R-factor of 19.4% (R-free¼ 23.8%) and a
final resolution of 2.1 Å (Table 2, Fig. 3a and Supplementary
Fig. 3).

The overall AgnB2�tRNALeu�Leu-AMS structure (Fig. 3a, and
see domain architecture in Fig. 4) presents a similar conformation
to a number of bacterial LeuRS structures obtained in complex
with tRNAsLeu, in which the CCA 30-end is positioned
into the editing active site and represents what appears to be
the preferred LeuRS conformation20,25,26. This editing
conformation of the tRNA in the AgnB2 complex is in contrast
to the structures of the TM84 ternary inhibition complex of
LeuRSEc�tRNALeu�TM84 and the LeuRSEc�tRNALeu�Leu-AMS
aminoacylation complex which have the CCA 30-end penetrating
into the catalytic active site of the enzyme positioned next to the
bound inhibitors23,25. Another important interaction observed in
the structure is the C-terminal domain interaction with the
variable loop of Agrobacterium tRNALeu (Supplementary Fig. 4a).
A comparison of the aminoacylation and editing states in
LeuRSEc, shows the C-term domain coupled to the variable arm
of E. coli tRNALeu rotates significantly upwards towards the
catalytic domain in the aminoacylation state. It has been
hypothesized that this C-term domain movement propagates
towards the main body of the tRNALeu and towards the acceptor
stem, and together with rotations of other external domains, or
residues, forces the 30-end of the tRNA into the catalytic site.

Table 2 | Data collection and refinement statistics

Agrobacterium radiobacter strain K84
AgnB2 LeuRSþ tRNALeuþ Leu-AMS

Data collection
Space group P21

Cell dimensions
a, b, c (Å) 169.91, 50.32, 170.52
a, b, g (�) 90.00, 93.48, 90.00

Resolution (Å)* 50-2.1 (2.10-2.20)
Rsym 7.5 (65.2)
I/sI 10.6 (2.0)

Completeness (%) 99.5 (99.8)
Redundancy 3.7 (3.7)

Refinement
Resolution (Å) 48.6-2.1 (2.15-2.10)
No. of reflections work/free 160,330/8,487
Rwork/Rfree 0.194 (0.309)/0.237 (0.331)
No. of atoms

Protein [6,307]A, [6,141]B

tRNALeu [1,702]C, [1,721]D

Ligand 62 [2� Leu-AMS]
Water/SO4

� 2 871/25 [5� SO4
� 2]

Mn2þ 2
B-factors

Protein [52.3]A, [48.6]B

tRNALeu [57.7]C, [54.9]D

Ligand [27.8]E, [26.6]F

Water/SO4
� 2 44.4/86.2

Mn2þ 87.3
RMS deviations

Bond lengths (Å) 0.016
Bond angles (�) 1.736

Values in brackets correspond to averages of the corresponding chain, indicated as superscript.
*Values in parentheses are for the highest-resolution shell.
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Interestingly, the tRNALeu from Agrobacterium has a shorter
variable stem than the E. coli tRNA, therefore questioning
whether this propagation force due to coupling of tRNA with the

C-term domain is also required in AgnB2 for aminoacylation.
In fact, a comparison of the C-terminal domain from AgnB2
compared with the E. coli editing structure (LeuRSEc�tRNALeu)25

ba

c

Editing

H529

H50

D78

F39

D80

L41

H52

H49

E532

H533

H47

High
motif

High
motif

E528

Leu-AMS

Variable
arm

C-terminal Anticodon
binding

Catalytic

ZN1

tRNA 3’-end

tRNALeu

AgnB2 LeuRS

E.coli LeuRS

Figure 3 | Structure of the AgnB2�tRNALeu�Leu-AMS complex. (a) X-ray structure of wild-type AgnB2�tRNALeu�Leu-AMS complex with 30-tRNALeu

(blue) bound in the editing site (PDB Code—5AH5). The catalytic, editing, anticodon binding and C-terminal domains are displayed in yellow, cyan blue,

red and gold, respectively. Leu-AMS bound to the synthetic active site is represented in a stick structure and the catalytic KQSKS and HIGH loops are

highlighted in green. (b,c) Comparison of wt AgnB2�tRNA�Leu-AMS complex and LeuRSEc� tRNALeu�Leu-AMS complex binding site residues. The surface

of the catalytic active site of the protein is depicted in yellow with Leu-AMS bound (stick structure).

High motif

Catalytic Anticodon C-terminalLS

High KMSKS

Leucine-specific domain (LS) KMSKS motif

Tt K Y L M PY SG  H GH     V      P   L M  LK Q   V F     D        34-54
Ec K Y L M PY SG  H GH            P   L M  VR Y C S L     R        34-54
At K Y L M PY SG  H GH     V      P   I M  VR Y   E F     R        35-55

AgnB2 K Y L M PY SG  H GH     V          L I  VR          T           F   E F     H        32-52
Hp K Y L M PY SG  H GH     I      P   I M  VR K   S L     E        30-50

Tt T   I          G Y N  QAK SL  M   A  R   E  RL   101-116
Ec T   I          G Y N   MK QL  L   D  AY  N  KM   101-116
At T   I          G Y N  TMR QL  M   Q  A   G  KS   102-117

AgnB2 T   I          G      SMK SM  L    A             QD  D   R  MQ    99-114
Hp T   I          G Y N  NM      L   E  E  QKEFEA    97-112

Tt QGMV                                                             SKS  N           GAD    L                                                           M   K   V     V           AWTDFGPVEVEGSVVRLPEPTRIRLEIPESALSLEDVRKMGAELRPHEDGTLHLWKPAV     G G MVGPF KEQ    574-658
Ec QGMV                                                             SKS  N           GAD    L                                                          KM   K   I P  MV  Y        ADAFY..........YVGENGERNWVSPVDAIVERDEKGRIVKAKDAAGHELVYTGMS      N G D QV  ER     566-640
At QGMV                                                             SKS  N           GAD    V                                                          KM   K   V P  II  Y        HETYS............RGEGLTREWVPPAELRIEENDGTRRAFLLSSGEEVKIGSIE      K V D DD  AS     581-653

AgnB2 QGMV                                                             SKS  N           GAD                                                               K          P  VV  F                                                                   Q       T                NDVHG.....................................................R     LG V D SV  QE     562-593
Hp QGMV                                                             SKS  N           GAD    L                                                          KM   K   V P  IL  Y        KNG......................................................A      G V S KE  KK     563-593

Editing

Tt     RL  W  SRQRYWG VTY   D  I       R     R  L         414-431
Ec     RL  W  SRQRYWG VNY   D  V       K     R  G         412-429
At     RL  W  SRQRYWG VNF   D  I       K     R  G         426-443

AgnB2     RL  W  SRQRYWG  QY      I             Q           ST     N S         407-424
Hp     RL  W  SRQRYWG INY   D  V       V     Q  G         407-424

A102T42 Q413

Q573 T581

Figure 4 | Domain structure and primary sequence alignment of LeuRSs and AgnB2. Domain structure of LeuRS and primary sequence alignment

of the catalytic domain and LS domains of Thermus thermophilus LeuRS (LeuRSTt), LeuRSEc, LeuRSAt, plasmid encoded AgnB2 (from A. radiobacter strain

K84) and LeuRSHp. The highly conserved regions are depicted in grey and the residues highlighted in bold (blue) represent the non-conserved residues in

AgnB2. In addition, both AgnB2 and LeuRSHp lack the leucine-specific domain (pink) that is present in other LeuRSs.
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shows there is a rotation of about 18.5� and the shorter variable
loop of agrobacterium only makes one contact with the
phosphate of nucleotide 46f (P46f) vs the E. coli tRNA
which makes multiple contacts with the variable domain25

(Supplementary Fig. 4a,b). This structure may give new insights
into the function of this stem-loop.

Unique amino acid substitutions in the AgnB2 catalytic site.
Close inspection of the Leu-AMS-binding site in the AgnB2
structure reveals that the residues at the catalytic site are very
similar compared with those found in LeuRSEc Fig. 3b,c. There
are small differences including F39 in AgnB2, forming part of the
hydrophobic pocket for the leucine, vs the corresponding L41
found in the LeuRSEc. Additionally, E528 in AgnB2 exhibits a
different rotamer away from ribose hydroxyl vs the correspond-
ing E532 residue in the LeuRSEc aminoacylation complex, which
is situated more closely to the ribose hydroxyl. The LeuRSEc E532
plays an important role in catalysis of the aminoacylation
reaction, as suggested by the LeuRSEc�tRNALeu�Leu-AMS com-
plex structure and confirmed by biochemical experiments25.
The observation that TM84-sensitive LeuRSEc and resistant
AgnB2 showed no substantial differences between active site
residues directly interacting with Leu-AMS might explain how
the two enzymes can bind equally well to Leu-AMS and carry out
aminoacylation with close kinetic parameters (see above). It
therefore follows that no AgnB2 residues are directly in a position
to interrogate the 50 N-acyl phosphoramidate bond of TM84
when it is bound to the enzyme alone. The weaker binding of
TM84 to AgnB2, with or without tRNALeu, compared with
LeuRSAt might be explained by residues or domains that do not
directly interact with the adenylate analogue, but which could
promote long range effects or conformational changes affecting
the catalytic site or perturbing the interaction with tRNALeu.

The KMSKS catalytic peptide motif, along with the HIGH loop,
is present in all Class I aaRSs, including LeuRSs, and has been
shown to play a critical role in the both the amino acid activation
reaction and the aminoacyl transfer reactions27,28. Biochemical
and biophysical studies on class I synthetases, including LeuRS,
shows that ATP binding to the catalytic active site leads to a
conformational change in the mobile KMSKS loop shifting it
from an ‘open’ to a ‘closed’ conformation with the two lysine
residues of the KMSKS loop interacting with the a and b

phosphates of the ATP27–29. Once the aminoacyl-adenylate is
formed, the KMSKS loop moves into a ‘semi-open’ conformation
to allow for the entry of the CCA 30-end of the tRNA into the
active site. Finally, once the CCA 30-end of the tRNA is in the
active site, the KMSKS loop once again adopts the closed
conformation25,27,30. In the case of AgnB2, the highly conserved
methionine of the KMSKS motif is interestingly replaced by a
glutamine residue (Q573). Our structure shows that Leu-AMS is
bound in the active site with the mobile KQSKS loop present in a
semi-open conformation (Supplementary Fig. 5). This loop
position is in contrast to the fully closed position exhibited by
the KMSKS loop in the LeuRSEc�tRNA�TM84 ternary complex
where the second lysine of the KMSKS loop (K622) directly
interacts with the non-bridging phosphate of the nucleotide
analogue and the first lysine of the KMSKS loop (K619) interacts
with cytosine 75 of the tRNA 30-end23. In Class I aaRSs, this
conserved methionine forms a number of hydrophobic packing
interactions and is thought to play an important role in
aminoacylation31–34. In LeuRS structures it also forms a main
chain interaction with the adenine ring of the bound
adenylate25,35. The equivalent position in AgnB2, Q573, forms
a hydrogen bond side-chain interaction with the side chain of
T581 (Fig. 5a), which is found to be a conserved hydrophobic
residue in TM84 sensitive LeuRSs (I628 in LeuRSEc) (Fig. 5b). It is
interesting to note that the AgnB2 KQSKS loop exhibits a
distinctly shifted position relative to the Leu-AMP binding pocket
(Supplementary Fig. 5), perhaps due to these changes. The fact
that a glutamine residue is found in this critical catalytic motif but
not in any other LeuRS in nature, may indicate an important role
for Q573 in TM84 resistance. It maybe that a substantial number
of compensatory mutations are required to accommodate Q573
in AgnB2.

T42 and A102 are two other residues that are specific to
AgnB2. T42 is positioned upstream from the catalytic H47IGH50

motif, while the side chain of A102 is situated in close proximity
to T42 on a neighbouring a-helix (Fig. 5). Importantly, the
presence of A102 in AgnB2, instead of an asparagine as found in
the LeuRSEc structure (N104), leads to loss of an H-bond
interaction between the a-helix (96–114) and a main-chain
peptide bond located at T42 (P45 LeuRSEc). Both these
modifications could allow for subtle changes in the positioning
of the neighbouring HIGH motif that binds TM84.

ba

Leu-AMS Leu-AMS

L577

R571

K575

H47
H50

T42
K619

K622

M620

I628

N104

Helix
98-115

Helix
96-114

Q573

D567
T581
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Figure 5 | Interactions of key residues in the catalytic active site of AgnB2. Ribbon structure of the catalytic active site of (a) AgnB2�tRNALeu�Leu-AMS

complex and (b) E. coli�tRNALeu�Leu-AMS complex. AgnB2 key residues interacting with Leu-AMS (shown as white sticks) or adjacent to the catalytic site

are depicted as sticks with the following colour code: residues of the K572QSKS576 and of the H47IGH50 catalytic motifs, are coloured in green; core

permissive residues T42 and A102 are shown in yellow; T581 which H-bonds to Q573 in pink; and D567 and R571 which forms the salt bridge mutated in

this study and residue L577 are also in pink. E. coli LeuRS equivalent residues in the aminoacylation complex (PDB: 4AQ7) are shown in panel b.

Key interactions in both the AgnB2 and the E. coli complexes are shown as red-dashed lines.
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AgnB2 has modified tRNA elements compared with LeuRSEc.
A prominent feature of the AgnB2 structure is the lack of an
idiosyncratic leucyl-specific insertion domain (LS-domain),
which is present in bacterial LeuRS, except in a few cases such,
as Bacillus subtilis or Mycoplasma mobile25,36, and as seen in
the Helicobacter pylori LeuRS (LeuRSHp) primary amino acid
sequence in Fig. 4. The LS-domain undergoes substantial
movement between the LeuRSEc editing, and the TM84 and
Leu-AMS bound ‘aminoacylation-like’ conformations, buttressing
the highly mobile KMSKS loop as well as guiding the tRNA into
the catalytic site, as found in the aminoacylation conformation25.
The missing LS-domain in AgnB2 is replaced by a small
connecting loop that contains a salt bridge between residues
D567 and R571. While the LS domain was shown not to be
absolutely required for the aminoacylation or editing reactions of
LeuRS per se37, it has been shown to be important for tRNA
binding and is able to distinguish between the isoacceptors of
tRNALeu in E. coli38. Our thermodynamic studies showed a
B3.5-fold reduction in tRNALeu affinity between LeuRSAt and
AgnB2 (Supplementary Tables 1 and 2), raising the possibility
that the modification of tRNA interacting elements in AgnB2
may play a role in TM84 resistance (tested below).

It has been reported that residues distant from the active
site can also be crucial in forming interactions with the
negatively charged backbone of the tRNALeu CCA 30-end and
its repositioning in catalysis38. Mutation of the residue R418
to a neutral amino acid, such as glutamine, decreased the
aminoacylation activity in LeuRSEc by reduction of the residence
of the 30-end in the enzyme active site37,38. Importantly, the

AgnB2 structure shows the equivalent residue to R418 in LeuRSEc

is the neutrally charged Q413 (Fig. 4). Thus, it is possible
that Q413 in AgnB2 has a negative effect on binding of the
tRNA-dependent inhibitor TM84.

Identification of permissive mutations in the catalytic core.
Having identified possible TM84 sensitivity/resistance determi-
nants by comparison of the AgnB2 structure with other LeuRSs
known to be sensitive to the toxin, we made mutants of AgnB2
and also LeuRSAt to test the contribution of these sites to anti-
biotic resistance. Because of the limited number of possible
mutants and permutations that could be constructed using
this approach, not all potential TM84 resistance/sensitivity
determinants could be tested. We initially assayed candidate
mutants using a biological assay (see Methods), followed
by in vitro enzyme inhibition experiments combined with
assessment of direct binding by calorimetry on promising
constructs.

Three of the putative resistance determinants in AgnB2, Q573,
A102 and T42 described above (Fig. 5a), reside in the catalytic
domain and differ from the highly conserved residues in TM84-
sensitive LeuRSs. We introduced these mutations at correspond-
ing positions (as determined by homology modelling) in the
TM84-sensitive enzyme LeuRSAt (P45T, N105A and M633Q) and
tested whether these mutations imparted resistance using our
in vivo assay (Fig. 6a). The single M633Q mutation in the K(M/
Q)SKS loop is restrictive in nature, as it was not tolerated in the
LeuRSAt enzyme, most likely resulting in a functionally inactive
enzyme. In contrast, the P45T (Fig. 6a) or N105A (data not
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shown) are permissive mutations and had a small effect on
enzyme function or TM84 sensitivity. A P45T/N105A double
mutant showed no increase in resistance for LeuRSAt. When the
P45T was introduced with M633Q in a double mutant, the P45T
acted as a permissive mutation, increasing the resistance of the
mutant enzyme. Finally, when all three mutations were
introduced into LeuRSAt (P45T/N105A/M633Q, termed LeuRSAt

Triad) there was a significant increase in resistance to the
antibiotic (Fig. 6a) compared with wild type (wt).

Kinetic inhibition experiments on LeuRSAt Triad showed the
enzyme was resistant to to concentrations of TM84 up to 500 nM
(Supplementary Fig. 6a). This is in contrast to wt LeuRSAt, which
is sensitive to very low concentrations of TM84 (Ki

app¼ 0.3±0.1
nM)23. The introduction of the Triad mutations also negatively
affected the percentage of active enzyme, presumably because
these modified residues not only alter engagement of the enzyme
with the antibiotic but also modify the interaction of the active
site with its substrates. Subsequent thermodynamic analysis of the
binding of TM84 to the LeuRSAt Triad alone and the LeuRSAt

Triad pre-incubated with tRNALeu showed respective 10-fold and
28-fold decreases in binding affinity, as compared with LeuRSAt

(Supplementary Table 2).
To see if the three reverse mutations in AgnB2 could make the

enzyme more sensitive to TM84, a variant containing all three
mutations (T42P/A102N/Q573M termed AgnB2 Triple) was
constructed. The AgnB2 Triple showed a distinct increase in
TM84 sensitivity (larger clearance zone) as detected by bioassay
(Fig. 6b). An individual, Q573M mutant did not increase
TM84 sensitivity of AgnB2 (Fig. 6b). Kinetic analysis of the
AgnB2 Triple mutant showed a 1.8-fold increase in resistance
using a fixed concentration of ligand (Supplementary Fig. 6b).
Thermodynamic analysis of the binding of TM84 to the AgnB2
Triple alone showed no significant effect on TM84 binding, while
there was a 3.5-fold increase in binding of TM84 to the
AgnB2�tRNALeu complex (Supplementary Table 1).

We also tested whether disruption of the H-bond interaction
between Q573 of the KQSKS loop and T581 side chain (Fig. 5a)
could affect TM84 binding by mutating the threonine residue to a
valine. This single T581V mutation, as well as the double
mutation (Q573M/T581V) had no detectable effect on TM84
resistance in our bioassays (Supplementary Fig. 7a). However,
addition of the T581V mutation to the AgnB2 Triple construct
did produce an apparent increase in antibiotic sensitivity
(Supplementary Fig. 7a).

A miniloop substitutes for the LS domain in AgnB2 with
implications for TM84-resistance and aminoacylation. Since
AgnB2 lacks the LS domain and possesses a short peptide with a
unique salt bridge between residues D567 and R571 (Fig. 5a), we
tested if removal of the salt bridge had any effect on TM84
sensitivity. The salt bridge was disrupted using a number of
mutations (D567N, R571E, M and Q), and tested using the
bioassays. No significant change in resistance was detected for
these mutants compared with wt AgnB2 (Supplementary Fig. 7b).
An L577K mutation designed to compete with R571 (Fig. 5) for
the salt bridge to the residue D567 produced a clearing zone in
our bioassays (Supplementary Fig. 7b) but that is likely due to loss
of stability of the enzyme. Taken together, these results indicate
that disruption of the D567-R571 salt bridge that replaces the LS
domain is not sufficient to cause resistance to TM84, but it may
play still play an important structural or canonical catalytic role
in AgnB2.

Conversion of a TM84-resistant enzyme into a sensitive form
by altering key tRNA interactions. To test whether an LS

domain can have a substantial effect on the TM84 sensitivity of a
LeuRS, we examined recombinant LeuRS H. pylori (LeuRSHp),
which lacks an LS domain (Fig. 4). Interestingly, we found
using in vitro aminoacylation assays that the LeuRSHp was
still significantly inhibited by TM84 (IC50¼ 34±1.14 nM;
Supplementary Fig. 8) although to a lesser degree than LeuRSAt

(ref. 23). Interestingly, this enzyme also contains a neutral Q413
residue in a homologous position to R418 from LeuRSEC

is thought to be involved in positioning of the tRNA CCA
30-end in the enzyme active site25,38. We took this one step
further, by introducing all three core mutations implicated in
TM84 resistance in AgnB2 into LeuRSHp (P40T, N100A and
M573Q). However, our in vitro aminoacylation analysis revealed
that this enzyme was inactive under the conditions used in our
study (Supplementary Fig. 8).

To pursue further a possible role of the LS domain in TM84
sensitivity, we inserted the LS domain from LeuRSAt into AgnB2
LeuRS and tested the chimeric enzyme’s sensitivity to TM84 in
our bioassay. In addition, we also inserted the LS domain into the
background of the AgnB2 Triple variant (T42P/A102N/Q573M).
Our results show that insertion of the LS domain into AgnB2 wt
had no effect on antibiotic sensitivity in our bioassays but when
the LS domain was inserted into the AgnB2 triple background
there was a substantial increase in clearing zone size (Fig. 6b).
A comparison of the TM84 inhibition of aminoacylation activity
of the AgnB2 Triple mutant þ LS domain construct against wt
AgnB2, at a fixed ATP concentration of 0.675 mM ATP (where
no substrate inhibition of either enzyme is detected) showed a
34-fold (IC50 of 1.8 mM) decrease in the IC50 of the chimeric
mutant compared with wild-type (IC50 of 61.3 mM) (Fig. 6c).
ITC analysis of this construct was used to deconvolute the
contribution of tRNA to the binding of TM84 to the mutant. Our
results showed that TM84 binding alone (Kd¼ 258 nM) increased
by fourfold (Fig. 7a) and TM84 binding in presence of tRNA
(Kd ¼ 19 nM) increased by 17-fold respectively, compared with
wt AgnB2 (Fig. 7b).

The positively charged R418 residue in LeuRSEc has been
implicated in controlling the translocation of the negatively
charged backbone of the tRNALeu CCA 30-end into the
synthetic active site25,38. We tested whether modification of the
homologous position in AgnB2, Q413, from a neutral to
positively charged arginine might modulate TM84 resistance
through stabilization of the tRNA-dependent inhibition complex.
Introduction of a single-point Q413R mutation into AgnB2
showed no effect on the size of clearing zones in our bioassays
compared with wt (Fig. 6b). However, when we placed the Q413R
mutation in the background of the AgnB2 Triple mutant (T42P/
A102N/Q573M) there was a substantial increase in the clearing
zone diameter suggesting an increase in TM84 sensitivity
compared with the AgnB2 Triple (Fig. 6b). Analysis of the
TM84 inhibition kinetics of the AgnB2 Triple þ Q413R mutant
showed an IC50 of 2.9 mM, 21-fold smaller than wt-AgnB2 at a
fixed ATP concentration (Fig. 6c) indicating this construct had a
significant increase in TM84 sensitivity compared with wt. We
then analyzed the thermodynamics of binding of TM84 to the
AgnB2 Triple Q413R�tRNALeu complex and found it was sixfold
tighter than wt AgnB2 (Fig. 7b). However, the binding of TM84
to the AgnB2 Triple Q413R enzyme alone was only 1.3-fold
tighter than the wt enzyme (Fig. 7a). This further suggested the
importance of tRNA interacting residues for imparting sensitivity
towards TM84.

In summary, our results suggest that the absence, or
modification of, idiosyncratic tRNA binding elements in AgnB2,
act cumulatively with critical core mutations on the periphery of
the LeuRS active site, significantly contributing to the high degree
of TM84 resistance observed in AgnB2.
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Discussion
TM84 (agrocin 84) is a highly potent LeuRS toxin that employs
a unique tRNA-dependent inhibition mechanism. During
production of agrocin 84, the biocontrol A. radiobacter strain
84 expresses the self-immunity LeuRS AgnB2 to prevent cell
suicide. Our data show that AgnB2 achieves resistance to TM84
by minimizing the effect tRNALeu has on the toxin’s affinity for
the enzyme as well as weakening its affinity for tRNALeu

and the inhibitor alone. Remarkably, this resistance phenotype
is achieved without dramatically affecting the catalysis of
the overall aminoacylation reaction (Table 1). Consistent
with this observation, the X-ray crystal structure of the
AgnB2�tRNALeu�Leu-AMS ternary complex reveals that residues
in the synthetic active site that directly bind Leu-AMP are not
substantially different from other bacterial LeuRSs.

We identified key molecular determinants imparting TM84
resistance (or sensitivity) to LeuRSs by utilizing an approach
based on the analysis of structures of the naturally resistant and
sensitive enzymes AgnB2 and LeuRSEc (Fig. 8). LeuRS mutants
that affected TM84 sensitivity were then tested using in vitro and
in vivo approaches. Our data indicate that the molecular elements
in LeuRSs that contribute to TM84 sensitivity or resistance are
much more complex than one would expect a priori. Surprisingly,
some of these determinants were not located directly in the active
site but on the periphery (with distances B10–15 Å for most
residues and 25 Å for Q413), including some residues interacting
with the tRNALeu. The core resistance mutations in the catalytic
domain of TM84 resistant AgnB2 are located in KQSKS loop
(Q573), just upstream of the HIGH loop (T42) or buttressing next
to T42 in the case of A102. It is possible that the nature of the
amino acids at these particular sites in LeuRSs may affect the
molecular dynamics of these two critical catalytic motifs and
ultimately altering the LeuRSs TM84 sensitivity phenotype. The
exact contribution of other determinants to TM84 sensitivity at a
greater distance from the active site is more difficult to discern.
For AgnB2, alterations in tRNA-binding contacts, due to lack of
an LS domain, C-term domain modifications, and the effect of
Q413 on CCA 30-end localization in the active site, may all play a
role in destabilizing a TM84 ternary complex leading to
resistance. It maybe that evolution has traversed a narrow

energetic landscape towards a resistance phenotype by exploiting
small energetic differences between mutants to produce larger
scale changes in only certain kinetic and/or thermodynamic
parameters. Presumably, there must be other additional
unconserved residues that have played subtle compensatory roles
on the pathway towards evolution of TM84 resistance.

Why did nature evolve TM84 to target LeuRSAt and not
another AARSs from A. tumefaciens, and in particular the other
Class I AARSs that have similar active site architectures such as
IleRS and ValRS. TM84 does appear to be LeuRS specific, as the
antibiotic does not inhibit agrobacterial IleRS12, and the single
LeuRS agnb2 gene is capable of providing agrocin 84-immunity to
the pathogen. In silico docking analysis of TM84, from the
LeuRSEc structure (PDB: 3ZGZ), into the catalytic domain of
existing IleRS (PDB code: 1JZQ) and ValRS (PDB code: 1GAX)
structures reveals steric clashes of the ‘leucine-like’ region of
TM84 with hydrophobic side chains in the active site
(Supplementary Fig. 9). This analysis may provide some
understanding of the LeuRS specificity of TM84. One possible
reason that agrocin 84/TM84 evolved to target a LeuRS maybe
because leucine is one of the most abundant amino acids in
proteins, and so translation could be particularly sensitive to
interference of LeuRS activity. A more plausible reason is that
agrocin 84/TM84, or its evolutionary ancestor, had other roles in
Agrobacterium biology that predisposed the toxin to evolve into a
LeuRS inhibitor. The recent finding that the uptake molecule
of agrocin 84, when cleaved from TM84, can act as
signalling molecule binding to a key agrobacterial
transcriptional regulator that controls quorum-sensing signal
synthesis9 provides some support for this latter view.

Horizontal gene transfer of the agnB2 gene on the pAgK84
plasmid from A. radiobacter strain K84 to the pathogen threatens
emasculation of the biocontrol5,16,17. Genetic engineering of
pAgK84 to prevent conjugative transfer of the plasmid to
the pathogen has resulted in A. radiobacter K1026 strain39, the
first bioengineered microbe approved for release into the
environment40. Yet despite not containing any foreign DNA,
this genetically altered strain is still only registered for use as a
biopesticide in a limited number of countries (Gary Bullard and
Allen Kerr, personal communications). In addition, as with all

a b

W
T A

gn
B2

Agn
B2 

Trip
le

Agn
B2 

Trip
le 

Q41
3R

Agn
B2 

Trip
le 

LS
0

250

500

750

1,000

1,250
D

is
so

ci
at

io
n 

co
ns

ta
nt

(K
d)

 n
M

D
is

so
ci

at
io

n 
co

ns
ta

nt
(K

d)
 n

M

W
T A

gn
B2

Agn
B2 

Trip
le

Agn
B2 

Trip
le 

Q41
3R

Agn
B2 

Trip
le 

LS
0

100

200

300

400

AgnB2•tRNA AgnB2•tRNA•TM84

TM84

+

AgnB2•TM84AgnB2

TM84

+

Figure 7 | The accumulative mutation of tRNA interacting elements with core Triple mutations in AgnB2 increases the enzyme’s affinity to TM84.

ITC results depicted in graphical form compare the TM84-binding affinities of wt AgnB2 and Triple AgnB2 mutant±Q413R or LS domain to (a) TM84

alone; or (b) TM84 in the presence of tRNALeu. Error bars represent standard deviation from three independent experiments.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12928 ARTICLE

NATURE COMMUNICATIONS | 7:12928 | DOI: 10.1038/ncomms12928 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


antibiotic interventions, continued success against resistance can
never be completely assured. Thus, understanding the resistance
mechanism of agrocin 84 immunity protein AgnB2 not only
provides key insights into the mechanism of a fascinating
tRNA-dependent toxin but also informs research into the
continued crop protection provided by this biocontrol against
the spectre of antibiotic resistance.

Methods
Generation of mutants of AgnB2 and LeuRSAt. Mutations in AgnB2 and
LeuRSAt were introduced using the Quikchange site-directed mutagenesis method
(Stratagene). Mutagenesis was carried out in the agnB2 gene previously cloned12

into the pET-28a vector (Novagen) for use in recombinant protein expression, and
also in the agnB2 gene subcloned into the broad host range plasmid pBBR1MCS-3
(ref. 41) for use in bioassay studies. Similarly, LeuRSAt, mutants were generated in
the A. tumefaciens leuS gene cloned into the pET-21b vector (for recombinant
protein expression) and pBBR1MCS-3 (bioassays). Multiple rounds of mutagenesis
were performed to obtain more than one mutation in an enzyme. DNA sequence
analysis was used to confirm the correct construction of the entire gene sequence
for all single, and multiple site mutants, used in this study.

Insertion of the LS domain of LeuRSAt into AgnB2. The LS domain of LeuRSAt

(141 bp) was inserted into AgnB2 (replacing the region between amino acid no. 566
and 572 with the LS domain)37 To obtain this, the forward PCR primer was
designed to contain the region of AgnB2 (B25 bp) preceding the LS domain
insertion followed by the first 25 bases of the LS domain (50–30). Similarly, the
reverse primer was designed so as to include the last 25 bp of the LS domain (30–50)
and the gene sequence of AgnB2 after the LS domain insertion. An extension
reaction was carried out to obtain mega primers, (forward and reverse) encoding
the entire LS domain (of LeuRSAt) flanked by the sequence of AgnB2 on both sides
using the protocol by Wang and Malcolm42. DpnI digestion was then carried out to
remove the wt template. The resultant mega primer was gel purified using the

Qiaex II gel extraction kit (Qiagen) to be used in the second step. The PCR
amplified mega primers (generated in the first step) were then added to the
extension reaction in presence of the pET-28a plasmid containing the agnB2 gene
(using the Quikchange site-directed mutagenesis protocol II). Positive clones
encoding AgnB2 with the entire LS domain of LeuRSAt were identified by colony
PCR and finally confirmed by DNA sequencing analysis. Using a similar strategy,
LS domain was added to the AgnB2 Triple mutant as well as the AgnB2 Triple
Q413R mutant.

Construction of A. tumefaciens bioassay strains. A modified acs operon
encoding the agrocin 84 transporter system (agrocinopine permease)43–45 was
cloned into pYW15d plasmid containing a T5 promoter and an antibiotic marker
(carbenicillin)46. Importantly, the accR repressor gene, responsible for the
regulation of the agrocinopine permease47, had been removed from our
construction in order to produce A. tumefaciens strains with maximum agrocin 84
uptake. The pYW15d-acs DaccR plasmid encoding the agrocin 84 transporter and
the pBBR1MCS-3 plasmid41 containing the agnB2/leuSAt gene and a T7 promoter
and a tetracycline marker were then transformed into an electrocompetent
A. tumefaciens NTL4 T7pol-Gm-FRT strain containing the DE3 lysogen encoding a
T7 RNA polymerase48. Briefly, electroporation was performed at 2400 V and 400O
and the culture was then grown in 3 ml LB broth for 2.5 h. The A. tumefaciens
culture was then streaked on LB agar plates containing 100 mg ml� 1 of
carbenicillin, 15mg/ml of gentamycin and 10 mg/ml of tetracycline. The final
construct A. tumefaciens NTL4 T7pol-Gm-FRT containing both pYW15d-acs
DaccR (encoding the agrocin 84 transporter) and a pBBR1MCS-3 plasmid
(containing a gene encoding either wt or mutant AgnB2/LeuRSAt proteins was then
used for bioassay analysis. Individual colonies were picked and grown in 3 ml
cultures to make glycerol stocks for storage at � 80 �C.

Protein expression and purification. All enzymes (mutants of AgnB2 and
LeuRSAt) were overexpressed in E. coli BL21 (DE3) RIL codon plus cells (Agilent)
(containing pET-28a plasmid encoding C-terminal 6X His-tagged AgnB2 gene
or pET-21b plasmid encoding C-terminal 6X histidine tagged LeuRSAt gene).
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binding complex with the CCA 30-end of the tRNA and TM84. Upon mutation of three critical residues, P45, M633 and N105, a TM84 resistant mutant

(LeuRSAt Triad) is obtained. AgnB2 on the other hand forms a weak ternary complex with tRNA and TM84, thereby explaining its high level of resistance

towards TM84. Mutagenesis of the corresponding residues in AgnB2 with the residues in LeuRSAt results in the AgnB2 Triple mutant that has reduced

levels of AgnB2 resistance. Upon introduction of Q413R mutation or addition of a LS-domain to the AgnB2 triple mutant, increased sensitivity towards

TM84 is achieved. Thus these residues along with the LS domain may be the key determinants of sensitivity or resistance in LeuRSAt and AgnB2.
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LeuRS enzymes were purified in a similar manner as detailed previously for
LeuRSAt

23. In brief, His-tagged proteins were purified by affinity chromatography
using Ni-NTA agarose beads (Qiagen), followed by purification using a strong
anion-exchange Mono-Q column (GE Healthcare) by FPLC. All proteins were
confirmed to be B95% pure using SDS–polyacrylamide gel electrophoresis analysis
and the active concentration determined by active-site titration.

Purification of TM84. Agrocin 84 and TM84 were obtained from A. tumefaciens
NT1 (pAgK84::Tn5A1-B5) agrocin 84 secretion strain grown at 28 �C in D-glucose
minimal media supplemented with 50 mg ml� 1 kanamycin as described
previously9,23. Briefly, agrocin 84 and TM84 was separated from other media
components by adsorption on charcoal, and then eluted using 70–90% reagent
alcohol, dried and both further purified by reverse-phase HPLC. The concentration
of TM84 was determined using an extinction coefficient (e¼ 260 nm) of
0.0154 M� 1 cm� 1.

Bioassays. In vivo assays to determine the agrocin 84 sensitivity of AgnB2/
LeuRSAt and their mutants were performed. Stationary phase cultures of A.
tumefaciens NTL4 T7pol-Gm-FRT strains transformed with both pYW15d-acs
DaccR (encoding the agrocin 84 transporter) and the pBBR1MCS-3 plasmids
(containing genes encoding the wt or mutant AgnB2/LeuRSAt proteins) were first
diluted 1:100 and then added to 20 ml LB agar plates containing 100 mg/ml of
carbenicillin, 15 mg ml� 1 of gentamycin, 10mg ml� 1 of tetracycline and 1mM
IPTG. A well was punched in the centre of the plate and 50 ml of 60mM agrocin 84
was added to determine the sensitivity of agrocin 84 towards AgnB2 and LeuRSAt.
The plates were then incubated at 28 �C for 48 h. The sensitivity of the strain
towards agrocin 84 was determined by measuring the zone of clearance around the
well containing agrocin 84. The control strain containing only the acs operon, but
no pBBR1MCS-3 plasmid showed a zone of clearance of around 4 cm. Therefore,
any sample having a zone of clearance 44.1 cm was considered inactive.

tRNALeu transcription. In this study, we used purified in vitro transcribed
tRNALeu(UAA) isoacceptor based on the nucleotide sequence from A. tumefaciens
(referred to in text as agrobacterium tRNALeu) and not A. radiobacter. This allowed
a direct comparison of in vitro aminoacylation kinetics and ITC analysis with our
in vivo studies of AgnB2 mutants. Importantly, both tRNALeu isoacceptors from
both species share a substantial similarity. Agrobacterium tRNALeu with (UAA)
isoacceptor was obtained by treating plasmids encoding the tRNALeu gene with
BstNI overnight at 60 �C. The linearized DNA was then used as a template in the
in vitro transcription reaction containing 40 mM Tris HCl (pH 8.0), 25 mM MgCl2,
40 mM DTT, 0.1% Triton X-100, 1 mM spermidine and 2 mM rNTPs, 1 U ml� 1

RNase inhibitor and 9 mM T7 RNA polymerase23. After DNase I treatment for
removal of template DNA and quenching the reaction with EDTA, the tRNA was
precipitated using 0.3 M sodium acetate and absolute ethanol. The tRNA obtained
was further purified on a 12% denaturing PAGE gel (19:1) containing 8 M urea and
1X TBE buffer (pH 8.3). Gel extraction of the tRNA was then performed, followed
by refolding of tRNA at room temperature using 1 mM MgCl2 after incubating
1 min at 80 �C (refs 23,49). The concentration of tRNA was determined and
corrected by a factor of 1.34 to account for the hypochromic effect on
absorbance23.

Active-site titration assay. Active enzyme concentrations of AgnB2, LeuRSAt and
their respective mutants was determined using the method described by Beebe
et al.50 and Ferst51. In brief, purified enzymes in the range of 1-2 mM (as
determined by the Bio-Rad Protein assay) were added to a reaction mix containing
20 mM KCl, 10 mM MgCl2, 10 mM b-mercaptoethanol (b-ME), 1 mM L-leucine,
5 mg ml� 1 yeast inorganic pyrophophatase (NEB), 5 mM ATP and 4 mCi [g-32P]
ATP. The reaction was initiated at 28 �C and 5 ml aliquots of the reaction quenched
using 7% perchloric acid and 1 M HCl over a time period of 5–30 min. The
amplitude of the burst phase of Leu-AMP formation was used to determine the
amount of Leu-AMP formed and subsequently the active concentration of the
enzymes.

ATP/PPi exchange assay. The formation of Leu-AMP by ATP/PPi exchange
assays was performed as described earlier23,50. Briefly, the reaction buffer contained
50 mM HEPES buffer (pH 7.4), 20 mM KCl, 10 mM MgCl2, 500 mM L-leucine,
4 mM ATP, 1 mM tetrasodium pyrophosphate (NaPPi), 10 mCi/mmol [32P] NaPPi
and 1 mM bovine serum albumin (BSA). The reaction was initiated by addition of
1–4 nM of active enzyme and incubated at 28 �C. Aliquots (5 ml each) were
collected over 30 min and quenched in a 10% charcoal slurry containing 0.5% HCl
and 50ml of 200 mM sodium pyrophosphate in 1 M HCl. Liquid scintillation
counting was then used to measure the amount of [32P]-PPi incorporation into
ATP that was adsorbed onto the charcoal.

Aminoacylation assay. Aminoacylation activities of AgnB2, LeuRSAt and their
mutants were measured in 50 mM HEPES buffer (pH 7.4) containing 20 mM KCl,
25 mM MgCl2, 25 mM b-ME, 4 mM ATP, 500mM [3,4,5-3H] L-leucine

(20 mCi/mmole), 5 mg/ml inorganic pyrophosphatase, 1 mM BSA, 10 mM of active
in vitro transcribed tRNALeu and enzymes in the range of 2–8 nM. Reactions were
pre-incubated with or without substrate and/or inhibitor and then carried out at
28 �C (37 �C-LeuRSHp). Aliquots of the reaction (5–10 ml) were quenched on 3 mM
filter pads (Whatman, GE Healthcare) presoaked with 5% trichloroacetic acid
(TCA). The pads were washed thrice with 5% TCA and 90% ethanol at 4 �C and
then dried. The amount of Leu-tRNALeu was then quantified using scintillation
counting. Each reaction was performed in triplicate and analyzed using
Kaleidagraph (for Km and kcat determinations) or GraphPad Prism software
(for IC50 determination).

Isothermal titration calorimetry. The affinity of TM84 binding to AgnB2,
LeuRSAt and their mutants was determined using ITC as described earlier23. Binary
interactions (TM84 binding to protein) and ternary interactions (TM84 binding
to proteinþ tRNA (1:1.2 molar ratio)) were tested using an Auto-ITC200
microcalorimeter (from MicroCal/GE Healthcare). Typically, about 4–8 mM active
protein solution and a 10-fold higher ligand concentration were prepared in buffer
containing 50 mM HEPES (pH 7.4), 20 mM KCl 10 mM MgCl2 and 1 mM b-ME.
The titrations were carried out in triplicate at 28 �C. The data was then analyzed
using Origin software (version 7) and fitted to a one-site or a two-site binding
model to obtain the binding affinity (Kd), stoichiometry (N) and enthalpy (DH) for
each complex.

Crystallization. Crystallization was carried out at 20 �C by the hanging drop vapor
diffusion method. Crystals of the ternary complex AgnB2 LeuRS�tRNALeu�Leu-
AMS were obtained by mixing 1 ml of a solution containing AgnB2 LeuRS at
43 mM, tRNALeu (A. tumefaciens) at 34mM and Leu-AMS at 2 mM; with 1 ml of
reservoir solution containing 0.1 M MES (pH 6.5), 0.2 M ammonium sulfate and
27% (w/v) PEG 5000 MME. Quality and size of crystals were optimized by macro-
seeding with protein at 2 mg ml� 1. The crystals were frozen in liquid nitrogen after
transfer for a few seconds in the mother liquor plus 15% (v/v) ethylene glycol as
cryoprotectant.

Structure determination and refinement. The diffraction data sets of the
complex AgnB2 LeuRS-tRNALeu-Leu-AMS were collected at the European
Synchrotron Radiation Facility (ESRF, France). The data sets were integrated and
scaled with the XDS suite52. Further data analysis was performed with the CCP4
suite53. The structure was initially solved by molecular replacement with
PHASER54 using as a model the catalytic and anticodon-binding domains of a
model built with SWISS-Model55 based on homology to LeuRSTt (PDB 2BTE)56

and LeuRSEc (PDB: 4AS1)25. The molecular replacement solution was used to
search with PHASER for AgnB2 tRNALeu using as a model the core of E. coli
tRNALeu (bases 1–73, except the bases belonging to the long-variable arm).
The obtained model was completed by manual placing of the ZN1 domain,
leucine-specific domain, C-terminal domain and editing domain. Manual
adjustments were done with COOT57 and the final model was refined using
REFMAC5 (ref. 58). Structure quality was analysed with MOLPROBITY
(http://molprobity.biochem.duke.edu/) and showed all residues in allowed regions.
Figures were drawn with PYMOL (http://www.pymol.org/).

Molecular modelling. A homology model of LeuRSAt was built using the Insight II
Molecular Modeling System (www.accelrys.com) based upon the template
structure of the LeuRSTt (PDB ID 1H3N)35. A normalized sequence-structure
compatibility score of 0.77 was calculated for the LeuRSAt homology model using
the Verify the three-dimensional module of Insight II59,60.

Data availability. Atomic coordinates and structure factors for the
AgnB2�tRNA�Leu-AMS ternary complex have been deposited in the RCSB
Protein Data Bank with the accession code 5AH5. All other data associated with
this manuscript are available from the corresponding author on reasonable request.
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