
ORIGINAL RESEARCH ARTICLE
published: 21 January 2015

doi: 10.3389/fmicb.2014.00765

Transferable antibiotic resistance plasmids from biogas
plant digestates often belong to the IncP-1ε subgroup
Birgit Wolters1,2 , Martina Kyselková 3, Ellen Krögerrecklenfort 1, Robert Kreuzig 2 and Kornelia Smalla1*

1 Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
2 Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Braunschweig, Germany
3 Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Soil Biology, České Budějovice, Czech Republic
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Manure is known to contain residues of antibiotics administered to farm animals as well
as bacteria carrying antibiotic resistance genes (ARGs). These genes are often located on
mobile genetic elements. In biogas plants (BGPs), organic substrates such as manure and
plant material are mixed and fermented in order to provide energy, and resulting digestates
are used for soil fertilization. The fate of plasmid carrying bacteria from manure during the
fermentation process is unknown. The present study focused on transferable antibiotic
resistance plasmids from digestates of seven BGPs, using manure as a co-substrate,
and their phenotypic and genotypic characterization. Plasmids conferring resistance to
either tetracycline or sulfadiazine were captured by means of exogenous plasmid isolation
from digestates into Pseudomonas putida KT2442 and Escherichia coli CV601 recipients,
at transfer frequencies ranging from 10−5 to 10−7. Transconjugants (n = 101) were
screened by PCR-Southern blot hybridization and real-time PCR for the presence of IncP-
1, IncP-1ε, IncW, IncN, IncP-7, IncP-9, LowGC, and IncQ plasmids. While 61 plasmids
remained unassigned, 40 plasmids belonged to the IncP-1ε subgroup. All these IncP-1ε

plasmids were shown to harbor the genes tet (A), sul1, qacE�1, intI1, and integron gene
cassette amplicons of different size. Further analysis of 16 representative IncP-1ε plasmids
showed that they conferred six different multiple antibiotic resistance patterns and their
diversity seemed to be driven by the gene cassette arrays. IncP-1ε plasmids displaying
similar restriction and antibiotic resistance patterns were captured from different BGPs,
suggesting that they may be typical of this environment. Our study showed that BGP
digestates are a potential source of transferable antibiotic resistance plasmids, and in
particular the broad host range IncP-1ε plasmids might contribute to the spread of ARGs
when digestates are used as fertilizer.

Keywords: IncP-1ε plasmid, class 1 integrons, biogas plant digestate, antibiotic resistance, exogenous plasmid

isolation

INTRODUCTION
Due to the promotion of renewable energies the number of bio-
gas plants (BGPs) in Germany is on the rise during the last years
(Fachverband Biogas e.V., 20141). In BGPs organic substrates of
different origin, such as manures, sludge or plant material, are
mixed and fermented anaerobically under usually mesophilic con-
ditions (approximately 40◦C) in order to provide energy (Weiland,
2010). The conversion of biomass into biogas is accomplished via
enzymatic degradation driven by bacteria and archaea. The diges-
tates resulting from this process are often stored for several months
before being applied to agricultural fields as fertilizer similar to
manures.

Depending on their chemical structure, antibiotics applied to
livestock, as well as their partially still active metabolites, were
detected in the excrements of treated animals in several studies
(Boxall et al., 2004; Sarmah et al., 2006; Lamshöft et al., 2007).
Thus, antibiotics present in manure might select for resistant

1http://www.biogas.org

bacteria. Consistently, in multiple studies piggery manure was
reported as a reservoir of bacteria carrying antibiotic resistance
genes (ARGs; Hölzel et al., 2009) and genes conferring resis-
tance to all major classes of antibiotics have been detected in
total community (TC-) DNA of pig manures and slurries (Marti
et al., 2013; Zhu et al., 2013). In addition, ARGs from manure
bacteria were shown to be often located on mobile genetic ele-
ments (MGEs) such as plasmids (Binh et al., 2008; Heuer et al.,
2012) and transferable plasmids of several different incompat-
ibility groups, e.g., IncP-1, IncN, IncW, IncP-9, LowGC, and
IncQ plasmids (Krasowiak et al., 2002; Binh et al., 2008; Heuer
et al., 2009), have been reported frequently in TC-DNA from pig
manures and slurries. Some of these plasmid groups, such as IncP-
1, IncN, IncW, and IncQ have a broad host range and may be
exchanged among phylogenetically distant bacteria (Pukall et al.,
1996; Shintani et al., 2010, 2014; Suzuki et al., 2010; Klümper
et al., 2014). Therefore, when spreading manure on field soils,
ARGs located on MGEs might be transferred to soil bacteria.
Indeed, the IncP-1α plasmid pGP527 and the mobilizable IncQ
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plasmid pIE723 were shown to be transferred to Pseudomonas
putida under field conditions when introduced together with
manure (Götz and Smalla, 1997). Thus, the use of manure as
fertilizer might contribute to the spread of antibiotic resistance
in agricultural settings (Rahube and Yost, 2012; Jechalke et al.,
2014b).

Another group of genetic elements assumed to play an impor-
tant role in the dissemination of ARGs are integrons that are often
associated with the plasmid groups mentioned above (Thorsted
et al., 1998; Bahl et al., 2007; Eikmeyer et al., 2012; Heuer et al.,
2012). Although not mobile per se, integrons are often linked
to MGEs, such as plasmids, ISCR (insertion sequence common
region) elements or transposons (Mazel, 2006), but may also
be located on chromosomes (Mazel et al., 1998; Boucher et al.,
2007). Due to their ability to capture, integrate, express and excise
promoter-less gene cassettes, which in many cases code for ARGs,
integrons function as a genetic platform for the exchange and
accumulation of antibiotic resistance determinants in host bac-
teria (Stokes and Hall, 1989; Boucher et al., 2007). Thereby they
allow for a fast adaptation of their host to antibiotic stress by
integration of new gene cassettes, and also further extend the
accessibility of ARGs to bacteria when being located on trans-
ferable plasmids or other MGEs. It has been shown that integrons
contribute to the spread of ARGs in the environment as well as
in clinical settings (Gillings, 2014). They are widely distributed
in Gram-negative bacteria (including pathogens) and are also
present in Gram-positive bacteria (Moura et al., 2009; Gillings,
2014).

Land application of animal manure has been recognized as a
risk factor for the dissemination of MGEs associated with ARGs
in soil (reviewed in e.g., Chee-Sanford et al., 2009; Heuer et al.,
2011), but whether digestates from BGPs that use manure as a
co-substrate represent a similar risk remains to be evaluated. So
far, microbiological research on BGPs has focused mainly on the
fermenter, while less attention has been paid to the stored diges-
tates. Nevertheless, several studies analyzed the influence of the
biogas process on the survival of pathogenic or multiresistant
bacteria (Sahlström, 2003; Iwasaki et al., 2011; Beneragama et al.,
2013; Resende et al., 2014). For example, Beneragama et al. (2013)
showed at the lab scale that digestates which had been treated at
mesophilic temperatures still contained viable multidrug resistant
bacteria originating from the fermented manure. But yet the ques-
tion of whether such bacteria contain transferable ARGs that might
be transferred to bacteria associated with soil or plants remained
unanswered.

The present study thus aimed to explore whether digestates
of mesophilic full-scale BGPs fed with manures represent a pos-
sible source of transferable antibiotic resistance plasmids and to
characterize these plasmids in terms of genotypic (incompatibility
groups, presence of ARG and integrons, restriction patterns) and
phenotypic (conferred antibiotic resistance) diversity.

MATERIAL AND METHODS
SAMPLING
Stored digestates from seven BGPs were sampled (four replicates
per BGP) in Lower Saxony during autumn 2012. Six of these BGPs
were fermenting pig manure and one alternatively cattle manure as

co-substrate in combination with varying plant material. Storage
tanks were filled semi-continuously during the year with freshly
digested material from the fermenters or postfermenters of the
BGPs and mixed. Sampling was performed from storage tanks
after thoroughly stirring the digestates and was done either via
tank outlet valves or, in case of open silos, via probe samplers,
bypass samplers or in back-flush mode from a vacuum tanker. For
further information on fermented materials and other features of
the different BGPs, see Table 1.

SAMPLE PREPARATION
For exogenous plasmid isolation aliquots of digestate sample repli-
cates were pooled and processed shortly after sampling. Fifty mL of
the resulting homogenized samples were centrifuged in 50 mL Fal-
con tubes at 3,100 × g for 10 min at room temperature (RT). Pellets
were resuspended and washed twice in 30 mL sterile 0.85% NaCl
solution followed by centrifugation for 2 min at 3,100 × g at RT.
Supernatants were discarded, resulting pellets were homogenized
manually with sterile spatula and used immediately as donors for
exogenous plasmid isolation.

STRAINS
Escherichia coli CV601 gfp+ [resistant toward kanamycin (KAN)
and rifampicin (RIF), Heuer et al., 2002] and P. putida KT2442
gfp+ (resistant toward KAN, RIF, Heuer et al., 2002) were used
as recipient strains in exogenous plasmid isolation. E. coli DH5α

(no antibiotic resistance) was used as recipient for subsequent
transformation of captured plasmids via electroporation.

EXOGENOUS PLASMID ISOLATION
Single colonies of recipient strains were inoculated into 40 mL
sterile Luria Bertani broth (LB; Roth, Karlsruhe, Germany) sup-
plemented with KAN (50 mg/L) and RIF (50 mg/L) in 100 mL
Erlenmeyer flasks and incubated for 20 h at 28◦C and 150 rpm
on a shaker. One mL of each recipient culture was centrifuged
at 3,100 × g for 5 min at RT. Pellets were washed twice with
1 mL 1/10 tryptic soy broth (TSB; Merck, Darmstadt, Germany),
centrifuged at the same conditions and dispersed in 1 mL 1/10
TSB. Five g of each digestate pellet (see sample preparation)
were dissolved in 45 mL sterile 1/10 TSB in 100 mL Erlen-
meyer flasks and pre-incubated at 28◦C and 150 rpm for 2 h
on a shaker. 1,950 μL of each digestate suspension were mixed
with 50 μL of recipient suspension in a 2 mL reaction tube in
order to prepare mating mixes. 1,950 μL of digestate suspension
without recipient and 50 μL of recipient suspension added to
1,950 μL of sterile 1/10 TSB were used as donor and recipient
controls, respectively. The tubes were centrifuged at 16,000 × g
for 5 min at RT (Centrifuge 5402, Eppendorf, Hamburg, Ger-
many), supernatants were removed carefully with a pipette and
resulting pellets were resuspended in 100 μL 1/10 TSB. The sus-
pensions were transferred to Millipore filters (0.22 mm) placed
on plate count agar (PCA; Merck) supplemented with cyclohex-
imide (100 mg/L) and incubated overnight at 28◦C. Afterward
the filters were transferred into 50 mL Falcon tubes containing
10 mL sterile 0.85% NaCl solution and vortexed for 1 min to
detach the cells from the filters (corresponding to a 10−2 dilu-
tion). Serial dilutions (10−2 to 10−9) were prepared from the
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Table 1 | Substrates used in sampled biogas plants (BGPs), resilience time of material within fermenters, storage system and time periods of

semi-continuous digestate collection (storage time).

BGP# Substrates Residence time

in fermenter [d]

Storage of

digestates

Storage time

digestates [months]

1 Pig manure, maize silage, potato mash, few beet 100 Open (No information)

2 Pig manure, maize silage, gras, sunflower silage, onions, cattle manure 100 Closed (No information)

3 Pig manure, maize silage 90–100 Closed 8–9

4 Pig manure, maize silage 90–100 Storage in

postfermenter

8–9

5 Pig manure, maize silage, dry chicken manure 67 Closed 2

6 Pig manure, bull manure, dry chicken manure, maize, green rye (No information) Closed (No information)

7 Cattle manure, maize silage, feed rests, dung (No information) Closed (No information)

cell suspensions with sterile 0.85% NaCl solution. To obtain
transconjugants that captured resistance toward sulfonamides,
100 μL of serial dilutions (10−2 to 10−4) of E. coli CV601 gfp+
mating mixes were plated in duplicate on Mueller-Hinton agar
according to CLSI (Merck; this medium is recommended for
sulfonamide testing) supplemented with KAN (50 mg/L), RIF
(50 mg/L) and sulfadiazine (SDZ; 50 mg/L). Alternatively, for iso-
lation of P. putida KT2442 gfp+ transconjugants that captured
tetracycline (TET)-resistance, 100 μL of serial dilutions (10−2

to 10−4) were streaked in duplicate on R2A agar (Merck; this
medium prevents excessive exopolysaccharide production by P.
putida which might disturb subsequent plasmid-DNA extraction)
supplemented with KAN (50 mg/L), RIF (50 mg/L), and TET
(30 mg/L). Background controls of all digestates and the recip-
ients (100 μL of 10−2 dilution) were plated in duplicate on the
corresponding selective media. Numbers of recipient cells were
determined by applying three replicate 20 μL drops per each serial
dilution of all mating mixes on PCA with KAN (50 mg/L) and
RIF (50 mg/L). Transfer frequencies were calculated based on the
following formula:

Transfer frequency: CFU mL−1 of transconjugants/CFU mL−1 of
recipients.

EXTRACTION OF PLASMID-DNA FROM TRANSCONJUGANTS AND
TRANSFORMANTS
Plasmid-DNA was extracted from transconjugants of P. putida
KT2442 gfp+ and E. coli CV601 gfp+ and transformed E. coli DH5α

using the NucleoSpin® Plasmid kit (Macherey-Nagel, Düren, Ger-
many) according to the manufacturer’s instructions for isolation
of low copy plasmids.

CONFIRMATION OF TRANSCONJUGANTS
Transconjugants were confirmed by their green fluorescence and
by DNA-based methods. For the latter purpose, plasmid-DNA
extracts of putative transconjugants (still containing genomic
DNA) were tested either for the presence of gfp via PCR as
described by Andersen et al. (1998) or by comparing the result-
ing BOX-PCR fingerprints to those of the corresponding recipient
strain (Versalovic et al., 1994).

CHARACTERIZATION OF PLASMIDS BY PCR AND SOUTHERN BLOT
HYBRIDIZATION
Sequences specific for IncP-1, IncN, IncW, IncP-7, IncP-9, LowGC,
and IncQ plasmids, the integrase gene intI1, TET-resistance gene
tet(A) and regions flanking class 1 integron gene cassettes were
detected in plasmid extracts using primer sets and PCR assays pre-
viously described (Table 2). Detection of IncP-1 plasmids (trfA)
was performed using the primer systems targeting subgroups α,
β, ε, δ, and γ as established by Bahl et al. (2009) and two novel
primer pairs (Table 2) targeting the subgroup of IncP-1ζ plasmids
(Norberg et al., 2011) and the IncP-1γ plasmid pKS208 (Heuer
et al., 2002; referred to as γ-like in Table 2), which was not ampli-
fied with the primer system mentioned above. The primers were
designed following the same concept as Bahl et al. (2009) based on
the trfA sequences available for pKS208 (Sen et al., 2013) and the
IncP-1ζ plasmids pMCBF1 and pMCBF6 (Norberg et al., 2011).
Primer sequences and PCR conditions are given in Table 2. The
primers described by Sandvang et al. (1997) bind to conserved
sequences flanking the variable gene cassette region of class 1 inte-
grons and thus are suitable for amplification of the gene cassette
array present.

To increase specificity of detection, Southern blotting and
hybridization were performed as described previously (Binh et al.,
2008). Briefly, PCR products were run on agarose gels and
subsequently blotted to a Hybond-N membrane (GE Health-
care, Buckinghamshire, UK) according to Sambrook et al. (1989).
The membranes were hybridized with digoxigenin (DIG) labeled
probes generated from PCR amplicons obtained with reference
plasmids (intI1: pKJK5, tet(A): pKJK5, IncN: RN3, IncP-1α: RP4,
IncP-1β: R751, IncP-1γ: pQKH54, IncP-1γ-like: pKS208, IncP-1δ:
pEST4011, IncP-1ε: pKJK5, IncP-1ζ: pMCBF1, IncP-7: pCAR1,
IncP-9: mixed probe (described by Dealtry et al., 2014), IncQ:
RSF1010, IncW: R388, LowGC: pHHV216). The PCR-products of
the integron gene cassettes were hybridized with a probe specific
for the aminoglycoside resistance gene aadA1 (Binh et al., 2009).

SCREENING OF INCP-1ε PLASMIDS BY REAL-TIME PCR
Integrase genes of class 1 (intI1) and class 2 (intI2) integrons,
ARG sul1, qacE�1 (conferring resistance toward quaternary
ammonium compounds) and sequences specific for plasmids
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Table 2 | Primer systems used in this study for characterization of captured plasmids.

Target gene Primers Sequence [5′–3′] Amplicon size [bp] Annealing temp. Reference

IncN (rep) IncN-rep-1

IncN-rep-2

agttcaccacctactcgctccg

caagttcttctgttgggattccg

165 55◦C Götz et al. (1996)

IncP-1 (trfA) trfA 733 f (α, β, ε)

trfA 1013 r

trfA g-F (γ)

trfA g-R

trfAg-208f (γ-l.)

trfAg-208r

trfA d-F (δ)

trfA d-r

trfA z-f (ζ)

trfA z-r

ttcacsttctacgagmtktgccaggac

gwcagcttgcggtacttctccc

ttcactttttacgagctttgcagcgac

gtcagctcgcggtacttctccca

ttcaccttctacgaactgtgtaat

gtcaaggcccgatacttctccca

ttcacgttctacgagctttgcacagac

gacagctcgcggtacttttccca

ttcactttctacgaaatctgcaaagac

gatagcttccgatacttttccca

281 60◦C Bahl et al. (2009); this paper

IncP-7 (rep) P7repA (reverse)

P7repB (forward)

ccctatctcacgatgctgta

gcacaaacggtcgtcag

524 54◦C Izmalkova et al. (2005)

IncP-9 (oriV -rep) IncP-9 ori 69f

IncP-9 rep 679r

gagggtttggagatcat(at)aga

ggtctgtatccagtt(ag)tgctt

∼610 53◦C Dealtry et al. (2014)

IncQ (oriV ) IncQ-oriV-1

IncQ-oriV-2

ctcccgtactaactgtcacg

atcgaccgagacaggccctgc

436 57◦C Götz et al. (1996)

IncW (oriV ) IncW-oriV-1

IncW-oriV-2

gacccggaaaaccaaaaata

gtgagggtgagggtgctatc

1140 57◦C Götz et al. (1996)

LowGC (rep) V216repF

V216repR

aattgaccgatttagttgtgacctgc

tgatttgytttggagatac

912 56◦C Heuer et al. (2009)

intI1 intI1F

intI1R

cctcccgcacgatgatc

tccacgcatcgtcaggc

280 55◦C Kraft et al. (1986)

tet (A) TetA-L

TetA-R

ggcggtcttcttcatcatgc

cggcaggcagagcaagtaga

502 64◦C Lanz et al. (2003)

Integron gene cassettes 5′-CS: intIF

3′-CS: intIB

ggcatccaagcagcaagc

aagcagacttgacctgat

variable 55◦C Sandvang et al. (1997)

of the IncP-1ε subgroup (trfA) were detected by real-time PCR
5′-nuclease assays in a CFX96 real-time PCR detection system
(Bio-Rad, Hercules, CA, USA) as previously described (Heuer and
Smalla, 2007; Barraud et al., 2010; Heuer et al., 2012; Jechalke et al.,
2014a).

TRANSFORMATION OF CAPTURED PLASMIDS INTO E. coli DH5α
Prior to further characterization, 16 exogenously isolated IncP-1ε

plasmids were selected, based on the sizes of integron gene cassette
amplicons, and transferred by transformation into E. coli DH5α

via electroporation. For this purpose electrocompetent cells of
E. coli DH5α were prepared using the protocol described by Choi
et al. (2006). Fifty μL of freshly prepared electrocompetent cells
were mixed on ice with 5–10 μL of plasmid-DNA extracts and
transferred into electroporation cuvettes (2 mm electrode gap,
Bulldog Bio, Portsmouth, NH, USA). Immediately after applying
a pulse of 2,500 V, a volume of 950 μL Super Optimal Broth
medium containing 20 mM glucose (SOC medium, provided

at RT) was added and transformation mixtures were transferred
into 1.5 mL Eppendorf tubes and incubated shaking at 300 rpm
and 37◦C for 1.5 h. To select for TET-resistant transformants,
200 μL of each transformation mix as well as pelleted (2 min,
max. speed, mini Spin, Eppendorf, Hamburg, Germany) remain-
ing cells resuspended in 100 μL SOC medium were streaked on
LB agar supplemented with TET (15 mg/L). Plates were incubated
at 37◦C for 24 h and checked for growth of transformants.

DETERMINATION OF ANTIBIOTIC RESISTANCE PATTERNS OF
CAPTURED PLASMIDS
Single colonies of transformants were suspended in 900 μL ster-
ile 0.85% NaCl solution by vortexing. 200 μL of the suspensions
were streaked in triplicates onto Mueller-Hinton agar using ster-
ile glass spatula. Paper disks containing different antibiotics of
defined amounts (Becton, Dickinson and Company, Heidelberg,
Germany) were placed on the inoculated plates. The plates were
incubated at 37◦C for 24 h and inhibition zones (IZ) around
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antibiotic paper disks were measured and compared to those of
the plasmid-free recipient strain E. coli DH5α. Resistance was
tested against the following antibiotics and concentrations: doxy-
cycline (DOX) 30 μg, ampicillin 25 μg, trimethoprim (TMP)
5 μg, enrofloxacin 5 μg, SDZ 25 μg, chloramphenicol (CM) 30 μg,
streptomycin (SM) 10 μg, cefotaxim 5 μg. Strains were considered
resistant toward an antibiotic if the IZ around the respective paper
disk was <8 mm, moderately susceptible if the IZ was 8–18 mm,
and susceptible if the IZ was >18 mm.

DETERMINATION OF RESTRICTION PATTERNS OF PLASMIDS
Plasmid-DNA was extracted from the E. coli DH5α transformants
as described above. To evaluate the plasmid diversity, the plasmid-
DNA was digested using NotI (Thermo Fisher Scientific, Waltham,
MA, USA) and separated subsequently on a 1% agarose gel. The
resulting digestion patterns were compared and grouped accord-
ing to the number of fragments and corresponding fragment
sizes.

PLASMID REPLICON TYPING
A total of 10 transconjugants (five P. putida KT2442 gfp+ transcon-
jugants from BGP1, BGP2, BGP3, BGP4, BGP5, and five E.
coli CV601gfp+ transconjugants from BGP1) for which the plas-
mids captured could not be identified by PCR and Southern
blot hybridization as described above, were analyzed applying the
PBRT kit for PCR-based plasmid replicon typing (Diatheva, Fano,
Italy). This kit is suitable for the detection of the plasmid incom-
patibility groups HI1, HI2, I1, I2, X1, X2, L/M, N, FIA, FIB, FIC,
FII, FIIS, FIIK, W, Y, P, A/C, T, K, U, R, B/O, HIB-M, and FIB-
M (representative for major plasmid incompatibility groups for
resistance plasmids of Enterobacteriaceae).

RESULTS
TRANSFERABLE ANTIBIOTIC RESISTANCE PLASMIDS CAPTURED FROM
BIOGAS DIGESTATES
Exogenous plasmid isolations from the digestates were performed
in order to capture transferable plasmids conferring resistance
toward TET or SDZ into P. putida KT2442 gfp+ and E. coli CV601
gfp+ recipients, respectively. TET resistance was captured success-
fully from all digestates into P. putida KT2442 gfp+ at log transfer
frequencies in the range of −5.3 to −6.7 (Figure 1). In contrast,
transferable SDZ resistance plasmids could be captured into E.
coli CV601 gfp+ only from the digestates of BGP1 (log transfer
frequency of −5.6), because a background growth of indigenous
bacteria resistant to SDZ, KAN, and RIF prevented the selection
of transconjugants for samples derived from the other BGPs.
Indeed, DNA extracted from the respective putative transcon-
jugants obtained from BGP2, BGP3, BGP4, BGP5, BGP6, and
BGP7 displayed BOX-patterns very different from the recipient,
indicating background growth of multidrug-resistant bacteria.

INCP-1ε PLASMIDS FREQUENTLY DETECTED AMONG
TRANSCONJUGANTS FROM DIGESTATES
A total of 101 transconjugants were confirmed based on their
growth on selective media and additionally by gfp- and/or
BOX-PCR. PCR-Southern blot hybridization for sequences spe-
cific for several plasmid incompatibility groups of plasmids

FIGURE 1 |Transfer frequencies of tetracycline-resistance from

digestates of biogas plants (BGPs) into Pseudomonas putida KT2442

gfp+ via exogenous plasmid isolation. Values are shown as logarithms
of mean values (n = 2).

(Table 3) revealed that 40 plasmids could be assigned to the IncP-1
group. Further characterization by real-time PCR with primers
specific for IncP-1ε showed that all IncP-1 plasmids belonged
to the IncP-1ε plasmid group. IncP-1ε plasmids were captured
from digestates of BGP2, BGP5, BGP6, and BGP7 using P. putida
KT2442 gfp+ and from BGP1 using E. coli CV601 gfp+ as recip-
ients. The plasmids contained in the remaining transconjugants
could not be assigned to any of the plasmid groups tested, and
their diversity was not further analyzed here.

All IncP-1ε plasmids were tested positive by PCR-Southern
blot hybridization for integrase genes of class 1 integrons (intI1),
the TET-resistance gene tet(A) and the sulfonamide resistance
gene sul1. In addition, all IncP-1ε plasmids contained inte-
gron gene cassette amplicons with sizes varying from 1,000 to
2,300 bp (Tables 3 and 4) and gene cassette PCR products of
15 IncP-1ε plasmids were tested positive for aadA1 by Southern
blot hybridization (Table 4). The gene cassette amplicons of the
remaining 25 IncP-1ε plasmids weakly hybridized with the aadA1
probe, suggesting the presence of other aadA variants.

INCP-1ε PLASMIDS CONFERRED MULTIPLE ANTIBIOTIC RESISTANCES
Based on the varying size of the gene cassette amplicons, a total of
16 IncP-1ε plasmids (representative for 37 of the 40 IncP-1ε plas-
mids) was chosen for further analysis. For this purpose, they were
transferred into E. coli DH5α by electroporation to make possible a
comparative characterization in an identical genetic background.
Antibiotic resistances conferred by plasmids determined by disk
diffusion tests revealed six different antibiotic resistance patterns
(Table 5) compared to the plasmid-free E. coli DH5α which was
susceptible toward all antibiotics tested. Each of the eight plasmids
harboring a gene cassette amplicon of 2,200 bp (Ps128, Ps152,
Ps154, Ps156, E9, E10, E12, and E17) displayed resistance toward
SDZ, TET, TMP, and moderate resistance toward DOX and SM
(pattern #1). However, the same resistances were also conferred
by the plasmids containing an integron gene cassette amplicon
of 1,600 bp (Ps28) and 1,500 bp (Ps151). Both plasmids (Ps29
and Ps134) in which integron gene cassette amplicons of both
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Table 3 | Detection of plasmids of different incompatibility groups and integrase genes specific for integrons of class 1 (intI1) in plasmid-DNA

extracted from Pseudomonas putida KT2242 gfp+ (Ps) and Escherichia coli CV601 gfp+ (E) transconjugants via PCR and real-time PCR (BGP,

biogas plant).

BGP Recipient IncN IncP-1 IncP-7 IncP-9 IncQ IncW LowGC intI1 Total number tested

1 Ps – – – – – – – – 10

2 Ps – 8/9 – – – – – 8/9 9

3 Ps – – – – – – – – 23

4 Ps – – – – – – – – 10

5 Ps – 4/9 – – – – – 4/9 9

6 Ps – 10/10 – – – – – 10/10 10

7 Ps – 9/9 – – – – – 9/9 9

1 E – 9/21 – – – – – 9/21 21

Table 4 | Detection of integron gene cassette amplicons, antibiotic resistance genes tet (A) and sul1 and genes conferring resistance against

quaternary ammonium compounds (qacE�1) in IncP-1ε plasmid-DNA extracted from P. putida KT2242 gfp+ (Ps) and E. coli CV601 gfp+ (E)

transconjugants via PCR, Southern blot hybridization and real-time PCR [(+) = weak hybridization signal after long exposure time; BGP, biogas

plant].

BGP Recipient Gene cassette amplicon sizes [bp]

(number positive/tested)

qacE�1 tet (A) sul1 aadA1

2 Ps 1000 (6/8)

1600 (1/8)

1700 + 2300 (1/8)

+
+
+

+
+
+

+
+
+

+
(+)

+
5 Ps 1000 (1/4)

1700 (3/4)

+
+

+
+

+
+

+
+

6 Ps 1500 (4/10)

2200 (6/10)

+
+

+
+

+
+

(+)

(+)

7 Ps 1700 + 2300 (1/9)

2200 (8/9)

+
+

+
+

+
+

+
(+)

1 E 2000 (2/9)

2000 + 1000 (1/9)

2200 (6/9)

+
+
+

+
+
+

+
+
+

+
+
(+)

2,300 and 1,700 bp were detected showed the resistance toward
SDZ, CM, SM, TET, and moderate resistance toward DOX (pattern
#2). The size of the integron gene cassette amplicons of remain-
ing plasmids was either 1,000 or 1,700 bp and displayed unique
resistance patterns (pattern #3–6). Thus, in some cases different
resistance patterns were found to be related to the same size of gene
cassette amplicons from class 1 integrons. Plasmids conferring
resistances to the same antibiotics were captured from different
BGPs. Although only plasmids displaying resistance pattern #1
were captured from BGP1, pattern #1 was also found in plasmids
originating from BGP6 and BGP7. Furthermore, the different rep-
resentative plasmids of resistance pattern #2 were captured from
digestates of different BGPs.

Comparing the detected marker genes and the respective resis-
tance patterns observed (Table 5), all transformants negative for
aadA1 displayed moderate resistance toward streptomycin and
were resistant toward TMP. Vice versa, none of the plasmids that
harbored aadA1 within their integron gene cassettes conferred

resistance toward TMP. Also it is worth noting that in contrast to
all other transformants tested positive for aadA1, the transformant
Ps26 displayed no resistance toward SM.

The restriction analysis of the IncP-1ε plasmids transferred into
E. coli DH5α revealed five different patterns (Figure 2). Eight plas-
mids, originating from BGP2, BGP5, BGP6, and BGP7, shared
restriction pattern A which was also observed for the IncP-1ε

type plasmid pKJK5. These plasmids were all originally captured
into P. putida KT2442 gfp+. Surprisingly, plasmids of the restric-
tion pattern A contained gene cassette amplicons of varying sizes
and displayed three different antibiotic resistance patterns (#1, #2,
and #5). The four plasmids captured into E. coli CV601 gfp+ all
displayed restriction pattern B, harbored an integron gene cas-
sette amplicon of 2,200 bp, and displayed resistance pattern #1.
Although sharing the same restriction pattern C and containing
integron gene cassette amplicons of the same size, the plasmids
Ps32 and Ps110 represented different antibiotic resistance profiles.
The plasmids Ps26 and Ps28 displayed unique restriction patterns
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Table 5 | Plasmid specific sequences, resistance genes and sizes of gene cassette amplicons detected via PCR and real-time PCR in DNA of E.

coli DH5α transformants (TF) of plasmids captured from digestates of different biogas plants (BGPs) and corresponding antibiotic resistance

patterns as determined by antibiograms (Ps = plasmid originally captured in P. putida KT2442 gfp+; E = plasmid originally captured in E. coli

CV601gfp+; *determined by growth on media containing 15 mg tetracycline (TET) per liter; rp, resistance pattern; CM, chloramphenicol; DOX,

doxycycline; SDZ, sulfadiazine; SM, streptomycin;TMP, trimethoprim).

#TF BGP Detected markers Gene cassette

size [bp]

Resistance Moderate

resistance

# rp

Ps26 2 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A), aadA1 1000 SDZ, TET* DOX 3

Ps28 2 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A) 1600 SDZ, TET*, TMP DOX, SM 1

Ps29 2 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A), aadA1 2300 + 1700 SDZ, CM, SM, TET* DOX 2

Ps32 2 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A), aadA1 1000 SDZ, SM, TET* DOX 4

Ps101 5 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A), aadA1 1700 SDZ, SM, TET* DOX, CM 5

Ps110 5 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A), aadA1 1000 SDZ, TET* DOX, SM 6

Ps151 6 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A) 1500 SDZ, TET*, TMP DOX, SM 1

Ps152 6 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A) 2200 SDZ, TET*, TMP DOX, SM 1

Ps154 6 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A) 2200 SDZ, TET*, TMP DOX, SM 1

Ps156 6 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A) 2200 SDZ, TET*, TMP DOX, SM 1

Ps128 7 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A) 2200 SDZ, TET*, TMP DOX, SM 1

Ps134 7 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A), aadA1 2300 + 1700 SDZ, CM, SM, TET* DOX 2

E9 1 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A) 2200 SDZ, TET*, TMP DOX, SM 1

E10 1 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A) 2200 SDZ, TET*, TMP DOX, SM 1

E12 1 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A) 2200 SDZ, TET*, TMP DOX, SM 1

E17 1 IncP-1ε (trfA), intI1, qacE�1, sul1, tet (A) 2200 SDZ, TET*, TMP DOX, SM 1

among this set of plasmids. Both displayed antibiotic resistance
pattern #2 which was also determined for one plasmid showing
restriction pattern A (Ps29). Considering these results, it was not
possible to correlate the restriction patterns of the IncP-1ε plas-
mids to the different resistance profiles observed, sizes of integron
gene cassette amplicons, or to their different origins.

PLASMID REPLICON TYPING OF UNIDENTIFIED PLASMIDS
None of the unassigned plasmids from the 10 transconjugants
could be affiliated to any of the plasmid groups (HI1, HI2, I1, I2,
X1, X2, L/M, N, FIA, FIB, FIC, FII, FIIS, FIIK, W, Y, P, A/C, T,
K, U, R, B/O, HIB-M, and FIB-M) surveyed by the PBRT kit for
PCR-based plasmid replicon typing.

DISCUSSION
In previous studies, the effect of anaerobic fermentation has been
tested for its mitigation potential toward pathogens and multidrug
resistant bacteria introduced into the fermenters with substrates,
such as manures (Iwasaki et al., 2011; Beneragama et al., 2013;
Resende et al., 2014). It has been shown that bacteria belonging
to both categories may survive this procedure if the fermenta-
tion is performed under mesophilic temperatures. Digestates of
mesophilic BGPs represent, therefore, a potential reservoir of
pathogens and bacteria displaying antibiotic resistances. But so
far there is a lack of knowledge concerning the transferability
of ARGs and MGEs harbored in bacteria resident in digestates
to other bacterial hosts. This is the first report on conjugative
plasmids captured in P. putida KT2442 gfp+ and E. coli CV601
gfp+ recipients from digestates of several different mesophilic

full-scale BGPs, fermenting manures as co-substrate, based on
resistances conferred toward two classes of antibiotics (i.e., TETs
and sulfonamides) most commonly applied in livestock in Ger-
many (Federal Office of Consumer Protection and Food Safety,
Germany, 20142).

Manures have been shown to represent a reservoir of trans-
ferable antibiotic resistance plasmids such as IncN, IncP-1, IncW,
LowGC, and IncQ plasmids (Smalla et al., 2000; Heuer et al., 2002,
2009; Binh et al., 2008). Except for LowGC, all these mentioned
incompatibility groups of plasmids display a broad host range.
This means they are able to self-transfer (IncN, IncP-1, IncW) or
to be mobilized (IncQ) to, replicate in and be stably maintained
in phylogenetically distant bacteria. It was assumed that broad
host range plasmids play an important role in interspecies gene
transfer and adaptation of bacterial communities to environmen-
tal stresses. Thus, if these plasmids provide a fitness advantage to
their hosts, there is a chance for their persistence once transferred
into a bacterial host associated with environments that might differ
from those of the original plasmid host.

In order to avoid the limitations of solely DNA-based meth-
ods (e.g., detection of relicts of dead bacteria) or cultivation-
dependent methods (which only allow to analyze culturable
bacteria) we performed exogenous plasmid isolation (Bale et al.,
1988) in this study to capture transferable plasmids conferring
resistance to either TETs or SDZ from the digestates. Although the
choice of recipient strains is crucial for the successful capture of
different plasmids (due to the need of maintenance and expression

2http://www.bvl.bund.de
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FIGURE 2 | NotI restriction patterns of transformed plasmids,

corresponding sizes of integron gene cassettes, antibiotic resistance

patterns (rp) and biogas plant (BGP) they were derived from

(M1 = GeneRulerTM 1 kb Plus DNA ladder,Thermo Fisher Scientific,

Waltham, MA, USA; M2 = DNA Molecular Weight Marker II,

DIG-labeled, Roche Diagnostics, Rotkreuz, Switzerland).

in the new host), this is the only method allowing for the unam-
biguous detection of MGE-associated ARGs that is not limited by
the culturability of the original bacterial host.

In this study, antibiotic resistance plasmids were captured suc-
cessfully from all digestates when using TET as selective agent,
while a high background growth occurred when using SDZ to
select for transconjugants. This background growth appeared
due to the presence of bacteria displaying an antibiotic resis-
tance phenotype toward SDZ, KAN, and RIF, which seemed to
be highly prevalent among indigenous digestate bacteria. Thus,
transferable plasmids conferring SDZ resistance could be cap-
tured in E. coli CV601 gfp+ recipients only from digestates of
BGP1. The growth of multidrug resistant bacteria originating
from BGP digestates is in accordance with a study by Beneragama
et al. (2013) who at lab-scale compared the survival of multidrug
resistant bacteria residing in dairy manure during mesophilic and
thermophilic anaerobic digestion. They found that after treat-
ment under mesophilic conditions (similar to those prevailing in
the BGPs sampled for our study) those bacteria were still viable,
although largely reduced in number, while thermophilic treatment
eliminated them. As we did not have problems with background
growth on TET-KAN-RIF selective plates, it seems that the asso-
ciation of TET resistance with KAN and RIF resistance in the
indigenous BGP bacteria was less common.

A substantial proportion (40/101) of the isolated plasmids
captured during this study could be assigned to the subgroup
of IncP-1ε plasmids (Table 3). Those plasmids were originating
from digestates of different BGPs. At the same time, plasmids of
this group were detected only at a low abundance in the respec-
tive TC-DNA of the analyzed digestates by PCR-Southern blot
hybridization and qPCR, and were in some cases even below
the detection limit (Wolters et al., data not shown). These data
indicate a clear advantage of the exogenous plasmid isolation
technique to isolate plasmids that occur at low abundance but
transfer efficiently. These plasmids would likely not be captured by
metagenomic approaches. This observation confirmed the already
known outstanding transfer efficiency of IncP-1 plasmids (Pukall
et al., 1996; Shintani et al., 2010). The host range of this plasmid
group is known to be broad, enclosing Gram-negative bacteria
(Alpha-, Beta-, and Gammaproteobacteria), and they have been
shown to be also transferable to Arthrobacter sp. (Gram-positive)
in which, however, their replication was not analyzed (Musovic
et al., 2006; Shintani et al., 2010, 2014; Klümper et al., 2014). Orig-
inally, IncP-1 plasmids were discovered in clinical isolates (Datta
et al., 1971). Nowadays, plasmids of this group were reported from
various environments such as soil, manure, sludge, water, and river
sediments (Top et al., 1994; Götz et al., 1996; Haines et al., 2006;
Smalla et al., 2006; Heuer and Smalla, 2012). Additionally, they
have been shown to be transferable to bacteria associated with
the rhizosphere of different plant species (Musovic et al., 2006;
Mølbak et al., 2007). Moreover, IncP-1 plasmids were frequently
captured by exogenous plasmid isolation from different environ-
ments such as manures, manured soils, and sludges before (Top
et al., 1994; Heuer et al., 2002, 2012; Binh et al., 2008). The ability
of IncP-1 plasmids to efficiently transfer in surface matings likely
contributes to their frequent capturing by means of the exogenous
plasmid isolation.

The co-occurrence of the sulfonamide resistance gene sul1, the
integrase gene of class 1 integrons (intI1), gene cassette ampli-
cons of different size (Table 4) and of qacE�1, was already shown
by Heuer et al. (2012) and Jechalke et al. (2014a) in IncP-1ε plas-
mids exogenously isolated from manure and arable soil, using
SDZ as a selection marker. Those IncP-1ε plasmids contained
similar components as the plasmids reported here (intI1, sul1,
and gene cassette amplicons that in many cases hybridized to an
aadA specific probe). The different sizes of gene cassette ampli-
cons observed in the study by Heuer et al. (2012) were in the same
range as the sizes determined for the amplicons of our IncP-1ε plas-
mids that were isolated based on the antibiotic resistance conferred
toward TET (in case of P. putida KT2442 gfp+ transconjugants)
or SDZ (E. coli CV601 gfp+ transconjugants). The finding that
IncP-1ε plasmids were captured from manures using the same
methods as in our study, and that they carried clinical class 1 inte-
grons harboring gene cassettes of sizes similar to those observed
for the plasmids isolated from BGP digestates is not too surpris-
ing as manure was used in all BGPs. Thus, it is most likely that
these plasmids originated from manure bacteria, and this might
be a hint for the survival of these bacteria during mesophilic pro-
cessing in full-scale BGPs. Interestingly, none of both completely
sequenced IncP-1ε plasmids exogenously isolated from a Norwe-
gian soil by Sen et al. (2011), based on the mercury resistance
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conferred, harbored integrons. The presence of qacE�1 in all 16
IncP-1ε plasmids captured from BGPs is in accordance with its
detection in TC-DNA derived from BGP digestates by Jechalke
et al. (2014a). Due to the frequent application of disinfectants
containing quaternary ammonium compounds in pig producing
systems (Preller et al., 1995) it is possible that a selection for bac-
teria carrying plasmids with clinical class 1 integrons might have
occurred in the manures before they were fermented in the BGPs
sampled in our study.

The ARG tet(A) which confers resistance toward TET by
an efflux mechanism was detected in all IncP-1ε plasmids of
the present study, also in those plasmids that were captured
based on the SDZ-resistance conferred. Similarly, the three com-
pletely sequenced IncP-1ε plasmids isolated from arable field soil
(pHH3414, pHH128) and pig manure (pKS77) reported by Heuer
et al. (2012), and the completely sequenced IncP-1ε archetype
of this plasmid subgroup, pKJK5, which was originally isolated
from manured soil, were shown to harbor this gene as well (Bahl
et al., 2007). The high proportion of plasmids carrying sul1 and
tet(A) is likely a consequence of the antibiotic selection pressure
posed by the extensive application of TETs and sulfonamides in
livestock.

In addition, within the integron gene cassette amplicons of six
plasmids transferred into E. coli DH5α transformants the amino-
glycoside resistance gene aadA1 could be detected. Very weak
hybridization signals were also obtained for further transformants
using the probe specific for aadA1. This might be a hint for the
presence of other aadA gene variants that share sequence simi-
larity to aadA1. aadA gene cassettes are known to be frequently
inserted in class 1 integrons. For example, a study by Binh et al.
(2009) revealed a high abundance of several different aadA genes
harbored in integrons of class 1 detected in samples derived from
pig manures and manured soils.

The observation made in this study that all IncP-1ε plas-
mids characterized in more detail harbored the genes tet(A), sul1,
qacE�1, and intI1 is especially interesting with regard to the results
of Forsberg et al. (2012). They compared sequencing data from
pooled genomic DNA of multidrug-resistant isolates from soil
samples with sequences of known human pathogenic isolates and
reported four fragments obtained from multidrug-resistant soil
isolates, which shared >99% nucleotide identity with sequences
of human pathogens. Within these fragments they found the same
genes [intI1, qacE�1, sul1, and tet(A)] which were also detected
in the present study on all 16 IncP-1ε plasmids from BGPs. More-
over, the majority of integron gene cassettes of human pathogenic
isolates that were used for comparison in their study contained
aminoglycoside resistance genes such as aadA genes. The same
holds true for at least six of our plasmids which contained aadA1
localized on class 1 integrons. This suggests that IncP-1ε plasmids
might be considered possible ARG vectors between environmental
bacteria and human pathogens.

The observed correlation of antibiotic resistance patterns dis-
played by the plasmids reported here with the different sizes of
integron gene cassette amplicons (Table 5) does once again reflect
the importance of these genetic elements in the adaptation of bac-
terial hosts to antibiotic stress. The types of ARG cassettes inserted
are likely determining the plasmid-conferred resistance profiles.

Similarly, it was proposed by Heuer et al. (2012) that integron
gene cassettes might be one of the main drivers of diversification
of IncP-1ε plasmids.

It is noteworthy that the restriction pattern A which showed
a high similarity to pKJK5 was the most frequent among the 16
plasmids (Figure 2). By sequence comparison of pKJK5 with four
IncP-1ε plasmids originating from arable soil and pig manure,
Heuer et al. (2012) found that the backbones of all four plasmids
were 99.9% identical to pKJK5. IncP-1ε plasmids representing
restriction pattern A were captured from digestates of four differ-
ent BGPs (BGP2, BGP5, BGP6, and BGP7). Important to note was
that plasmids sharing the same restriction patterns (namely A and
C) conferred different antibiotic resistance patterns (Figure 2).
This might also be a hint of the diversification of this plas-
mid group by integron gene cassette rearrangement, rather than
whole-genome rearrangement.

Particularly striking is the correlation of resistance patterns
conferred by the IncP-1ε plasmids reported here to the application
patterns of antibiotics in livestock production. As already men-
tioned, especially TETs and sulfonamides, together with β-lactams
account for the vast majority of antibiotics applied in animal
husbandry, and also aminoglycosides and TMP are frequently
administered (Federal Office of Consumer Protection and Food
Safety, Germany, 20143).

The remaining 61 plasmids, transferring resistance toward
either TETs or sulfonamides, were not assigned to any incompat-
ibility group tested. Even though not all known incompatibility
groups of plasmids were included in our monitoring, the fact
is striking that the major proportion (61/101; Table 3) of the
plasmids captured could not be assigned to plasmid groups typi-
cally associated with manures. Also the plasmids of a small subset
of 10 transconjugants (five P. putida KT2442 gfp+ transconju-
gants from BGP1, BGP2, BGP3, BGP4, BGP5, and five E. coli
CV601gfp+ transconjugants from BGP1), which were analyzed
by applying the PBRT kit for PCR-based plasmid replicon typing
(Diatheva, Fano, Italy), could not be assigned. As most of the
plasmids captured from manure could be assigned to known plas-
mid types (Binh et al., 2008) the plasmids might originate from
bacteria of other co-substrates fermented. The so far undiscov-
ered diversity of plasmids residing in digestates requires further
investigation.

Concerning the potential dissemination of MGEs associated
with ARGs via soil fertilization with digestates of mesophilic full-
scale BGPs, it was clearly shown in our study that all analyzed
digestates were sources of transferable antibiotic resistances. The
observed transfer frequencies of the digestates (Figure 1) were
comparable to those reported by Binh et al. (2008) who cap-
tured plasmids from pig manure by means of exogenous plasmid
isolation based on either SDZ-resistance (at transfer frequencies
ranging from 10−4 to 10−8) or TET-resistance (10−4 to 10−8)
using E. coli CV601gfp+ as recipient. Due to the known broad host
range of IncP-1ε plasmids (Musovic et al., 2006; Heuer et al., 2012)
there might be a chance for all captured plasmids assigned to the
group reported here to be transferred to soil- and plant-associated
bacteria if the digestates are used as fertilizer. Since all analyzed

3http://bvl.bund.de
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plasmids conferred multiple antibiotic resistance and harbored
integrons, they might contribute to the increasing problems caused
by multi-resistant pathogens in clinical settings, nowadays threat-
ening public health (Enright et al., 2002; Velayati et al., 2009;
Davies and Davies, 2010).
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