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ARTICLE INFO ABSTRACT

Keywords: A contribution of the gaze signals to the attention imbalance in spatial neglect is presumed. Direct evidence
Attention however, is still lacking. Theoretical models for spatial attention posit an internal representation of locations that
Stroke

are selected in the competition for neural processing resources — an attentional priority map. Following up on our
recent research showing an imbalance in the allocation of attention after an oculoproprioceptive perturbation in
healthy volunteers, we investigated here whether the lesion in spatial neglect distorts the gaze direction input to
this representation.

Information about one's own direction of gaze is critical for the coordinate transformation between re-
tinotopic and hand proprioceptive locations. To assess the gaze direction input to the attentional priority map,
patients with left spatial neglect performed a cross-modal attention task in their normal, right hemispace. They
discriminated visual targets whose location was cued by the patient's right index finger hidden from view. The
locus of attention in response to the cue was defined as the location with the largest decrease in reaction time for
visual discrimination in the presence vs. absence of the cue. In two control groups consisting of healthy elderly
and patients with a right hemisphere lesion without neglect, the loci of attention were at the exact location of the
cues. In contrast, neglect patients allocated attention at 0.5°-2° rightward of the finger for all tested locations. A
control task using reaching to visual targets in the absence of visual hand feedback ruled out a general error in
visual localization. These findings demonstrate that in spatial neglect the gaze direction input to the attentional
priority map is distorted. This observation supports the emerging view that attention and gaze are coupled and

Spatial neglect
Coordinate transformation

suggests that interventions that target gaze signals could alleviate spatial neglect.

1. Introduction

Spatial neglect is a common and disabling outcome after a stroke
(Buxbaum et al., 2004; Ferro et al., 1999). It is defined as the inability
to report, respond or orient to stimuli presented in contralesional space
despite adequate sensory and motor abilities (Heilman et al., 1985).
The most persistent clinical sign is a spatial imbalance in the allocation
of attention (Farne et al., 2004; Rengachary et al., 2011). For instance,
after a left hemisphere lesion, the further to the right the visual stimuli,
the faster and the more accurate their detection (Smania et al., 1998).
This left-right imbalance has more recently been explained by a dis-
ruption of an attentional priority map (Ptak and Fellrath, 2013). The
priority map is an internal representation that encodes the location of
salient or goal-relevant objects regardless of their features (Bisley and
Goldberg, 2010; Fecteau and Munoz, 2006; Shomstein and Gottlieb,
2016). This representation acts on topographically organized, lower-
level sensory areas to prioritize input arriving from those locations
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(Luck et al., 2000; Ruff et al., 2006; Yantis et al., 2002). Within this
theoretical framework, the attention imbalance in spatial neglect re-
sults from an under-representation of the contralesional locations on a
priority map that guides the allocation of attention. There are a number
of hypotheses why this representation is inaccurate and sensory input
from contralesional space disregarded.

Firstly, the unilateral lesion could irreversibly damage neurons that
encode contralesional locations on the attentional priority map, effec-
tively reducing the space where attention can be allocated (Pouget and
Driver, 2000; Vuilleumier et al., 2007).

Secondly, the attentional priority map could be displaced ipsile-
sionally following an ipsilesional displacement of the perceived midline
of one's own body. The mechanism of the shift in perceived body
midline is presumed to be an error in the coordinate transformations
that convert visual, vestibular and neck proprioceptive input into in-
ternal representations of space (Jeannerod and Biguer, 1987; Karnath,
1997; Vallar, 1997). A lateral displacement of the attentional priority
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map is suggested by the patients' Gaussian distribution of spontaneous
eye movements in darkness (Fruhmann-Berger and Karnath, 2005) or
by the deviation of the perceived midsagittal plane in darkness
(Karnath, 1994). This evidence is however, indirect. Although changes
in the allocation of attention can accompany deviations in the percep-
tion of midsagittal plane (Martin-Arévalo et al., 2016; Rossetti et al.,
1998), this is not always the case (Chokron, 2003; Rorden et al., 2001).

Thirdly, the map could fail to encode the location of some attention
cues. To allow cross-modal interactions in spatial attention or to sta-
bilise the attentional priority map across eye movements, a re-
tinotopically organised priority map (Golomb et al., 2008) must be
combined with information about the direction of gaze. There are two
main signals that convey the rotation of the eyes in the orbits. One is the
corollary discharge, which is a copy of the oculomotor command, the
other is proprioceptive feedback from the extraocular muscles. It has
been proposed that the lesion interferes with the ability to incorporate
an eye movement signal, presumably the corollary discharge (Duhamel
et al., 1992), into the attentional priority map (Pierce and Saj, 2018;
Pisella and Mattingley, 2004). A failure to update spatial representa-
tions after eye movements would cause a deficit in retaining visual
locations across saccades. Visual localisation errors after eye move-
ments have indeed been observed in patients with spatial neglect
(Duhamel et al., 1992; Heide and Kompf, 1998; Husain et al., 2001).
Under the assumption that visual localisation and visuospatial attention
rely on the same gaze direction signals, one would expect the same
errors in the allocation of attention. This assumption however, is
challenged by our recent research.

We have observed that repetitive transcranial magnetic stimulation
(rTMS) over an extraocular muscle proprioceptive area in the somato-
sensory cortex (Balslev and Miall, 2008) cause healthy volunteers to
mislocalize visual targets relative to the hand when the hand serves as a
location cue in a cross-modal attention task. In contrast, the same visual
targets are correctly located when the hand serves as an effector for
reaching, in the absence of visual hand feedback (Odoj and Balslev,
2016). We concluded that visuospatial attention and visual localisation
for reaching rely on different combinations of eye position signals, and
that oculoproprioception is weighted more in the eye position input to
the attentional priority map. An error in the oculoproprioceptive signal
after a lesion of the somatosensory cortex (Balslev et al., 2012) or after
somatosensory cortex rTMS (Balslev and Miall, 2008) results in a re-
duced ability to locate visual stimuli relative to the body after passive
movement of the eyeball. A more precise measure of the distortion in
the perceived gaze direction after rTMS is provided by the amplitude of
saccades from visual fixation points to auditory targets in darkness
(Odoj and Balslev, 2013). The distortion in the eye position signal
measured in this way matches in direction and extent the displacement
of the attention loci in the visual space relative to finger position cues
(Odoj and Balslev, 2016). Taken together, this previous work suggests a
connection between the oculoproprioceptive input from the somato-
sensory cortex and the allocation of attention. We hypothesized there-
fore that the left-right attention gradient in patients with spatial neglect
might be caused by distorted eye position input to the attentional
priority map.

We investigated this hypothesis here. To assess the ability to allo-
cate attention independently from the ability to locate visual objects,
patients with spatial neglect were tested on a cross-modal attention task
and a reaching task in the absence of visual hand feedback (open-loop).
Importantly, both tasks require coordinate transformation between the
visual and finger locations, a process that relies on an internal estimate
of the direction of one's own gaze. Both tasks had been tested in healthy
participants (Odoj and Balslev, 2016). In the cross-modal task patients
discriminated visual targets whose location was cued by the location of
their own right index finger hidden from view. Targets for visual dis-
crimination were presented at that exact location, as well as at —3°,
—2°9, —1° 19 2° and 3° from the finger position cue. The locus of at-
tention was defined as the location with the largest decrease in reaction
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time for visual discrimination in the presence vs. the absence of a cue.
Because perception efficiency was measured by the reaction time alone,
the method requires that the accuracy for visual discrimination is at
ceiling. All stimuli were therefore presented in the ipsilesional hemi-
space, where the patients' accuracy for visual discrimination did not
differ significantly from that of the control groups. The two control
groups consisted of healthy elderly and patients with a right hemi-
sphere lesion without neglect. A distortion of the gaze direction input to
the attentional priority map would cause a displacement of attention
loci relative to attention cues for all tested locations. In contrast, a re-
duction of the map where the contralesional space is missing would not
interfere with the allocation of attention in the ipsilesional hemifield,
which is presumed to be normal. Likewise, because the locus of atten-
tion was defined by the difference in reaction time between a condition
with an attention cue and a condition without an attention cue, an
asymmetry in baseline, steady-state attention would impact equally on
both conditions, leaving the difference between them unaffected. All
experiments were performed at fixation, which was verified using an
EyeLink II eye tracker. Therefore, a failure to retain visual location after
eye movements is unlikely to explain current findings.

2. Materials and methods
2.1. Participants

Four neglect patients (one female) with a mean age of 63 years
(range: 46-73) with brain lesions after a right hemisphere stroke par-
ticipated in the study. Spatial neglect was diagnosed using Bells and
Letter cancellation tasks (Albert, 1973; Gauthier et al., 1989). We cal-
culated the center of mass for the detected targets (“center of cancel-
lation”, CoC). A threshold of mean CoC = 0.083 was used as a threshold
for left-sided neglect (Rorden and Karnath, 2010).

We tested two control groups. The patient control group consisted of
ten age-matched patients with lesions in the right hemisphere following
a stroke, but no spatial neglect (mean age: 61.75 years; range: 43-81;
independent samples t-test neglect vs. patient control group, p=.482).
Table 1 provides demographic information and Figs. 1 and 2 show the
lesion of the individual patients with and without spatial neglect, re-
spectively. There was no statistically significant difference between
groups with respect to the time after the stroke and lesion size (Mann-

Table 1
Patient demographics.

NEG Post- stroke Bells Letter Lesion Area Lesion Size (cm®)
KS 1 0.376 0.492 P, rO, tM 6.7

ASG 68 0.121 0.108 rF 2.1

SG 1 0.33 0.317 T, 1O, BG 19.0

UH 1 0.714 0.704 P, rM, rF 233.5

PCG Post- stroke Bells Letter Lesion Area Lesion Size (cm®)
RL 7 0.003 0 rP 31.57

JF 6 0.008 0.031 rF 0.2

HK 19 0.032 -0.01 ™ 1.57

SF 18 0.059 0.065 M, rT-P, rBG 6.3

EM 5 0 0 ™™ 4.4

MS 4 0.083 0 BG 35.6

HG 17 0.008 0.011 ™ 125.8

WK 10 0.061 -0.004 ™ 5.4

AM 11 0.011 0 BG 41.1

NF 15 0.005 0 rBG 6

Note: NEG-neglect patients, PCG — patient control group, “post-stroke” in-
dicates the time of testing after the stroke, in months “Bells” and “Letter” in-
dicate the individual CoC for the Bells and the Letter Cancellation tasks, re-
spectively. “Lesion” describes lesion location for each patient: rBG-right basal
ganglia, rF- right frontal, rM-right medial, rO- right occipital, rP- right parietal,
rT-right temporal, rT-P- right tempo-parietal.
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Fig. 1. Individual lesions of the patients with spatial neglect. The colour maps indicating the lesion are superposed on a single-subject T1 template coregistered
with the MNI152 template (International Consortium for Brain Mapping). The figure shows the vertical, z coordinate for each transversal slice. The left side of the
brain is shown to the left. The demographics of the individual patients are listed in Table 1. (For interpretation of the references to colour in this figure legend, the

reader is referred to the Web version of this article.)

Whitney U test, p=0.16 and p=0.64, respectively). The healthy control
group consisted of ten healthy, age-matched participants (mean: 65
years; range: 62-74; independent samples t-test neglect vs. elderly
control group, p=.285). All participants were right-handed.

To calculate minimum sample size, we estimated mean * standard
deviation for the effect (cueing error) in the control group to be
0.1° + 0.5° based on results reported healthy participants in our pre-
vious study (Odoj and Balslev, 2016). With a ratio of k=5 between the
sample sizes of neglect vs pooled control group and a type I error
alpha=0.05, a one-tailed, independent samples t-test will detect a 1° of
difference in cueing error between controls and neglect patients in (1-f)
=80% of cases for a neglect group of minimum N =23 patients (Chow
et al., 2008; Rosner, 2010).

Participants consent to take part in the study was obtained ac-
cording to the Declaration of Helsinki and the study was approved by
the local Ethics Committees at the University of Tuebingen and the
University of St Andrews.

2.2. Experiment 1. cross-modal attention

2.2.1. Design

Participants discriminated a target (letter “A” or “H”) on a computer
screen. The experimenter placed the participant's right, index finger just
below the horizontal line where targets were presented. The finger was

hidden from view and remained at the same position throughout a
block of trials. Participants were instructed to direct attention to the
location of the finger. We measured voice-reaction time for visual dis-
crimination. To determine the locus of attention, we calculated the
difference in reaction time for visual discrimination in the presence vs.
the absence of the location cue. The procedure is described in more
detail in (Odoj and Balslev, 2016). The locus of attention was the screen
location where the cue caused the largest decrease in the reaction time.
Cueing error was defined as the signed difference between the locus of
attention and the actual location of the finger. If left neglect patients
show a systematic, ipsilesional shift in the locus of attention relative to
the cue, one would expect a cueing error in that direction. In order to be
able to use reaction time alone as an index of performance, the analysis
was restricted to locations in the right hemispace where neglect pa-
tients' accuracy was at ceiling, and not significantly different from the
control groups.

2.2.2. Setup

Participants sat with their head fixed in a chin rest and cheek pads.
A cathode ray tube (CRT) display was placed at 45 cm in front of them
(Fig. 3A).

The CRT was centered 19° to the right from the body and head
midline. A transparent sheet (Plexiglas) was mounted 5 cm in front of
the CRT screen. Participants had their right index finger on a wooden
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Fig. 2. Individual lesions of the patients in the control group. Conventions
like in Fig. 1.
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ledge attached to the Plexiglas immediately under the location where
the targets would appear. The finger was placed at one out of four
possible cue positions, 8°, 18°, 20° or 30° to the right from body-midline
and covered with black cloth. The experiment took place in total
darkness, so the participants had no visual information about the lo-
cation of their finger.

At the beginning of the trial, participants fixated on a central cross
(white, 1°x 1°) presented on a black background (Fig. 3B). Fixation was
verified with a head-mounted EyeLinKkII eye tracker in front of the right
eye. After a random interval lasting between 500 and 650 ms the
fixation cross disappeared. A hundred milliseconds later, a target letter
(‘A’ or ‘H’, subtending 1°) appeared and stayed on the screen for another
100 ms. The target could appear at seven possible locations, at —3°,
-2°, —=1°, 0% 1° 2° 3° from the cue. The target letter was presented
with equal probability (eight times) at each of the seven possible target
locations. Additionally, three trials showed target letters at random
locations, further away from the cue. They were instructed to name the
letter as fast and accurately as possible. Accuracy and voice reaction
time were recorded.

Trials with the same cue location were grouped in blocks. Each
block consisted of 59 trials (eight trials for each of the seven target
positions + three random positions). Trial order was pseudo-rando-
mized. At the end of each block, participants were instructed to close
their eyes. Then the experimenter moved the participants' index finger
at the next cue location and started a new block. The participants
completed four cued blocks in the following order: cue at 30°, 8°, 18°
and 20° from body midline.

To assess the baseline distribution of attention as well as visual
accuracy, participants performed the same visual discrimination task in
the absence of a cue. Participants’ right index finger rested in front of
their body midline. Target letters were presented on the screen at all
locations tested in the cued blocks. These locations were probed in
random order, four times each. The uncued block consisted of 92 trials.
This block was performed either before or after the cued blocks, ran-
domized across participants.

The finger position cue in this experiment was not predictive for the
location of the target, nor did it appear suddenly at that location.
Although traditionally, these characteristics have been associated with
an efficient cue (Driver and Spence, 1998; Posner et al., 1980), some
studies show that they may not be absolute prerequisites. An arrow or a
word (e.g.“left”) can direct participants' attention even in conditions
when these cues do not predict the location of a subsequent target
(Hommel et al., 2001; Pratt and Hommel, 2003; Tipples, 2008). Fur-
thermore, one's own hand is a salient position cue (Reed et al., 2010,
2008, 2006). When the participant's own hand is hidden from view and
placed in the vicinity of a computer screen, visual targets presented
nearer the location of the hand are detected faster than targets pre-
sented further away (Reed et al., 2006). For these reasons we assumed
that the participants' own finger will be an efficient attention cue in this
task. This assumption was tested both here and in a previous study in
which the same task was used (Odoj and Balslev, 2016). A signature of
attention is the improvement in visual discrimination for retinally
identical stimuli in the presence vs. the absence of the finger position
cue. Inspection of reaction time data in the control groups showed a
minimum at the exact location of the cue (Fig. 6).

2.2.3. Statistical analysis

We calculated the difference in reaction time for visual dis-
crimination in the presence versus the absence of the cue. The locus of
attention was defined as the center of mass of all locations that showed
a decrease in reaction time in the presence of the cue. The center of
mass was calculated as the mean of these locations, after weighting
each location with the magnitude of the cueing effect there. To separate
out an eventual effect due to practice (i.e. an improvement of reaction
time that was common to all target locations within a block), we pre-
processed the data by subtracting the mean from each value therefore
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normalizing the scores within each block.

After checking the data for normality with Shapiro-Wilk test, mean
cueing error for each cue location was compared between neglect pa-
tients and control groups using the appropriate test for two unrelated
samples. Under the hypothesis that neglect patients’ loci of attention
are displaced ipsilesionally relative to the cues, one would predict a
rightward cueing error. One-tailed tests were used to test this predic-
tion.

2.3. Experiment 2. pointing

2.3.1. Design

Experiment 2 investigated whether the cueing error in Experiment 1
reflected a more general inability to locate the visual targets relative to
the body, such as for instance a hand proprioceptive deficit.
Participants pointed to visual targets presented at the exact same lo-
cations as the finger position cues in Experiment 1. Participants used
their right, ipsilesional, index finger, the same finger that was used in
Experiment 1 as a cue. No visual feedback was available. A general
misalignment of hand proprioceptive and visual locations would cause
errors in movement end-points.

2.3.2. Setup

The setup was like in Experiment 1. Additionally, a position sensor
(Polhemus Fastrak) was fixed on the tip of the participants’ right index
finger.

Participants fixated at 19° from body midline, while a position
marker was attached to their right index finger. A target (the letter ‘X’)
was presented for 100 ms at one out of four possible locations, 8°, 18°,
20°, 30° from body midline. B. After target presentation, participants
closed their eyes and pointed to the location where the target appeared.
Finger location was recorded, and then the finger was passively moved
back to the resting position.

At the beginning of the trial, the participants fixated on a central
cross (1° x 1°, white on black background). Fixation was verified with
the head-mounted eye tracker. Participants’ left index finger rested in
front of their body midline (Fig. 4A). After 500-650 ms (randomized)
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Fig. 3. Setup and task for the cross-modal attention ex-
periment. A. Participants fixated at +19° from the body/
head midline. A hand proprioceptive cue (the participants'
right index finger, hidden from view) was positioned at one
out of four possible locations: 8°, 18°, 20° or 30° to the right
from body-midline. B. A target letter, ‘A’ or ‘H’ was pre-
sented for 100 ms at one out of seven possible locations, at
-3, -2, —-1,0, +1, +2 and + 3 degrees horizontally from
the finger. Participants named the letter as fast and accu-
rately as possible.

the fixation cross disappeared. A hundred milliseconds later, a target
letter (‘X’, subtending 1°) appeared and stayed on the screen for another
100 ms. The target could appear at 4 possible locations, at 8°, 18°, 20° or
30° from body midline. The participants were instructed to close their
eyes and point as accurately as possible at the remembered location of
the target. The reaching movement stopped on the wooden ledge, when
the finger touched the Plexiglas. Participants were allowed to adjust the
position of their finger until they felt the finger was pointing exactly
towards the target. The instruction was given to encourage the use of
hand proprioceptive feedback to adjust finger position until it matched
the location of the visual target. The visual targets were briefly flashed,
remembered and not present while pointing occurred and no visual
feedback of hand movement was available. Finger position was then
recorded and the experimenter moved the finger back to the resting
position at body-midline.

Like in the cross-modal attention experiment, the trials in this
control pointing experiment were blocked and the participants moved
their finger to the same location throughout the block. The order of the
blocks was the same across all participants (target at 30°, 8°, 18°, and
20° from body midline). Each block consisted of 6 trials.

Participants did not receive visual feedback of their pointing
movement, and there was no learning across blocks in either group.
Mean slope of the linear regression line was 0.02 in neglect, 0.04 in the
patient control group and —0.39 in the healthy elderly controls. These
values were not significantly different from zero in either group (one
sample t-tests, all p's > 0.3).

2.3.3. Statistical analysis

Pointing error was calculated as the signed difference finger loca-
tion minus target location in the horizontal plane at the end of the
movement. After checking normality, mean pointing error for each
target location was compared between neglect and control groups using
appropriate independent-samples tests.

2.4. Eye tracking

The position of the right eye was recorded with a head mounted

Fix: 500 - 650 ms

Pointing

Fig. 4. Setup and task for the visual open-loop pointing experiment. A.
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tracker (EYELINK II, SR Research Ltd., Ottawa, Canada) that sampled
pupil location at 250 Hz. The tracker was calibrated using a 3 x 3 grid.
Eye position time series were parsed into fixations, blinks, and saccades
using the SR EyeLink detection algorithm and then analyzed off-line.
The algorithm was set to detect saccades with amplitude of at least 0.5°,
using an acceleration threshold of 9500°/sec® and a velocity threshold
of 30°/sec. Trials with a mean deviation of more than 1.5° visual angle
from fixation within 50ms before target presentation were discarded.

2.5. Data availability

The data that support the findings of this study are available from
the corresponding author, upon reasonable request.

3. Results

3.1. No significant difference in visual accuracy between neglect patients
and controls in the right hemispace

As expected, neglect patients were significantly slower and less
accurate than the healthy and the patient control group for the left-most
targets. However, their performance for the targets situated further
than 11° to the right of the body-midline was not significantly different
from that of the control groups (Fig. 5). We found significant longer
reaction times in neglect patients for the leftmost target locations, but
not from 11° rightwards (independent samples t-tests, all p's < 0.042
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Fig. 5. Reaction time and accuracy for visual discrimination in the right
body hemispace in the absence of a visual cue. Neglect patients' (@) voice
reaction time (A) and accuracy (B) was not significantly different than that of
the patient control group (@) and healthy controls () for targets located
further than 11° to the right of the body midline (error bars show one standard
deviation, * denotes p < 0.05, independent samples t-tests, neglect vs. control,
for either control group).
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for targets located from 5° to 9°, and all p's > 0.119 for target locations
from 11°-33°). Likewise, visual accuracy was decreased for target lo-
cations at 5°, 7° and 10° (all p's < 0.047) whereas for all other locations
visual accuracy was not significantly different from that of the control
groups (all p's > 0.116). The analysis of the cueing error was limited to
target locations beyond 11° (cue at 18°, 20° and 30°). At these locations,
the neglect patients' accuracy and reaction times were not significantly
different from the control groups. With accuracy at or near ceiling for
all groups (Fig. 5B), differences in reaction time alone are valid in-
dicators of the difference in visual perception between groups.

Inspection of the average reaction times (Fig. 6) showed a minimum
in the voice reaction time at the exact location of the finger position in
the two control groups for all tested locations. No such minimum was
found in the condition without a finger position cue. This improvement
in visual discrimination at the location of the finger in non-neglect
participants confirms that finger position acted as an efficient spatial
cue, directing attention to its location.

3.2. Rightward shift of loci of attention relative to the finger position cues in
spatial neglect

In the control groups (healthy elderly controls — HEC and patient
control group — PCG) the lowest value for the average voice reaction
time was measured at the location of the finger position cue for all
tested cue locations (18°, 20° and 30°). In contrast, in the patients with
spatial neglect, a minimum was usually observed for targets located to
the right of the finger position cue (Fig. 6).

The comparison between neglect and either control group showed a
larger, rightward cueing error in patients with spatial neglect (Figs. 7
and 8). There was no statistically significant difference between the two
control groups with respect to cueing error at either location (in-
dependent samples t-tests for cues at 18° and 20°, two-tailed, both
p's > 0.2 and Mann-Whitney U test for cue at 30° p > 0.6). We com-
pared therefore the cueing error for neglect patients with that of the
pooled control group consisting of both healthy and patient controls.
This comparison showed a significantly larger cueing error in the ne-
glect group for each of the three cue locations (independent samples t-
test for cue at 18° and 20°, one-tailed, both p's < 0.001 and Mann-
Whitney U test, p < 0.001 for cue at 30°). Regression analysis showed a
statistically significant linear decrease of cueing error from left to right,
i.e. cueing error was largest when the cue was presented at 18° (beta
coefficient = —0.11, t= —4.5, p=0.001).

3.3. The rightward cueing error occurred in each individual neglect patient

Single-case comparisons (Crawford and Howell, 1998) of the
average cueing error across target locations (18°, 20° and 30° from the
body midline) showed a significant rightward cueing error in each of
the four neglect patients relative to the pooled control groups (one-
tailed, p=0.02, 0.01, 0.007 and 0.003).

3.4. No difference in response accuracy across groups

In each of the three cued blocks, neglect patients were as accurate as
the control groups. Mann Whitney U test showed no significant differ-
ence in accuracy across groups for any finger location and any pairwise
comparison between the three groups (all p's > 0.18). Likewise, there
was no significant difference between neglect vs. pooled control group
(all p's > 0.22).

3.5. No difference between the groups in the ability to fixate

Neglect patients had 13.87% + 7.2 of discarded trials with a break
in fixation. These values were 12.2% = 5 for the patient control group
and 9% * 6.8 for healthy controls. A one-way ANOVA showed no
significant difference between groups (F (2, 21) = 1.184, p=.326).
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Fig. 6. Reaction time for visual discrimination in the cross-modal attention task in the presence () and the absence of the finger position cue (m). The
arrow indicates the location of the cue in trials when the cue was present. NEG - patients with spatial neglect, HEC - healthy elderly controls, PCG — patient control
group. Error bars show one standard deviation.

3.6. No difference between groups in open-loop reaching error not significantly different from zero in any group (one sample t-tests, all
p's > 0.21). We found no statistically significant difference in pointing
One explanation for the rightward cueing error in neglect patients error between the neglect and control groups (Fig. 8). Because there
could be a general error in locating visual targets relative to the body. was no statistical difference in mean pointing error between the two
To investigate whether the findings were specific for spatial attention or control groups (independent samples t-tests for target at 20° and 30°,
more general for the coordinate transformation between visual and two-tailed, both p's > 0.6 and Mann-Whitney U test for target at 18°
proprioceptive locations, we measured the error during pointing to a p > 0.5), these two groups were pooled together. The comparison of the
visual target in the absence of visual hand feedback. Pointing error was pointing error in neglect patients vs. pooled control group did not
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Fig. 7. Neglect patients show a rightward shift of the loci of attention in the visual space relative to the finger position cue. The locus of attention was
defined as the location with the largest advantage in reaction time for visual discrimination in the presence of the cue. The cueing error in neglect patients was in
average 1.9°, 1.4° and 0.5° when the cue was presented at 18°, 20° and 30° from the body midline respectively. This was significantly different from the error in the
control groups (p < 0.001, one-tailed, independent samples t-tests and Mann-Whitney U test). NEG-neglect; individual patients with spatial neglect KS-¢, ASG-+, SG-¢
, UH-; PCG - patient control group; HEC — healthy elderly controls.
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Fig. 8. Neglect patients show a rightward shift that is
selective for the allocation of attention. Their locus of
attention in the visual space was in average at 1.25° right of
the finger position across all tested locations (18°, 20° and
30° from the body midline). There was no statistically sig-
nificant difference open-loop pointing error between neglect
and control groups at any of these locations, which rules out
a general error in coordinate transformations as an ex-
planation of the results. NEG-neglect; individual patients
with spatial neglect KS-¢, ASG-¢+, SG-¢, UH- ; PCG-patient
control group; HEC — healthy elderly controls.
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return any statistical significant difference for either target location
(independent samples t-test for target at 20° and 30°, one-tailed, both
p's > 0.17 and Mann-Whitney U test, p > 0.15 for 18°). Likewise,
single-case comparisons (Crawford and Howell, 1998) showed no sta-
tistically significant difference between any of the four neglect patients
and the pooled control groups (one-tailed, p=0.28, 0.07, 0.29 and
0.21). These null results are in line with previous studies, showing ac-
curate visual localization in neglect patients during reaching with no
visual feedback (Himmelbach and Karnath, 2003; Rossit et al., 2009).
Pairwise comparisons between mean cueing and pointing error showed
a statistical significant difference for the neglect group only (one tailed,
paired-samples test, p=0.011 for the neglect group, for the other two
groups, both p's > 0.4).

4. Discussion

The main finding of this study was a rightward displacement of the
attention loci in the visual space relative to finger position in patients
suffering from left spatial neglect. In these patients, the hand proprio-
ceptive cues had the largest benefit for visual discrimination when the
visual targets were located at 0.5°-1.9° to the right of the cues. This
ipsilesional, rightwards, displacement of the attention loci was con-
sistently observed for all three tested cue locations and in all four ne-
glect patients. In contrast, the controls showed an advantage in visual
discrimination at the exact location of the finger cue. This consistent,
ipsilesional shift in spatial neglect was selective for the allocation of
attention. The patients’ error in open loop reaching with their right
index finger to the remembered location of the visual targets was not
significantly different from the control groups, suggesting a normal
ability for visual localization for reaching movements.

These results suggest a new, additional mechanism for the attention
imbalance in spatial neglect, an error in the coordinate transformation
for the attentional priority map. If the rightward displacement observed
here occurs throughout the space, an ipsilesional displacement of all
attention loci relative to sensory stimuli that demand attention would
lead to a right-left imbalance in the allocation of attention.

4.1. Neural mechanisms underlying the ipsilesional shift in attention loci

The right shift of the attention locus in the visual space relative to
the finger position suggests that the eccentricity of the fixation cross
relative to the body midline is overestimated. This is indicative of a
right-shift in perceived gaze direction for the attentional priority map.

Our previous work shows a causal connection, from a distortion of
the oculoproprioceptive signal in the somatosensory cortex after rTMS,
to a systematic displacement of attention loci in the visual space in
response to a hand proprioceptive cue (Odoj and Balslev, 2016). Be-
cause previous studies including ours have found that the movement of
a hidden hand to visual targets remains accurate in the presence of an
oculoproprioceptive distortion (Lewis et al., 1998; Odoj and Balslev,
2016), we proposed that spatial representations for reaching and at-
tention rely on different combinations of gaze direction signals (Odoj

PCG

126

HEC

and Balslev, 2016). It is important to note however, that the current
results cannot be explained by a mere distortion of the oculoproprio-
ceptive signal from the somatosensory cortex. After a somatosensory
cortex lesion the angle of gaze is underestimated due to a reduced
oculoproprioceptive input. This would cause a shift in the perceived
direction of gaze direction towards the body midline (Balslev et al.,
2013; Odoj and Balslev, 2016). Such a shift is in the opposite direction
to that we observed here.

A distortion of the gaze direction input to the attentional priority
map in spatial neglect could result from a dysfunction in any of the
signals that convey the rotation of the eyes in the orbits or the head on
the trunk: proprioception from eye or neck muscles, efference copy
(corollary discharge) for these muscles or vestibular signals. The dis-
placement did not affect the patients’ ability to locate visual targets
relative to the body when the index finger acted as an effector for
reaching rather than a cue for attention. This control experiment rules
out an alternative explanation of the current findings. A general error in
the coordinate transformation from hand proprioceptive to visual
space, such as for instance that following a distortion in hand pro-
prioception would cause similar errors in both tasks. We suggest
therefore that the lesion in spatial neglect affects selectively the gaze
direction estimate fed into the attentional priority map. The neural
pathways for the gaze direction signals (vestibular, proprioceptive, vi-
sual and corollary discharge) to the attentional priority map and the
impact of a lesion along these pathways on the signals that convey gaze
direction are not well understood.

Electrophysiological recordings in the monkey show that neurons in
the parietal lobe's area LIP that respond to task relevant stimuli and not
to distractors, are sensitive to both the retinal location of these stimuli
and to the direction of gaze (Andersen and Mountcastle, 1983; Morris
et al., 2013). These neurons are thought to implement the coordinate
transformations between retinal and body-centered locations. The
source of the gaze direction signal to the gain-field neurons is currently
unknown. Single cell recordings show that this gaze direction signal
updates slowly, at least 150 ms after a saccade (Xu et al., 2012). The
delay would be compatible with a proprioceptive or vestibular source.
During the delay in which the gain field signal is unreliable, the mon-
keys' performance in a double step saccade task seems unaffected. The
double step saccade task requires an extraretinal signal of eye position
to compute the retinal location of the second saccade target. This dis-
crepancy between neural activity of the gain field neurons and beha-
viour suggests that the necessary computations for the double step
saccade task are supported by different neurons that use a faster gaze
direction signal, presumably corollary discharge (Xu et al., 2012). One
could speculate that while neural computations necessary for fast be-
haviour, such as double-step saccades or hand movements, relies on the
predictive corollary discharge, gain field neurons use a delayed, but
more accurate vestibular/proprioceptive gaze direction signal to im-
plement slower behaviour, such as the allocation of attention around
the body. The lesion in spatial neglect could distort the gaze direction
input to these neurons.
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4.2. A new hypothesis for the mechanism of the attention imbalance in
spatial neglect

The idea that an error in coordinate transformation between re-
tinotopic and the body-centred space might underlie some of the
symptoms in spatial neglect is not new (Jeannerod and Biguer, 1987;
Karnath, 1997; Vallar, 1997). Perceived rotation of the egocenter in
patients with spatial neglect (Karnath, 1997) could cause an ipsilesional
shift in the baseline allocation of attention. A steady-state shift in
spatial attention however, would affect equally both conditions of Ex-
periment 1, with and without the finger position cue. The locus of at-
tention here was defined by the difference in reaction time between
these two conditions. Because a change in baseline attention would be
common to both conditions, it cannot impact on the reaction time
difference. We argue therefore that the shift of attention loci observed
here reflects a systematic mislocalization of the peaks on the attentional
priority map relative to attention cues, rather than a change in baseline
attention. While our results are in line with the idea of a faulty co-
ordinate transformation in spatial neglect, they also suggest a new
mechanism for the attention imbalance. The attentional priority map
misrepresents the location of the cues by displacing their corresponding
attention loci towards the ipsilesional space.

Likewise, others have suggested that patients with spatial neglect
fail to retain cue locations accurately (Pierce and Saj, 2018; Pisella and
Mattingley, 2004). Our hypothesis is broadly in line with this sugges-
tion. However, a remapping failure across eye movements cannot be
responsible for current findings because the distortion of the attentional
priority map was observed at fixation, in the absence of eye movements.
Previous studies in spatial neglect that report an inability to recall vi-
sual locations across saccades have used visual localisation tasks such as
target directed saccades (Duhamel et al., 1992; Heide and Kompf, 1998;
Husain et al., 2001). Because different spatial representations use dif-
ferent combinations of eye position signals (Odoj and Balslev, 2016),
visual localisation tasks may not be an accurate indicator of the at-
tentional priority map. To the best of our knowledge, this is the first
time a study has measured directly where patients with spatial neglect
deploy attention in response to a cue. While their visual localisation in
the absence of eye movements was normal, the patients misrepresented
cue location showing perceptual enhancement at irrelevant locations,
positioned further towards the ipsilesional space than the finger posi-
tion cue.

Finally, the finding of a systematic displacement of attention loci in
the right, ipsilesional hemispace of the patients with left neglect cannot
be explained by a reduced, but otherwise accurate attentional priority
map (Pouget and Driver, 2000).

By showing distorted gaze input to the attentional priority map we
confirm a role of gaze direction signals in the pathophysiology of spatial
neglect. We suggest that the ipsilesional displacement of attention loci
relative to attention cues is a mechanism for the attention imbalance.

4.3. Sample size

Stringent requirements for gaze fixation and accuracy in this study
limited the number of stroke patients who could complete the experi-
ment. We report data from all neglect patients who were able to carry
out the tasks (N =4). Their performance was compared with that of ten
age-matched controls and ten stroke patients without spatial neglect.
The study was meticulously designed using a task and an analysis
method previously tested in healthy participants (Odoj and Balslev,
2016) and had > 80% power to detect 1° of difference in cueing error
between the neglect patients and the pooled control group (Chow et al.,
2008; Rosner, 2010). Furthermore, because of the small number of
neglect patients who could perform to criteria, we also carried out
single subject analyses that contrasted performance in each individual
patient with that of the pooled control group, using statistical methods
specifically designed for this purpose (Crawford and Howell, 1998).
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These analyses confirmed the results of the group analysis.

The neglect group consists of one chronic patient (> 5 years post
stroke, ASG) and three subacute patients (< 1 month post stroke, KS,
SG and UH). In contrast, the control patient group is all chronic stage
(4-17 months post stroke). Inspection of our chronic neglect patient
ASG's individual data show a numerical value for the error in both at-
tention and pointing tasks that was within the range defined by the
performance of the other patients with spatial neglect (Fig. 7BC and 8),
or even larger (Fig. 7A). The data in this small sample of neglect pa-
tients therefore does not suggest that the difference in performance
between neglect and patient control group reflects the difference in the
time after stroke.

4.4. Effect size

The angular displacement observed here was ~1° in average.
Regression analysis showed a significant, linear increase in cueing error
from right to left, with the leftmost cue being displaced by 2° and the
rightmost cue by 0.5° relative to the finger position cue. In this study
only locations in the patients’ right hemispace, where their accuracy for
visual discrimination was at ceiling, could be assessed. The leftmost cue
was at 18° to the right of the body midline. Under the assumption that
the cueing error would follow the same trend towards the left hemi-
space, one would predict a larger effect in the left hemispace. In line
with this conjecture, recent experiment has found that distractors pre-
sented in the left, neglected hemifield paradoxically facilitate detection
of a rightward target (Vossel and Fink, 2016). The authors suggest their
finding is likely to reflect a transformation of the contralesional sti-
mulation into a saliency signal contributing to facilitated information
processing in ipsilesional space.

In summary, we report that patients with spatial neglect have a
rightward shift of the attention loci in the visual space relative to hand
proprioceptive cues. This indicates an error in the gaze direction input
that transforms somatosensory to visual locations. The error was spe-
cific for the attentional priority map, because reaching to visual targets
with the hidden hand was relatively unaffected. A systematic, ipsile-
sional displacement of attention loci could cause a left-right attention
imbalance.
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