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Non-invasive diagnosis of deep vein thrombosis from
ultrasound imaging with machine learning
Bernhard Kainz 1,2,3,4✉, Mattias P. Heinrich5, Antonios Makropoulos1, Jonas Oppenheimer6, Ramin Mandegaran7, Shrinivasan Sankar1,
Christopher Deane 8, Sven Mischkewitz6, Fouad Al-Noor1, Andrew C. Rawdin9, Andreas Ruttloff10, Matthew D. Stevenson9,
Peter Klein-Weigel10 and Nicola Curry8

Deep vein thrombosis (DVT) is a blood clot most commonly found in the leg, which can lead to fatal pulmonary embolism (PE).
Compression ultrasound of the legs is the diagnostic gold standard, leading to a definitive diagnosis. However, many patients with
possible symptoms are not found to have a DVT, resulting in long referral waiting times for patients and a large clinical burden for
specialists. Thus, diagnosis at the point of care by non-specialists is desired. We collect images in a pre-clinical study and investigate
a deep learning approach for the automatic interpretation of compression ultrasound images. Our method provides guidance for
free-hand ultrasound and aids non-specialists in detecting DVT. We train a deep learning algorithm on ultrasound videos from 255
volunteers and evaluate on a sample size of 53 prospectively enrolled patients from an NHS DVT diagnostic clinic and 30
prospectively enrolled patients from a German DVT clinic. Algorithmic DVT diagnosis performance results in a sensitivity within a
95% CI range of (0.82, 0.94), specificity of (0.70, 0.82), a positive predictive value of (0.65, 0.89), and a negative predictive value of
(0.99, 1.00) when compared to the clinical gold standard. To assess the potential benefits of this technology in healthcare we
evaluate the entire clinical DVT decision algorithm and provide cost analysis when integrating our approach into diagnostic
pathways for DVT. Our approach is estimated to generate a positive net monetary benefit at costs up to £72 to £175 per software-
supported examination, assuming a willingness to pay of £20,000/QALY.
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INTRODUCTION
Venous thromboembolism (VTE) is associated with a major global
burden of disease. Worldwide, the incidence of VTE is 1–3 per
1000 individuals, rising to 2–7 per 1000 in individuals aged over
70 years, and 3–12 per 1000 in those over 80 years1. VTE, deep
vein thrombosis (DVT) and pulmonary embolus (PE) are the
leading cause of hospital-related disability-adjusted life years lost2.
Using these estimates, and using the most conservative

incidence figure, globally at least 7.7 million people will require
investigation for VTE every year. An ageing population across
many countries will lead to a greater health burden, particularly in
middle- and low-income countries where early death from
infection is decreasing. Mortality from VTE is common, a European
study estimated 534,000 deaths per year3 and a similar study in
the US reported 300,000 deaths per year4. DVT has a high level of
morbidity. 30–50% of the surviving patients develop long-term
symptoms in their affected leg (post-thrombotic syndrome)5.
In high-income countries, the routine practice to diagnose

patients after a positive D-dimer blood test and an indicative
evaluation using the Wells score6 is to confirm or rule out a
suspected DVT with a two- or three-point ultrasound scan.
Ultrasound scans are most commonly performed in a radiology
or cardiovascular department of a hospital by a highly trained
radiographer/radiologist.
Currently, no reliable test is available that can be used in a

general healthcare setting (GP practice, community hospital, on a
hospital ward) or be used remotely at the point of care (nursing
home, patient’s home). Between 85 and 90% of patients

presenting to their GP in high-income countries with a suspected
DVT will be investigated only to find no evidence of a thrombus5.
Many patients will receive unnecessary anticoagulants with
numerous potential side-effects through an often-painful sub-
cutaneous injection whilst waiting more than the recommended
four hours for their scan. Safely negating this wait would improve
patient satisfaction, reduce the burden of high-risk treatment
(anticoagulants confer haemorrhagic complication risks) and
discount healthcare costs. Rapid diagnosis is known to improve
compliance to regulatory guidelines that state DVT should be
diagnosed within 24 h6–8. Clinical evidence that DVT examinations
using ultrasound can be performed by nurses has been shown9–11.
However, confidence in acquiring ultrasound images is generally
low because of the required image interpretation skills and liability
concerns, which inhibits wide-scale adoption of such approaches.
In this study we evaluate if Machine Learning (ML) technology can
provide anatomical image acquisition guidance and point of care
diagnostic support. Such ML technology is currently often
summarised as Artificial Intelligence (AI) support systems.
ML technology has previously been explored in the context of

VTE, with several studies having shown the potential for ML
clinical decision support systems (CDSS) to add incremental value
in improving VTE risk stratification of patients. Most of these
proposed CDSS are predominantly based upon the Wells criteria12,
whilst others are more complex, taking into consideration a
broader range of clinical risk factors for VTE as identified in the
Caprini model (35 discrete clinical risk factors)13,14. However, to
the best of our knowledge, no prior study has shown the potential
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benefit of ML to aid in the image-based diagnosis of DVT using
ultrasound. Our hypothesis is that ML technology can comple-
ment the clinical pathway and provide non-specialists with the
necessary confidence and skills to perform ultrasound DVT
screening autonomously. Early modelling has been undertaken
to assess the potential cost-effectiveness of such an approach.

RESULTS
Study participation
External Validation Set 1 (EVS1). 124 patients who presented to
the Oxford Haemophilia and Thrombosis Centre, Oxford, UK, with
symptoms suggestive of DVT were approached for inclusion into
this study. Compression ultrasound has been performed accord-
ing to the standard practice, without software guidance. Patients
have first been scanned as part of the standard pathway with
various scanners, followed by another scan using a provided
Philips Lumify probe with screen recording software.
The recorded screen capture videos have been curated to a

data set that is similar in nature to one as it would have been
acquired with AutoDVT software guidance.
Thirty-six patients have been excluded during the enrolment

phase for various reasons as summarised in the Consort Diagram in
Fig. 1. Two patients with confirmed DVT have been excluded due to
imaging conditions that are not covered by the standard compres-
sion ultrasound DVT protocol (non-echogenic thrombus and super-
ior thrombosis in the iliac vein). Control participants had no DVT
based on comprehensive clinical and laboratory testing performed
under the supervision of and interpreted by a haematologist. This
results in a data set comprising of 88 eligible patients. An overview
of patient characteristics in this clinic’s database is given in Table 1.
It was specified that all examinations that were not performed

according to the standard implemented in our study design should

Fig. 1 Consort diagram for study enrolment. Allocation, and analysis in External Validation Set 1 (EVS1).

Table 1. General population overview for model training and external
validation set.

Age [years] 64.2 ± 17.7

Wells score 1.67 ± 1.12

D-Dimer [micrograms/litre fibrinogen
equivalent units]

1870 ± 3070 (one-
sided)

Male [%] 46.4

Female [%] 53.5

Not stated [%] 0.1

proximal DVT diagnosis [%] 7.1

Demographics

Asian - Any Other Asian Background 0.49%

Asian or Asian British - Indian 0.52%

Asian or Asian British - Pakistani 1.40%

Black - Any Other Black Background 0.29%

Black or Black British - African 0.59%

Black or Black British - Caribbean 0.29%

Mixed - Any Other Mixed Background 0.20%

Mixed - White and Asian 0.10%

Mixed - White and Black African 0.10%

Mixed - White and Black Caribbean 0.13%

Other - Any Other Ethnic Group 0.39%

Other - Chinese 0.10%

Other - Not Known 0.39%

Other - Not Stated 15.31%

White - Any Other White Background 3.58%

White - British 74.85%

White - Irish 0.65%

Not recorded 0.62%
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be omitted, thus, secondary exclusion criteria must be applied.
Hence, 35 patients (17 DVT positive, 18 DVT negative) have been
further excluded during the analysis phase, due to, radiologist/
haematologist confirmed, incorrect/incomplete compression (11),
compression on incorrect/missing anatomical location (2), incorrect
scanner parameters evaluated by 10-point expert image quality
scoring (14). The remaining sequences from positive DVT patients
may not include a video clip that confirms the positive DVT. Thus,
further eight sequences belonging to a positive DVT case have been
excluded. Of the remaining 53 patients 34 patients are DVT positive
and 19 DVT negative, confirmed by to the current clinical pathway.
This results in 121 individual compression sequences conforming
the standard implemented in AutoDVT on defined anatomical vessel
locations in these patients. EVS1 was drawn from the general
population of 2041 patients with suspected DVT from the
Haemophilia and Thrombosis Centre at University of Oxford. The
characteristics of the entire population during the year 2019 is
summarised in Table 1. The ethical approval in place did not allow
for the collection of these characteristics for the individual patients
that have been enrolled in this study.

External Validation Set (EVS2). Thirty patients with suspected DVT
have been recruited from the Clinic of Angiology, Ernst von
Bergmann Klinikum, Potsdam, Germany. Four of them were
clinically confirmed DVT positive. In contrast to EVS1, EVS2 used
AutoDVT during acquisition. Landmarks and compressions have
been proposed automatically by the software, however, users can
always override suggestions by the ML model irrespective of the
validity of the compression. A vascular technician with experience

in carotid ultrasound and peripheral arterial cw-Doppler ultra-
sound, but without any experience in venous compression
ultrasound performed the scans and compressions. No patients
have been excluded in this pilot study since data suitability for
automatic image processing was ensured by the prospective use
of AutoDVT during image acquisition and guidance. Validation
compression ultrasound was performed by an experienced
angiologist performing at least 1000 duplex and compression
ultrasound examinations per year.

Algorithm performance on the internal validation set
Figure 2 shows qualitative examples for the segmentation output
of our method. Table 2 shows quantitative results for the
anatomical landmark detection task; Table 3 for the vessel
compression task and Table 4 regarding segmentation perfor-
mance. Common image evaluation metrics, Sørensen-Dice Coeffi-
cient (Eq. (6)) for segmentation results and F1-score (Eq. (5)) for
anatomical landmark discrimination and categorical vessel com-
pression analysis, are used for quantitative evaluation.

Algorithm performance on the external validation sets
EVS1. Quantitative results on EVS1 are summarised in Table 5.
Receiver operator curves are shown together with confusion
matrices in Fig. 3 on patient level and Fig. 4 on sequence/
anatomical landmark level. Note that these results are based on
retrospective analysis of prospectively acquired ultrasound videos
without using software guidance. In a perfect prospective setting,
AutoDVT guides the operator to acquire images that are well

Fig. 2 Qualitative example images for our model’s segmentation performance. The segmentation is robust throughout compressions. The
vein area is evaluated for complete compressibility to exclude DVT. Device: Clarius L7 (2017).
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suited for algorithmic evaluation. A setup more akin to the latter
paradigm has been tested in the pilot study in EVS2 (Fig. 5).

EVS2. Results from 30 DVT-suspected cases (four DVT positive)
that have been acquired using the AutoDVT software prospec-
tively in the Clinic of Angiology in Potsdam, Germany, are
presented in Table 5 and Fig. 5. We test the same fourfold cross-
validation models as used for EVS1 data from Oxford.

Comparison to a naive black-box classifier
To evaluate the benefits of our ML architecture and explainable
image segmentation-based approach over a naïve black box
classifier, we have further tested a direct classifier on EVS1 and
EVS2. For this experiment, we encoded each image in the
available sequences into 128-valued image embeddings using a
black box encoder from our previous work15 that was trained to
predict open or closed vein classification in a healthy volunteer
cohort. These embeddings were stacked per sequence and used
as an input for a 3-layer 1D-CNN. This CNN subsequently learned
binary classification into healthy/pathological sequences from the
training set. After 10-fold cross validation this model achieves an
area under the receiver operating characteristic curve (AUC) of
only (0.65, 0.71) for EVS1 and (0.65, 0.73) for EVS2 on sequence
level. On patient level this classifier achieves on EVS1 an AUC of
(0.65, 0.77). A Welch’s test comparing predictions between the
navie black-box model and our specialised and explainable
architecture results in p= 0.025 for EVS1, hence, a significant
difference can be assumed. EVS2 has only four positive cases, thus
overfitting prevents such an analysis for the second eternal
validation set.

Operator skill level robustness
Twenty healthy volunteers have been scanned by three senior
medical students representing non-expert users. The students got
a brief introduction, performed the entire examination using the
Clarius L7 device and reported success and software-specific
problems. Each participant performed the examination twice in
succession on the same five landmarks (guided by AutoDVT). The
average time needed for an examination was 6:16 min (median:
3:47 min) during the first run and 5:24 min (median: 4:17 min)
during the second run. 154 out of 200 (75.7%) recorded guided
landmark approaches and compression sequences were reported

successful. Unsuccessful compression attempts were repeated
until deemed successful by AutoDVT or a maximum of three
attempts.

Cost effectiveness
D-Dimer plus ultrasound confirmatory scan for DVT diagnostic
(Fig. 11a) is currently costed at £92–£9716 (Table 14) in the UK
NHS. Using the sensitivity and the specificity ranges from Table 5
(EVS1+ EVS2), a maximum positive net monetary benefit (NMB)
between £71–£139 per ML-guided examination can be achieved
when AutoDVT is integrated into clinical pathways according to
Fig. 11. We assume a willingness to pay of £20,000 per QALY6,17.
Figure 6 shows how the NMB changes with different prices for an
ML-guided examination, considering the different diagnostic
algorithm variants in Fig. 11. Accuracy versus costs is compared
in Table 6.

DISCUSSION
This study provides a proof of concept that ML-based analysis can
distinguish patients with and without DVT while providing image
acquisition guidance for non-experts according to the clinical
standard. Evaluation was performed on a sample size of n= 53
enroled patients from the same clinic, 34 DVT-positive patients
and 30 additional patients from another clinic, n= 4 DVT positive.
Algorithmic DVT diagnosis results in a sensitivity within a 95% CI
range of (0.82, 0.94), specificity of (0.70, 0.82), the positive
predictive value (PPV) of (0.65, 0.89), and a negative predictive
value (NPV) of (0.99, 1.00).
Our method suggests a diagnosis based on robust segmenta-

tion in contrast to a direct image discriminator model. Conse-
quently, our method does not rely on discrimination in the
conventional ML sense. Our model learns predominantly from
healthy volunteer data how a healthy vessel looks like and uses
this knowledge to identify DVT suspected patients in the test data.
This is different from traditional decision boundary modelling with
fully supervised learning from a balanced dataset. Thus, our model
is not noticeably affected by class imbalance issues in the training
data; if the vein closes, the compression sequence is not DVT-
suspected, otherwise it is. Identifying the correct vessel and
interpreting the state of the vessel is the challenging part, which is
addressed by our ML model. Data variability is relevant for the
representation of the vessel itself. To improve this learnable
variability, we use data augmentation as commonly used for
image data18. All images are resampled to 150 × 150 pixels to
facilitate real-time inference capabilities. We use image augmen-
tation during training: random left/right flipping, ±15 pixel
random translation, ±15∘ rotation, random zoom at a maximum
factor of 0.05, intensity re-scaling with a maximum range of ±0.3.
ML has previously been studied for a variety of diagnostic

approaches19–21. Several studies have applied ML in the context of
VTE, although these ML applications have focused on developing
CDSS that aid clinicians in VTE risk stratification of patients rather
than diagnose VTE12,22. To the best of our knowledge, our work is

Table 2. Quantitative results for the landmark detection task of the used models.

Background, no
landmark

LM0-LM1 consolidated LM2-LM3-LM4-LM5
consolidated

LM6-LM7
consolidated

LM8-LM9-LM10
consolidated

Groin and thigh model (0.95, 0.96) (0.74, 0.82) (0.66, 0.70) (0.67, 0.73) ..

Knee model (0.93, 0.94) .. .. .. (0.72, 0.78)

Evaluation according to Eq. (5) on the internal validation set.
(⋅, ⋅) is the 95% confidence interval range.
Model after 50 training epochs.

Table 3. Quantitative results for the vein compression state task of the
used models.

Vein open Vein closed and fully compressed

Groin and thigh model (0.86, 0.90) (0.88, 0.96)

Knee model (0.78, 0.92) (0.86, 0.92)

Evaluation according to Eq. (5) on the internal validation set. (⋅, ⋅) is the 95%
confidence interval range.

B. Kainz et al.

4

npj Digital Medicine (2021)   137 Published in partnership with Seoul National University Bundang Hospital



a pioneering study that shows the potential benefits of ML for the
diagnosis of DVT through imaging.
Our work evaluates all implications for the implementation of a

ML model in a challenging clinical workflow like DVT diagnosis
with ultrasound imaging, a pathway that requires direct human-
machine interaction. This contrasts currently dominating ML
methods for retrospective image analysis of tomographic data
like CT or MRI, which usually presents itself to an algorithm clearly
without imaging artefacts and in an often canonical orientation.
Free-hand ultrasound poses additional challenges compared to
these settings.
First, a user needs to be directed and guided to acquire images

that are suitable to make a prediction through a ML model. This
requires algorithmic provisions to discriminate useful images from
images that do not adhere to a clinic standard. We solve this
problem through training a discriminator ML model, which can
identify predefined anatomical locations along the femoral vein.
Second, compression ultrasound requires the analysis of

continuous image sequences which is challenging in a setup that
requires real-time feedback. We solve this problem through a
sliding window, multi-channel input approach, which enforces
spatio-temporal consistency for a combined vein-segmentation
with learned decision boundaries for identifying a vessel as fully
closed. Furthermore, mobile ultrasound probes are used and
connected to a GPU-accelerated laptop to provide sufficient
computational power.
Third, image domain shift is a serious limitation of ML

applications in healthcare. Domain shift occurs when a model is
trained on images that have been acquired on one device while
the testing is performed on images from other, previously unseen
images from different devices. Commonly, a noticeable drop in

performance is observed in such situations. We mitigate this
problem through integrating image data from a diverse set of
devices, covering almost the entire market for mobile ultrasound
devices. Still, there is no established method for robust domain
adaptation23. Hence, a risk of reduced performance remains when
applying the presented algorithms to images from a new device.
This risk must be avoided by deploying these algorithms
exclusively with thoroughly tested, specific devices.
ML-supported devices such as described here are often

summarised as clinical AI21. A critical element of any AI-based
support tool is its clinical relevance.
DVT has a relatively low prevalence; 7.1% for a selected

population who present to a DVT clinic as in our work and
<0.003% in the general population. We factor this in when
calculating PPV and NPV, thus providing values that are most
informative for patients. In our case, a NPV of around 99% means
that if the software-supported imaging test does not provide
evidence for the presence of a blood clot, that there is an
extremely low chance that this prediction is wrong and that the
patient might still have DVT. Conversely, the PPV of our method is
about 77% with a large 95% confidence interval of 12 percentage
points. This means that if the automated imaging test gives a DVT
positive result, that there is still a 20–30% chance that this
diagnosis is wrong. This is addressed in possible clinical pathway
integration strategies in Fig. 11. A positive test with AutoDVT will
always lead to a confirmatory scan with an expert, who will also
make treatment decisions which may include secondary criteria
like for example the age of the thrombus. However, within the
group who tested positive with AutoDVT, the expert’s chance of
seeing an actual DVT-positive patient is more than 80%, which is
notably higher than the current 7.1%. Increasing the pre-test
probability for DVT will likely reciprocally increase the diagnostic
utility and discriminatory power of the expert examination as well.
Literature and our own experiments show strong evidence that

a DVT examination in primary care performed by non-experts is
feasible. We would expect that rapid point of care diagnostics and
wide availability of testing, which is conceivably enabled by our
approach, would lead to timely treatment, decreased stress, and
increased patient satisfaction. Furthermore, a cost analysis
simulation model has been evaluated when integrating the
proposed algorithm into the clinical practice. Assuming a
willingness to pay £20 000/QALY17, a maximum NMB between
£71 to £139 per examination could be attained when ML guidance
is used by non-specialist workers for DVT diagnosis. This assumes
zero costs for the use of the software; thus, it is the maximum
achievable NMB. A DVT examination software tool could cost up
to £72–£175 at the sensitivity and specificity levels measured in
Table 5, before the NMB falls below £0. If the examination costs go
above £72, then the conclusion that AutoDVT is cost-effective
becomes more uncertain.
Our study has several limitations. First, in EVS1, we evaluate a

prospectively enroled patient cohort retrospectively, on video
sequences that have not necessarily been acquired at an optimal
standard. Therefore, we had to curate the data and automatically
extract clips from entire exam video recordings that would be

Table 4. Quantitative results for the vessel segmentation task of the used models.

Sørensen–Dice Coefficient Bounding-box intersection over union

Background Artery Vein

Groin and thigh model (0.97, 1.00) (0.82, 0.88) (0.63, 0.79) (0.72, 0.84)

Knee model (0.97, 1.00) (0.63, 0.85) (0.73, 0.83) (0.72, 0.82)

Metric Eq. (6) Eq. (7)

Evaluation according to Eqs. (6) and (7) on the internal validation set.
(⋅, ⋅) is the 95% confidence interval range.

Table 5. Values are expressed between [0,1] intervals and (⋅, ⋅) is the
95% confidence interval range.

Performance metrics for
Algorithm predictions

EVS1 EVS2 EVS1 + EVS2

Sensitivity (0.89, 0.93) (0.84, 0.92) (0.82, 0.96)

Specificity (0.65, 0.83) (0.69, 0.85) (0.70, 0.82)

PPV (0.62, 0.86) (0.53, 1.00) (0.65, 0.89)

NPV (0.98, 0.99) (0.98, 1.00) (0.98, 0.99)

Accuracy (0.78, 0.88) (0.72, 0.78) (0.75, 0.83)

AUC (0.79, 0.91) (0.71, 0.89) (0.77, 0.87)

PPV/NPV has been calculated using the population prevalence from Table
1, i.e., 7.1%, (and not the prevalence in the case-control data in EVS1 and
EVS2, i.e., up to 62%). This approach was chosen to provide a meaningful
numeric value for PPV and NPV for patients42.
(⋅, ⋅) is the 95% confidence interval after fourfold cross validation.
EVS1 shows results from N= 53 examinations performed with Philips
Lumify in Oxford. EVS2, N= 30, including four positive DVT cases on Clarius
HD (2020). The combined evaluation is shown in column (EVS1+ EVS2).
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most similar to clips as they would be acquired by the AutoDVT
software guidance method. Furthermore, free-hand ultrasound
examinations are highly operator-dependent, and every operator
has a unique style of examination. Our proposed approach aims to
standardise these styles to provide optimal input for subsequent
image analysis parts and to aid clinical audits.
Second, standardised acquisition has been demonstrated in

EVS2 but for both external validation sets, our patient cohorts are
small, and we compare across-population with findings from
literature. This limits the types of statistical techniques that can be
employed in this study to evaluate statistical significance. We will
soon start a multi-centre prospective trial that will address these
issues to give further insights into the practical implications of
employing AI support for DVT diagnosis. As suggested in the
proposed diagnostic DVT decision trees (Fig. 11), the ultimate goal
of employing AI support for DVT diagnosis would be to develop a
ML-powered system using free-hand ultrasound that enables
healthcare generalists at the point of care to exclude the presence
of DVT in negative cases. If sufficient accuracy is achievable, this
could obviate the need for a diagnostic scan performed by an
expert user for DVT negative cases, leading to quicker diagnoses
and further cost-benefits. Achieving this goal will require a
number of clinical acceptance issues to be overcome. Perhaps
the most important of these is the notion of clinical responsibility.
When an expert user performs a scan, the presence or absence of
DVT is determined by the expert user, who bears the clinical
responsibility for the outcome of the test. By obviating the need
for an expert user, the clinical responsibility and any associated
liability must lie with the AI/ML-powered system and hypotheti-
cally associated teleradiology workers, since it is the system that
determines the outcome of the test and not the non-specialist

user holding the ultrasound probe. The implications of this are
particularly significant in the context of a false negative outcome
given the possibility of DVT progression to PE and even death.
With this in mind, clinical acceptance is realistically only attainable
if the AI/ML-powered system can achieve exceptionally high NPV,
as shown in our work.
Hence, this study describes the first step of a larger clinical trial

programme which we will use to ultimately evaluate the clinical
efficacy of the AutoDVT software for the diagnosis of proximal DVT.
The study we describe confirms that the AutoDVT software can
diagnose DVT accurately. However, in order for the device to be
accepted within the clinical community a large-scale efficacy study
is required to confirm non-inferiority to expert-led compression US
for proximal DVT diagnosis. Once this has been conducted, the
device will be able to be offered as a diagnostic alternative to
hospital clinic-based DVT diagnosis. In conclusion, our study shows
the potential of a ML-powered system using free-hand ultrasound
to identify DVT in clinical populations with high-throughput
requirements and at the primary care level. Since access to
ultrasound imaging is increasing and amplified through cost-
effective mobile ultrasound devices, a ML-supported examination
by less specialised front line care workers has the potential to be
adopted for proximal DVT screening before confirmatory tests.

METHODS
Study design
This study is a primary analysis of compression ultrasound scan recordings
performed on prospectively enroled patients at the Oxford Haemophilia
and Thrombosis Centre adult DVT clinic. The University of Oxford, UK,
approved the study (Ethics: 18/SC/0220, IRAS 234007). All participants

Fig. 3 Evaluation results for ESV1 on patient level. Receiver operator characteristics on EVS1 resulting from fourfold cross validation (a).
Confusion matrices are shown in (b) for the optimal threshold (* in (a)) in each fold. Frame colours in (b) correspond to ROC fold colours in (a)).
Vessel status is extracted automatically from 53 patients in EVS1 through the combination of fold-specific groin and knee model pairs.

B. Kainz et al.

6

npj Digital Medicine (2021)   137 Published in partnership with Seoul National University Bundang Hospital



provided written informed consent. Eligible participants were consecu-
tively recruited between January 2019 and December 2019. Patients were
approached about participation in the study after their routine ultrasound
DVT examination. After study information and consent, they were scanned
for a second time by an expert radiographer. During the second scan a
mobile ultrasound device was used (Philips Lumify L7). The examinations
were recorded as mp4 videos. Patient identifying information has not been
recorded in the videos but separately in a spreadsheet where it was tagged
with a unique identifier (UID) by co-author Ch.D. Only the UID was used
during downstream analysis.
A second pilot evaluation has been conducted in another clinic, the

Ernst von Bergmann Klinikum Potsdam, Germany, (Ethics: S7(a)/2020).
Eligible participants were recruited between November 2020 and April
2021. Patients were approached about participation and consented in
the study after their routine ultrasound DVT examination. The
examination was conducted with a Clarius L7 HD (2020) by a clinical
expert. In contrast to the first data collection in Oxford, the AutoDVT
software has been used by the operator in Potsdam for guidance and
video acquisition.
In this work, we call the data set from the Oxford Haemophilia and

Thrombosis Centre the EVS1 and data from Potsdam EVS2. Since the
analysed prototype device is based on a ML computer algorithm, training
data and preliminary testing data are required. Thus, preliminary data
acquisition was performed on healthy volunteers (n= 246) and nine
consenting patient volunteers who were examined for DVT (n= 4 DVT
positive). The acquisition has been performed by two radiologists and
three trained engineers. We call the data that is used for training of the
model training set (Table 7). The volunteers and patients that have been
left out from training to monitor the algorithm’s performance during
development are collected in the internal validation set (Table 8).
The ML model’s task is to annotate vessels, find anatomical landmarks,

and analyse vessel compression state automatically. DVT diagnosis is
done by automatization of the standard clinical ultrasound compression
algorithm in a heuristic computer programme, based on the biometrics

acquired from the ML model during the scan. Thus, the ML model has
been trained mainly on data from healthy volunteers (n= 246, age range
18–84, BMI < 30) and compression sequences from consented patients
with confirmed DVT (n= 9). An overview over the inclusion criteria is
given in Fig. 7 and the training data population in Table 7. An overview
over the internal validation set is shown in Table 8. All compression
sequences have been manually annotated (marking pixels that belong to
vein or artery by different colour labels) by a trained workforce (n= 23
trained labellers) including medical students and employees of
ThinkSono Ltd to (a) train the algorithm and (b) evaluate its performance
quantitatively.
Image quality control has been performed by a medical student

according to a specialist-defined scheme.

Quality control scoring system. We use a 10-point expert image quality
scoring as it is outlined below to curate video data that has not been
acquired under AutoDVT guidance and real-time quality control. The
quality cut-off, i.e., the minimum required quality has been less or equal to
a total score of 20 in this study.

1. Vessel boundaries in video frame images

(a) Fully in Frame: 1
(b) Cut off <50% of vessel size during parts sequence: 2
(c) Cut off <50% of vessel size during entire sequence: 3
(d) Cut off >50% of vessel size during parts of sequence: 4
(e) Cut off >75% of vessel size during part of sequence or >50% over

entire sequence: 5

2. Adherence to regular LM configuration:

(a) Strongly adherent to LM configuration: 1
(b) Different positions of veins and arteries than regular configura-

tion, mix of LMs: 2

Fig. 4 Evaluation results for ESV1 on compression sequence level. Receiver operator characteristics for the correct compression
classification per ultrasound sequence/anatomical landmark on EVS1 (a). Confusion matrices (b) at optimal thresholds (* in (a)) per fold. Frame
colours correspond to ROC fold colours in (a). Vessel status is extracted automatically through the ML models from the 121 available
anatomical landmark sequences in EVS1.
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(c) Loss of LM position for parts of sequence: 3
(d) Additional/missing (large) vessels for LM: 4
(e) Additional/missing vessels and different positions: 5

3. Contrast of veins to tissue

(a) Dark veins, bright tissue: 1
(b) Somewhat contrasted veins: 2
(c) Veins and tissue almost same echogenity: 3

4. Contrast of arteries to tissue:

(a) Dark arteries, bright tissue: 1
(b) Somewhat contrasted arteries: 2
(c) Arteries and tissue almost same echogenity: 3

5. Sharpness of vein boundaries

(a) Clear boundaries with strong dorsal echo amplification: 1

Fig. 6 Costs of the guidance tool vs. net monetary benefit (NMB) per examination when implementing ML-guided DVT diagnostics into
clinical diagnostic pathways. The NMB has been simulated with a deterministic model for each of the diagnostic algorithm variants in Fig. 11
at the mean (solid line) and the 95 CI interval (shaded area) from Table 5 to show possible optimistic and pessimistic scenarios. The red lines
on the y-axis mark the maximal attainable NMB range when examination costs are zero.

Fig. 5 Confusion matrices for EVS2 for each fold. Frame colours correspond to cross-validation folds (a–d) from Figs. 3 and 4. Vessel status is
extracted automatically from all 30 patients in EVS2. Note that this experiment comprises of four DVT positive and 26 DVT negative patients,
thus sensitivity/true positive rate is discretised in a ROC curve with only four steps, which makes a plot less meaningful.
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(b) Well discernible boundaries with some dorsal echo amplification: 2
(c) Poorly visible boundaries without echo amplification: 3

6. Sharpness of artery boundaries

(a) Clear boundaries with strong dorsal echo amplification: 1
(b) Well discernible boundaries with some dorsal echo amplification: 2
(c) Poorly visible boundaries without echo amplification: 3

7. Overall gain of image

(a) Medium gain range, good quality: 1
(b) Image too bright: 2
(c) Image too dark: 3

8. Depth of image

(a) Image ends about 1 cm below lowest vessel: 1
(b) Image ends within 1–2 cm below lowest vessel: 2
(c) Image ends 2+ cm below lowest vessel: 3

9. Image artefacts

(a) Good quality, only minor artefacts: 1
(b) Multiple smaller artefacts, also in/over the vessels: 2
(c) Large image problems, i.e., probe not fully on leg: 3

10. Probe Movement in sequence

(a) Medium paced compression and decompression, no lateral or
horizontal movements, full vein compression: 1

(b) Very fast or very slow compression and decompression, no lateral
or horizontal movements, incomplete compression on healthy
veins: 2

(c) Minimal lateral/horizontal movement: 3
(d) Lots of movement: 4

Total: 10–35 Points

Table 6. Summary of results from the variants in Fig. 11 comparing the calculated total costs per patient pathway and QALYs to the algorithm
accuracy.

Total costs per diagnostic
pathway

Total QALYs True positive
likelihood

False positive
likelihood

True negative
likelihood

False negative
likelihood

No software
support

£300 11.57 0.10 0.06 0.84 0.00

Algorithm 1 £230–£244 11.57 0.09 0.01–0.02 0.88–0.89 0.01

Algorithm 2 £237–£254 11.57 0.09 0.01–0.02 0.88–0.89 0.01

Algorithm 3 £240–£259 11.57 0.09 0.01–0.02 0.88–0.89 0.01

Algorithm 4 £393–£510 11.56 0.10 0.19–0.30 0.60–0.71 0.00

Algorithm 5 £444–£590 11.56 0.10 0.23–0.37 0.53–0.67 0.00

Assumed population statistics according to DVT prevalence in Table 1.

Table 7. Training data overview.

Algorithm training data Groin/thigh area model
training

Knee area model
training

Acquired data

Subjects 245 163 255

Number of compression sequences 1076 616 1500

Annotated scan sequences

Background/no anatomical landmark or compression 169 169 169

LM0—external iliac vein 10 – 10

Start of groin area after the inguinal ligament

LM1—Greater saphenous vein + common femoral vein at saphenofemoral
junction

215 – 215

LM2—common femoral vein and artery 51 – 51

LM3—common femoral vein and superficial and deep femoral arteries 294 – 294

LM4—superficial and deep femoral veins and arteries 141 – 141

End of groin area and beginning of thigh area at entrance to adductor canal

LM5—proximal thigh with superficial vein clearly visible with deep femoral vein
clearly separated in deep tissue

123 – 123

LM6—mid thigh with superficial femoral vein and artery in the adductor canal 288 – 288

LM7—distal thigh, same anatomy as LM6 2 – 2

End of thigh area and beginning of knee area

LM8—proximal popliteal area, with popliteal vein and artery – 130 130

LM9—middle popliteal area, with tibial-fibular trunk and popliteal artery – 141 141

LM10—distal popliteal area, with anterior and posterior tibial and fibular veins and
popliteal artery

– 186 186

Total number of manually annotated images 111,546 88,823 167,145

Subjects may contain more than one landmark; thus, subject IDs may be present in the training and internal validation set. Individual sequences are either in
one or the other set. Landmarks used for the groin model in this study are LM0–LM4 and those for the knee area are LM8–LM10.
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Table 8. The internal validation set represents a random 10% split at the subject level of the overall available training data.

Internal validation data Groin/thigh area validation
sequences

Knee area validation
sequences

Acquired internal validation
sequences

Total subjects 25 17 26

Number of compression sequences 88 58 133

Annotated scan sequences

Background/no anatomical landmark or compression 13 13 13

LM0—external iliac vein – – –

Start of groin area after the inguinal ligament

LM1—Greater saphenous vein + common femoral vein at saphenofemoral
junction

17 – 17

LM2—common femoral vein and artery 1 – 1

LM3—common femoral vein and superficial and deep femoral arteries 27 – 27

LM4—superficial and deep femoral veins and arteries 11 – 11

End of groin area and beginning of thigh area at entrance to adductor canal

LM5—proximal thigh with superficial vein clearly visible with deep femoral
vein clearly separated in deep tissue

10 – 10

LM6—mid thigh with superficial femoral vein and artery in the
adductor canal

25 – 25

LM7—distal thigh, same anatomy as LM6 – – –

End of thigh area and beginning of knee area

LM8—proximal popliteal area, with popliteal vein and artery – 20 20

LM9—middle popliteal area, with tibial-fibular trunk and popliteal artery – 11 11

LM10—distal popliteal area, with anterior and posterior tibial and fibular
veins and popliteal artery

– 16 16

Total number of manually annotated images 9598 8257 15,523

Landmarks used for the groin model are LM0–LM4 and those for the knee area are LM8–LM10.

Fig. 7 Consort diagram for inclusion of volunteer scans into the training set and internal validation set. Dataset curation for the training
and internal validation data. Our approach can be trained from image data that originates predominantly from healthy volunteers.
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Ultrasound protocol
Non-enhanced ultrasound imaging was performed by a research
physician or radiologist (at least one year of hands-on ultrasound DVT
imaging training) using either Clarius L7 (2017) and Clarius L7 HD (2020)
or Philips Lumify L7 or GE VScan Extend (scanned with linear probe, only
for training data) ultrasound devices. Example images for these scanners
are shown in Fig. 8. Two-point compression ultrasound was used for this
study. Clinically, a compression is deemed adequate when the vein is
compressed fully. A vein that does not compress at the same pressure, at
which a healthy vein would collapse, indicates DVT. The femoral vessels
were examined from 2 cm distal to the saphenofemoral junction to 2 cm
proximal from the inguinal band. The superficial femoral vessels were
examined in the adductor canal. The examination of the popliteal vein
starts from the distal 2 cm of the popliteal vein and its trifurcation into
the anterior tibial vein, posterior tibial vein, and the peroneal vein. The
entire examination has been recorded as screen capture videos, cropped
to the ultrasound image area without user-interface content and
resampled with bilinear interpolation to 150 × 150 pixels. Participants
were positioned in a supine position, with the hip rotated outwards by
about 60–80∘ and the knee flexed at about 60∘. The knee area was
examined either supine with neutral hip and knee flexed at 80–90∘ or
sitting upright with knee hanging loose over the gurney edge at 90∘.

Statistical analysis
Ultrasound has a sensitivity of 94% and a specificity of 97% for DVT
detection24,25 when performed by specialised radiologists. Two studies
reported sensitivity of 84.4–90.0% and specificity of 97.0–97.1% when
intensely trained nurses and GPs were the ultrasound operator9,10. This
means that there is strong evidence that non-specialists like nurses and GPs
can (a) acquire ultrasound imaging data of high enough quality for diagnosis
and (b) that these operators are able to correctly identify DVT.

Sample size. The sample size in this manuscript is 167,145 annotated
ultrasound images for model training from 255 volunteers and 15,523
annotated images from 26 participants for internal model validation.
For prospective model evaluation we use 19,134 images in 121 video

recordings from 53 patients, 34 DVT positive, in EVS1, and 18,399 images in
150 compression video clips from 30 patients, four DVT positive, in EVS2. This
provides 83 patient observations for algorithm evaluation that have not been
part of the algorithm training data. On the patient level, sample sizes like this
are in line with other studies evaluating algorithmic diagnostic decision
support. Some recently reported external validation sample sizes of, e.g.,
5026,27, 9128, and 19829 subjects during retrospective testing and 8030 to 9731

during prospective testing. Statistical approximations for sample size
estimation32 suggest that eight patients with the required outcome would
be sufficient in an external validation set, given an incident rate of 7.1%
(Table 1) as observed in our UK thrombosis clinic. Combining EVS1 and EVS2,
we have included 38 patients with confirmed DVT and 45 patients who were
suspected but did not suffer from DVT. This provides an almost balanced
dataset for testing. For the training of our model, a balanced dataset with
respect to diagnostic outcome is not required. The core algorithm focuses on
accurate vessel segmentation, which can be learned from compression
ultrasound imaging from healthy volunteers with manual delineations of the
visible vessels. Diagnosis is suggested indirectly through the compressibility
of the vein. We provide fourfold cross-validation results on the individual sets
(80%:10%:10% training:validation:testing with non-overlapping data splits).
This allows to provide ~95% confidence intervals for the core algorithm’s
performance for the vessel segmentation and anatomical guidance tasks. The
power of this study is above 0.8 at a significance level of 0.05, with a Cohen’s
d effect size of 0.5, when assuming an effect between 0.9 (without software
support n9= 697, n10= 1107) and 0.95 (with software support, this study n=
53, n= 30) with a standard deviation of 0.1. For this setting, 51 patients are
required as a minimum to reach a power of 0.8. We achieve this for EVS1
alone (n= 53) and for the combined analysis of EVS1 with EVS2 (n= 83).
The R software package (©The R Project for Statistical Computing) has

been used for numerical power analysis.
Algorithms are evaluated at the participant level. To evaluate classifier

performance, we calculate sensitivity, specificity, PPV, NPV, and overall
diagnostic accuracy for DVT identification for the internal and external
validation sets.
We also generate the ROC of the DVT classification score for the external

validation sets and calculated the area under the ROC (AUC). We show
confusion matrices at the optimal algorithm threshold.

Fig. 8 Examples of the chosen anatomically salient landmarks and overview over the investigated anatomy. Images have been acquired
by different acquisition devices and from different subjects. This figure illustrates the diversity in our dataset. See the overview above the
table and Tables 7 and 8 for a description for the location of these landmarks. These example images have been manually cropped and
contrast normalised for better readability.
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Algorithm design
This study aims to validate the effectiveness of an ML-powered device
(AutoDVT) for the diagnosis of proximal DVT. AutoDVT is a CE-marked
software product (93/42/EEC 40873) that is coupled to a handheld CE-marked

ultrasound machine. The AutoDVT software has two functions: (1) Directing
the user to correctly position the ultrasound to complete a thorough scan,
and (2) analysing the scan results to confirm the presence/absence of a
thrombus.

Fig. 9 Overview over the AutoDVT prototype core algorithm. a whole overview and b overview over the individual branches. A U-Net41

serves as a backbone for automatic delineation of vein and arteries (b). The prediction of the anatomical location of the image is based on
our previous work15. Network branches predict the anatomical location and whether the vessel is open or closed under pressure. Landmark
predictions are performed from the learned numeric representation in the bottleneck layer; vessel compression state is predicted from the
output segmentation mask. The network components are connected and can be trained through back-propagation42 in an end-to-end
manner. The input is a stack of nine images (individual video frame images resampled to 150 × 150 pixels) from an ultrasound video stream
that moves by one in a sliding window fashion. A single segmentation mask is produced for the last-most image within approximately
25 ms. Two separate models with identical architecture are trained, one for the groin area (LM0–LM5) and one for the knee area (LM8–LM10).
Each model holds 31,475,527 parameters. (OC= open/close).
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The software uses a fully automated ML vessel segmentation network
with auxiliary branches that predict the anatomical location of the
ultrasound image relative to the deep veins in the leg and the compression
status of the vein (open or closed). Veins have been labelled by a
radiologist to be either open or closed and fully compressed. Two
networks with identical design/architecture have been trained: one for the
groin/thigh area and one for the knee area. The subject IDs overlap
between the training set and internal validation set because a sequence
can have multiple landmarks but belong to either a healthy patient or a
patient with confirmed DVT. See Table 7 for an overview over the
algorithm training data and Table 8 for the internal validation data.
Annotations include manual delineations of vein and artery cross sections
in the images as well as discrete image-level labels for eleven anatomical
locations. To facilitate algorithmic evaluation, we have defined anatomi-
cally salient landmarks (LM0–LM10) on the common femoral vein,
superficial femoral vein, and popliteal vein. Example images for these
landmarks, acquired with the different ultrasound probes that are used for
algorithm training in this study, are shown in Fig. 8.
To exclude DVT an operator must follow a protocol as instructed by the

software. This protocol resembles the clinical practice of three-point or two-
point examinations33–35, which means doing compression ultrasound in two
to three regions where the greatest risk of developing thrombosis occurs. For
three-point compression protocols, these regions include: (1) the common
femoral vein at the level of the inguinal crease (LM0–LM4), (2) the superficial
femoral vein superior in the adductor canal (LM5–LM7), and (3) the popliteal
vein and its trifurcation in the popliteal fossa (LM8–LM10).
For two-point compression protocols the same regions are examined

except (2), i.e., LM0–LM5 in the groin and LM8– LM10 in the knee. To
maximise the overlap between common procedures in the clinics from
where our external validation sets originate, we investigate in this study
the effectiveness of algorithmically evaluated two-point compression
DVT examinations.
Thus, using the training set, the discriminator parts in the ML models are

trained on consolidated groups of landmarks LM0–LM1, LM2–LM3–LM4,
i.e., two groups, for (1) and one group, LM8–LM9–LM10, for (3). This means
three successful vein compressions, two in the groin area and one in the
knee area, are required in total to exclude DVT. All identified anatomical
locations must show fully compressible veins, otherwise the participant is
categorised as suspected DVT case.
Two deep ML networks with identical architecture as shown in Fig. 9

were trained on a GPU server (Nvidia Tesla K80) using the Adam optimizer

with momentum 0.9 to optimise the parameters of the network. Binary
cross entropy (BCE, Eqs. (1) and (2)) is used for the segmentation task (one-
hot encoded) and the vein open/closed task. Cross entropy (CE, Eq. (3)) is
used for the anatomical landmark detection task as an error metric.

Lsegmentationðone�hot�encodedÞ ¼ � 1
N

Xpixels

i¼1

yi log ðpðyiÞÞ þ ð1� yiÞlog ð1� pðyiÞÞ

(1)

Lanatomicallocationðone�hot�encodedÞ ¼ � 1
N

X11

i¼1

yi log ðpðyiÞÞ þ ð1� yiÞlog ð1� pðyiÞÞ

(2)

Where y is the real label and p(y) is the predicted probability for the image
belonging to this label.

LðveinopenorclosedÞ ¼ �ðylog ðpðyÞÞÞ þ ð1� yÞlog ð1� pðyÞÞ (3)

The total error metric (loss function) for our network results as

Ltotal ¼ αLsegmenation þ βLanatomicallocation þ γLveinopenrclosed; (4)

where α and β are adjustable hyper parameters. We use α= 100 and
β= γ= 1. The PyTorch deep learning framework36 has been used for our
implementation. A series of manually tuned temporal quality control
functions ensure robust communication with the user regarding vessel
location in the image, quality of compressions, imaging parameters and
placement of the probe (Fig. 9).
The internal validation set (n= 26 healthy subjects, held out from

training) has been used to test the models’ performance during
development by comparing segmentations to manual delineations of
the vessels and manual, categorical image labels with respect to the
anatomical locations (LM0–LM10) and the vessel compression status (open
or fully closed). For categorical labels, the F1-score is used,

F1 ¼ true positive classifications
true positive classificationsþ 1

2 ðfalse positive classificationsþ false negative classifications Þ
(5)

And for segmentation masks the Sørensen-Dice Coefficient is applied
per label (background, artery, vein),

DICE ¼ 2´ true positive pixels
2´ true positive pixelsþ false positive pixelsþ false negative pixels

(6)

Fig. 10 Prototype implementation user interface. The AutoDVT software instructs users to locate a given landmark, instructs to perform a
correct compression and evaluates the result automatically.
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In addition, the bounding boxes for the individual segmentation masks are
generated and the intersection over union (IoU= Jaccard index) is computed,
which is a common performance metric for object detection tasks,

IoU ¼ F1
ð2� F1Þ ¼

Area of overlap with true bounding box
Area of union with true bounding box

(7)

In an end-user scenario a non-expert operator would have three to five
attempts to complete a compression, otherwise referral is recommended.
A screenshot of the AutoDVT software during use is shown in Fig. 10.
During our experiments, all compressions have been competed in under
five attempts.

Technical uniqueness of the proposed framework. We propose a triple-task
convolutional neural network (CNN) fully integrated into a clinical
prototype device that jointly classifies the anatomical landmark plane in
the current field-of-view, scores vein compressibility and provides
semantic segmentation masks for arteries and veins. The proposed
network architecture can intrinsically learn to interpret video data to
perform localisation, segmentation, local deformation estimation and
classification from weak discrete labels that characterise whole images,

e.g., anatomical landmark locations. Furthermore, it is designed to require
a reasonably low number of floating-point operations to facilitate real-time
performance.

Cost effectiveness
We simulated the potential cost-effectiveness of a ML-enabled approach at
the front line of care, where non-specialists may perform the examination
independently. A decision tree analytic model was designed and
implemented in Microsoft Excel (©Microsoft Corporation) to estimate the
lifetime costs and benefit measured in terms of quality-adjusted life years
(QALYs) for different proximal DVT testing algorithms. The current clinically
used diagnostic DVT algorithm is shown in Fig. 11a and possible
integration strategies for our method are shown in Fig. 11b–f.
The cost analysis model adheres to guidelines issued by the National

Institute of Health and Care Excellence (NICE)6. It uses an UK NHS and
personal social services perspective with costs at 2018/19 prices and with
discounting for both costs and QALYs being undertaken at 3.5% per
annum. Note that costs associated with tangible and intangible expenses
that families can incur in the event of disability or even death due to
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Fig. 11 Possible integration strategies for our approach into DVT diagnostics pathways. a current clinical algorithm to diagnose DVT
without software support according to UK NICE guidelines6 and b–f possible variants to integrate ML software support into the clinical
pathway. Algorithms 1–3 shown in (b–d) generate a positive net monetary benefit (cf. Fig. 6). The examined modifications have been
suggested by health economics and clinical experts. Note that treatment options may further depend on the age of the clot, which might be
manually estimated during confirmatory ultrasound scans43.
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misdiagnosis would not be considered by either NHS or personal social
services expenditure and is commonly excluded from a NICE appraisal 6.
The model uses sensitivity (the ability of a test to correctly identify a

patient with a true proximal DVT) and of specificity (the ability of a test to
correctly identify a patient without a true proximal DVT) as measured on
the external validation sets in this study. We also include clinical tests
(Wells Score, D-dimer, and proximal ultrasound) that form part of the
diagnostic algorithm.
Our cost analysis model splits patients into two subgroups at the start of

each algorithm, a subgroup in which patients have a proximal DVT and a
subgroup in which patients do not have a proximal DVT. Measured
sensitivity and specificity values are used alongside an estimate of the
prevalence of proximal DVT of 14.7% taken from Kilroy et al.37 to estimate
the number of patients (from a cohort of user specified size) that receive
each clinical test and their ultimate diagnoses (proximal DVT or not).
Patients with a diagnosed proximal DVT will receive treatment.

We generate four possible outcomes for patients based on their DVT
status and the results of each diagnostic algorithm: Treated patients with a
true DVT (true positive patients), treated patients without a true DVT (false
positive patients), untreated patients without a true DVT (true negative
patients) and untreated patients with a true DVT (false negative patients).
Each of the four diagnostic accuracy outcomes have estimated associated
costs incurred and utility accrued for the patients. These numbers are
multiplied by the proportion of patients in each outcome and are
combined with the costs of each test to obtain estimates of the total
costs and QALYs for the diagnostic algorithm. When costs and QALYs
are obtained for diagnostic algorithms with and without the ML model, the
estimated incremental cost-effectiveness ratio for AutoDVT can be
calculated.

Parameters for the cost-effectiveness model. Test characteristics have
been taken from Goodacre et al.24 and are presented in Table 9
with the statistical distributions used in stochastic analysis presented in
Tables 10–13.
Treatment reduces the probability of a patient with a DVT

experiencing a fatal or non-fatal pulmonary embolism (PE) or post-
thrombotic syndrome (PTS). However, treatment is associated with risks
of fatal haemorrhage, non-fatal intracranial haemorrhage, and non-fatal
non-intracranial haemorrhage.
According to Goodacre et al.24 patients who do not experience any of

a PE, PTS or a haemorrhage accrue a mean of 11.58 discounted lifetime
QALYs. Mean quality of life multipliers for PTS, non-fatal PE and non-
fatal intracranial haemorrhage of 0.977, 0.94, and 0.29 respectively were
also presented by Goodacre et al.24 with statistical distributions used in
the stochastic analysis presented in Tables 10–13. These data were used
to estimate total QALYs for the four diagnostic accuracy outcomes.
The lifetime, discounted, QALYs accrued by patients in each

classification differ based on their true DVT status and their results
from each diagnostic algorithm. Untreated patients with a DVT remain
at high risk of PE and PTS but do not have the risks of haemorrhage
associated with treatment. Treated patients with a DVT have reduced
risks of PE and PTS but have the risk of haemorrhage associated with
treatment. Treated patients without a DVT have the same risk of PE and
PTS as the general population but are subject to the risks of
haemorrhage associated with treatment. Untreated patients without a
true DVT will accrue the same discounted lifetime QALYs as the general
population. The QALYs accrued in each of the four diagnostic accuracy
outcomes are shown in Table 14.
The discounted lifetime costs associated with patient outcomes were

taken from24,38. Where appropriate costs were uplifted to 2018/19
values using inflation indices presented in Curtis et al.38.
The lifetime costs associated with PTS and non-fatal intracranial

haemorrhage were both composite costs including the cost of a first
attendance at a vascular surgery outpatient clinic and the cost of

Table 9. Efficiency parameters for each test.

Description Mean

Wells Score: Proportion of patients with a
proximal DVT characterised as:

High risk 0.68

Moderate risk 0.25

Low risk 0.07

Wells Score: Proportion of patients
without a proximal DVT characterised as:

High risk 0.11

Moderate risk 0.41

Low risk 0.48

D-dimer (assumed to be an enzyme-
linked immunosorbent assay (ELISA) test)

Sensitivity for
proximal DVT

0.98

Specificity for proximal
DVT when

Wells Score is high risk 0.34

Wells Score is
moderate risk

0.45

Wells Score is low risk 0.52

Proximal ultrasound

Test sensitivity 0.95

Test specificity 0.94

Table 11. Test Efficiency D-dimer test.

Description Mean Distribution Param. 1 Param. 2 Source

Sensitivity for proximal DVT 0.98 Beta 736.91 15.04 17

Specificity for proximal DVT— Wells’s outcome: high risk 0.34 Fixed 17

Specificity for proximal DVT— Wells’s outcome: moderate risk 0.45 Beta 4278.13 5228.83 17

Specificity for proximal DVT— Wells’s outcome: low risk 0.52 Fixed 17

Table 10. Test Efficiency Well’s test.

Description Mean Distribution Parameter 1 Source

Proportion of patients with proximal DVT characterised as high risk 0.68 Dirichlet 105.61 17

Proportion of patients with proximal DVT characterised as moderate risk 0.25 Dirichlet 38.83 17

Proportion of patients with proximal DVT characterised as low risk 0.07 Dirichlet 10.87 17

Proportion of patients without proximal DVT characterised as high risk 0.11 Dirichlet 40.78 17

Proportion of patients without proximal DVT characterised as moderate risk 0.41 Dirichlet 151.99 17

Proportion of patients without proximal DVT characterised as low risk 0.48 Dirichlet 177.94 17
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subsequent vascular surgery outpatient clinics visits for PTS and the cost
of care in the first year and subsequent years in the case of non-fatal
intracranial haemorrhage. The total cost associated with PTS and the
method used to calculate these were included in Goodacre et al.24

together with the costs of the components of the total cost. From this, it
was estimated that the expected lifetime of patients with PTS was 11.67
years. No such information was provided for patients experiencing a non-
fatal, non-intracranial haemorrhage and thus it was assumed that the
same expected lifetime applied when calculating costs.
Treatment for DVT consists of approximately eight days of low

molecular weight (LMW) heparin followed by ninety days of Warfarin.

The total cost of DVT treatment of £845 is estimated using the same
derivation as that used in24 with one change: The current version of the
British National Formulary39 indicates that the initial dose of LMW heparin
in the treatment of DVT is a large loading dose with subsequent smaller
maintenance doses, thus the initial loading dose will be associated with a
greater cost than subsequent maintenance doses. The costs of LWM
heparin and warfarin are taken from the current version of the British
National Formulary39. Additional resource use such as GP visits and
anticoagulant clinic visits and their unit costs24,38 and NHS Reference

Table 12. Proximal DVT prevalence and outcomes associated with treated and untreated proximal DVT.

Description Mean Distrib. Param. 1 Param. 2 Source

Proximal DVT prevalence 0.15 Beta 41 238 (37 and Table 1)

Treated proximal DVT

Probability of fatal pulmonary embolus 0 Beta 17 4204 17

Probability of non-fatal pulmonary embolus 0.01 Beta 33.4 4070.6 17

Probability of post thrombotic syndrome 0.05 Beta 28 500 17

Outcomes associated with warfarin treatment

Fatal haemorrhage 0 Dirichlet a= 37 17

Non-fatal intracranial haemorrhage 0 Dirichlet b= 13 17

Non-fatal non-intracranial haemorrhage 0.02 Dirichlet c= 226 17

No haemorrhage 0.98 Dirichlet d= 10.481 17

Untreated proximal DVT

Probability of fatal pulmonary embolus 0.02 Beta 5 263 17

Probability of non-fatal pulmonary embolus 0.09 Beta 25 243 17

Probability of post thrombotic syndrome 0.33 Beta 5.21 10.57 17

Table 13. QALYs associated with outcomes and QALYs accrued by patient category.

Description Mean Distribution Param. 1 Param. 2 Source

Normal age-specific discounted quality-adjusted life
expectancy (QALYs)

11.6 Fixed 17

Lifetime utility multiplier associated with

Non-fatal pulmonary embolus 0.94 Beta 19.43 1.24 17

Non-fatal intracranial haemorrhage 0.29 Beta 8.34 20.41 17

Post thrombotic syndrome 0.98 Beta 232.64 5.48 17

Lifetime QALY’s accrued by

Patients with a DVT who are treated 11.5 [A]

Patients with a DVT who are untreated 11.2 [A]

Patients without a DVT who are treated 11.5 [A]

[A]: The variance on these parameters is based on the variance of the parameters that make up these values.

Table 14. Estimated QALYs accrued, and costs incurred for each
diagnostic accuracy outcome.

Description QALYs accrued Cost incurred [UK £]

True Positive (DVT – treated) 11,464 1321

False Negative (DVT –

untreated)
11,207 2214

False Positive (No DVT – treated) 11,530 975

True Negative (No DVT –

untreated)
11,580 0

Table 15. Costs associated with outcomes of DVT and complications
associated with the treatment of DVT.

Description Mean [UK £]

Treatment of fatal PE 1650

Treatment of non-fatal PE 1601

Lifetime treatment of PTS 4663

Fatal intracranial haemorrhage 9334

Lifetime treatment for non-fatal intracranial
haemorrhage

64,147

Non-fatal non-intracranial haemorrhage 805
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Costs 2015–201640, where appropriate costs have been inflated to 2018/
19 values using inflation indices presented by Curtis et al.38. The costs
associated with outcomes associated with DVT or with treatment for DVT
are shown in Table 15.
The costs associated with each diagnostic test have been taken from

Goodacre24 and the NHS40 and are presented in Table 16.

DATA AVAILABILITY
Algorithm raw performance results of this study are available from the corresponding
author upon reasonable request. Image data access in line with the informed consent
of the participants, subject to approval by the project ethics boards and under a
formal Data Sharing and License Agreement on a case-by-case basis. The data are not
publicly available due to them containing information that could compromise
research participant privacy/consent. Qualified researchers can apply for access via
email to https://thinksono.com/ (info@thinksono.com).

CODE AVAILABILITY
Custom computer software (AutoDVT) paired with ultrasound acquisition devices can
be licensed from ThinkSono Ltd (hello@thinksono.com). Data analysis code in R,
Microsoft ExcelⓇ, and Python and model structure in PyTorch format can be
requested from the corresponding author.

Received: 8 January 2021; Accepted: 6 August 2021;

REFERENCES
1. ISTH Steering Committee for World Thrombosis Day. Thrombosis: a major

contributor to the global disease burden. J. Thromb. Haemost. 12, 1580–1590
(2014).

2. Jha, A. K. et al. The global burden of unsafe medical care: analytic modelling of
observational studies. BMJ Qual. Saf. 22, 809–815 (2013).

3. Cohen, A. et al. Vte impact assessment group in europe (vitae). venous throm-
boembolism (vte) in europe. the number of vte events and associated morbidity
and mortality. Thromb. Haemost. 98, 756–764 (2007).

4. Beckman, M. G., Hooper, W. C., Critchley, S. E. & Ortel, T. L. Venous throm-
boembolism: a public health concern. Am. J. Prev. Med. 38, S495–S501
(2010).

5. Plüddemann, A., Thompson, M., Price, C. P., Wolstenholme, J. & Heneghan, C. The
d-dimer test in combination with a decision rule for ruling out deep vein
thrombosis in primary care: diagnostic technology update. Br. J. Gen. Pract. 62,
e393–e395 (2012).

6. The National Institute for Health and Care Excellence. NICE guidance, https://
www.nice.org.uk/process/pmg9/resources/guide-to-the-methods-of-technology-
appraisal-2013-pdf-2007975843781 (2013).

7. Elliott, C. G., Goldhaber, S. Z. & Jensen, R. L. Delays in diagnosis of deep vein
thrombosis and pulmonary embolism. Chest 128, 3372–3376 (2005).

8. AWMF Leitliniensteuerungsgruppe. Venenthrombose und Lungenembolie:
Diagnostik und Therapie, https://www.awmf.org/uploads/tx_szleitlinien/065-
002l_S2k_VTE_2016-01.pdf (2016).

9. Mumoli, N. et al. Accuracy of nurse-performed compression ultrasonography in
the diagnosis of proximal symptomatic deep vein thrombosis: a prospective
cohort study. J. Thromb. Haemost. 12, 430–435 (2014).

10. Mumoli, N. et al. General practitioner–performed compression ultrasonography
for diagnosis of deep vein thrombosis of the leg: a multicenter, prospective
cohort study. Ann. Fam. Med. 15, 535–539 (2017).

11. Fox, J. C. & Bertoglio, K. C. Emergency physician performed ultrasound for dvt
evaluation. Thrombosis 2011, 938709 (2011).

12. Fong-Mata, M. B. et al. An artificial neural network approach and a data aug-
mentation algorithm to systematize the diagnosis of deep-vein thrombosis by
using wells’ criteria. Electronics 9, 1810 (2020).

13. Caprini, J. A., Arcelus, J. I. & Reyna, J. Effective risk stratification of surgical and
nonsurgical patients for venous thromboembolic disease. Semin. Hematol. 38,
12–19 (2001).

14. Molinaro, A. M. Diagnostic tests: how to estimate the positive predictive value.
Neuro-Oncol. Pract. 2, 162–166 (2015).

15. Tanno, R. et al. Autodvt: joint real-time classification for vein compressibility analysis
in deep vein thrombosis ultrasound diagnostics. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, 905–912 (Springer,
2018).

16. Oxfordshire Clinical Commissioning Group. Occg service specification (2018/19),
primary care service for dvt testing (updated september 18). sept., https://www.
oxfordshireccg.nhs.uk/professional-resources/documents/primary-care/locally-
commissioned-services-2018%20-2019/dvt-testing.pdf (2018).

17. Goodacre, S. et al. How should we diagnose suspected deep-vein thrombosis? J.
Assoc. Physicians 99, 377–388 (2006).

18. Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep
learning. J. Big Data 6, 1–48 (2019).

19. De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in
retinal disease. Nat. Med. 24, 1342–1350 (2018).

20. Bai, W. et al. Automated cardiovascular magnetic resonance image analysis with
fully convolutional networks. J. Cardiovasc. Magn. Reson. 20, 65 (2018).

21. Akkus, Z. et al. A survey of deep-learning applications in ultrasound: artificial
intelligence–powered ultrasound for improving clinical workflow. J. Am. Coll.
Radiol. 16, 1318–1328 (2019).

22. Qatawneh, Z., Alshraideh, M., Almasri, N., Tahat, L. & Awidi, A. Clinical decision
support system for venous thromboembolism risk classification. Appl. Comput.
Inform. 15, 12–18 (2019).

23. Wang, M. & Deng, W. Deep visual domain adaptation: a survey. Neurocomputing
312, 135–153 (2018).

24. Goodacre, S., Sampson, F., Thomas, S., van Beek, E. & Sutton, A. Systematic review
and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein
thrombosis. BMC Med. Imaging 5, 1–13 (2005).

25. Zierler, B. K. Ultrasonography and diagnosis of venous thromboembolism. Cir-
culation 109, I–9 (2004).

26. Patel, B. N. et al. Human–machine partnership with artificial intelligence for chest
radiograph diagnosis. NPJ Digit. Med. 2, 1–10 (2019).

27. Kanber, B. et al. High-dimensional detection of imaging response to treatment in
multiple sclerosis. NPJ Digit. Med. 2, 1–10 (2019).

28. Miura, K. et al. Feasibility of the deep learning method for estimating the ven-
tilatory threshold with electrocardiography data. NPJ Digit. Med. 3, 1–7 (2020).

29. Huang, S.-C. et al. Penet–a scalable deep-learning model for automated diagnosis
of pulmonary embolism using volumetric ct imaging. NPJ Digit. Med. 3, 1–9
(2020).

30. Kiani, A. et al. Impact of a deep learning assistant on the histopathologic clas-
sification of liver cancer. NPJ Digit. Med. 3, 1–8 (2020).

31. Choi, D.-J., Park, J. J., Ali, T. & Lee, S. Artificial intelligence for the diagnosis of heart
failure. NPJ Digit. Med. 3, 1–6 (2020).

32. Riley, R. D. et al. Calculating the sample size required for developing a clinical
prediction model. BMJ 368:m441 (2020).

33. Lee, J. H., Lee, S. H. & Yun, S. J. Comparison of 2-point and 3-point point-of-care
ultrasound techniques for deep vein thrombosis at the emergency department: a
meta-analysis. Medicine 98, e15791 (2019).

34. Zuker-Herman, R. et al. Comparison between two-point and three-point com-
pression ultrasound for the diagnosis of deep vein thrombosis. J. Thromb.
Thrombolysis 45, 99–105 (2018).

35. Dehbozorgi, A. et al. Accuracy of three-point compression ultrasound for the
diagnosis of proximal deep-vein thrombosis in emergency department. J. Res.
Med. Sci. 24, 80 (2019).

36. Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning
library. Adv. Neural Inform. Process. Syst. 32, 8026–8037 (2019).

37. Kilroy, D., Ireland, S., Reid, P., Goodacre, S. & Morris, F. Emergency department
investigation of deep vein thrombosis. Emerg. Med. J. 20, 29–32 (2003).

38. Curtis, L. & Burns, A. Unit costs of health and social care 2018, https://www.pssru.
ac.uk/project-pages/unit-costs/unit-costs-2018/ (2019).

39. Royal Pharmaceutical Society. British National Formulary, https://www.
medicinescomplete.com/#/browse/bnf (2020).

40. The UK Department of Health. Unit costs of health and social care 2018, https://
www.pssru.ac.uk/project-pages/unit-costs/unit-costs-2018/ (2018).

41. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical
Image Computing and Computer-assisted Intervention, 234–241 (Springer,
2015).

Table 16. Costs of the diagnostic tests.

Description Mean
[UK £]

Distribution Parameter 1 Parameter 2 Source

Well’s test 9.66 Gamma 25 0.34 17

D-dimer 19.5 Gamma 25 0.78 16

Proximal
ultrasound

77.19 Gamma 319.23 0.25 40

B. Kainz et al.

17

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021)   137 

https://thinksono.com/
https://www.nice.org.uk/process/pmg9/resources/guide-to-the-methods-of-technology-appraisal-2013-pdf-2007975843781
https://www.nice.org.uk/process/pmg9/resources/guide-to-the-methods-of-technology-appraisal-2013-pdf-2007975843781
https://www.nice.org.uk/process/pmg9/resources/guide-to-the-methods-of-technology-appraisal-2013-pdf-2007975843781
https://www.awmf.org/uploads/tx_szleitlinien/065-002l_S2k_VTE_2016-01.pdf
https://www.awmf.org/uploads/tx_szleitlinien/065-002l_S2k_VTE_2016-01.pdf
https://www.oxfordshireccg.nhs.uk/professional-resources/documents/primary-care/locally-commissioned-services-2018%20-2019/dvt-testing.pdf
https://www.oxfordshireccg.nhs.uk/professional-resources/documents/primary-care/locally-commissioned-services-2018%20-2019/dvt-testing.pdf
https://www.oxfordshireccg.nhs.uk/professional-resources/documents/primary-care/locally-commissioned-services-2018%20-2019/dvt-testing.pdf
https://www.pssru.ac.uk/project-pages/unit-costs/unit-costs-2018/
https://www.pssru.ac.uk/project-pages/unit-costs/unit-costs-2018/
https://www.medicinescomplete.com/#/browse/bnf
https://www.medicinescomplete.com/#/browse/bnf
https://www.pssru.ac.uk/project-pages/unit-costs/unit-costs-2018/
https://www.pssru.ac.uk/project-pages/unit-costs/unit-costs-2018/


42. LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1, 541–551 (1989).

43. Needleman, L. et al. Ultrasound for lower extremity deep venous thrombosis:
multidisciplinary recommendations from the society of radiologists in ultrasound
consensus conference. Circulation 137, 1505–1515 (2018).

ACKNOWLEDGEMENTS
This study has been funded by ThinkSono Ltd. ThinkSono Ltd funded the
development of the method. Data were collected at Oxford Haemophilia &
Thrombosis Centre independently. ThinkSono Ltd provided ultrasound data
acquisition devices to Oxford Haemophilia & Thrombosis Centre, UK and Clinic of
Angiology, Ernst von Bergmann Klinikum, Potsdam, Germany for this study.

AUTHOR CONTRIBUTIONS
B.K., N.C., A.M., S.S., M.H., and M.D.S. conceived and planned the experiments and
devised the main conceptual ideas and proof outline; B.K., R.M., and F.A-.N. conducted
literature research; A.M., B.K. and M.H. designed the model and the computational
framework and analysed the data; S.M. and F.A-.N. carried out the SW tool and UX
implementation; B.K. wrote the manuscript with input from all authors; A.M., A.C.R., and
M.D.S. designed and performed cost analysis experiments; J.O. and R.M. acquired and
interpreted additional anatomical measurements; A.R. and P.K.W. acquired data at the
Clinic of Angiology - Interdisciplinary Center of Vascular Medicine, Potsdam, Germany.
A.M., S.S., J.O., S.M., and F.A-.N. verified the data; C.D. managed patient enrolment,
patient consent, and patient characteristics in Oxford, UK. N.C., M.H., R.M., A.C.R., M.D.S.,
P.K.W., and B.K. revised the final manuscript. All authors discussed the results and
contributed to the final manuscript.

COMPETING INTERESTS
B.K., M.H., R.M., and N.C. are scientific advisors for ThinkSono Ltd. B.K. is also advisor
for Ultromics Ltd and Cydar medical Ltd. A.M. was an employee of ThinkSono Ltd

until September 2020. J.O., F.A-.N., and S.M. are employees of ThinkSono Ltd, M.D.S.
and A.C.R. acted as contractor for ThinkSono Ltd. All authors had full access to all data
during this study and accept responsibility to submit for publication. B.K., A.M.,
F.A-.N., and S.M. are joint inventors on a patent held by ThinkSono Ltd. The remaining
authors declare no competing interests. The views expressed are those of the author
(s) and not necessarily those of ThinkSono Ltd, the NHS, the NIHR or the Department
of Health. The remaining authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Bernhard Kainz.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

B. Kainz et al.

18

npj Digital Medicine (2021)   137 Published in partnership with Seoul National University Bundang Hospital

http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Non-invasive diagnosis of deep vein thrombosis from ultrasound imaging with machine learning
	Introduction
	Results
	Study participation
	External Validation Set 1 (EVS1)
	External Validation Set (EVS2)

	Algorithm performance on the internal validation set
	Algorithm performance on the external validation sets
	EVS1
	EVS2

	Comparison to a naive black-box classifier
	Operator skill level robustness
	Cost effectiveness

	Discussion
	Methods
	Study design
	Quality control scoring system

	Ultrasound protocol
	Statistical analysis
	Sample size

	Algorithm design
	Technical uniqueness of the proposed framework

	Cost effectiveness
	Parameters for the cost-effectiveness model


	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




