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Abstract: The aim of this paper is to provide a review on the role of inflammation in orthodontically
induced inflammatory root resorption (OIIRR) and accelerating orthodontic tooth movement (AOTM)
in orthodontic treatment. Orthodontic tooth movement (OTM) is stimulated by remodeling of the
periodontal ligament (PDL) and alveolar bone. These remodeling activities and tooth displacement
are involved in the occurrence of an inflammatory process in the periodontium, in response to
orthodontic forces. Inflammatory mediators such as prostaglandins (PGs), interleukins (Ils; IL-1,
-6, -17), the tumor necrosis factor (TNF)-α superfamily, and receptor activator of nuclear factor
(RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) are increased in the PDL during OTM.
OIIRR is one of the accidental symptoms, and inflammatory mediators have been detected in resorbed
roots, PDL, and alveolar bone exposed to heavy orthodontic force. Therefore, these inflammatory
mediators are involved with the occurrence of OIIRR during orthodontic tooth movement. On
the contrary, regional accelerating phenomenon (RAP) occurs after fractures and surgery such as
osteotomies or bone grafting, and bone healing is accelerated by increasing osteoclasts and osteoblasts.
Recently, tooth movement after surgical procedures such as corticotomy, corticision, piezocision, and
micro-osteoperforation might be accelerated by RAP, which increases the bone metabolism. Therefore,
inflammation may be involved in accelerated OTM (AOTM). The knowledge of inflammation during
orthodontic treatment could be used in preventing OIIRR and AOTM.
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1. Introduction

Orthodontic tooth movement (OTM) is stimulated by remodeling of the periodontal
ligament (PDL) and alveolar bone. These remodeling activities and tooth displacement
are involved in the occurrence of an inflammatory process in the PDL and alveolar bone,
in response to orthodontic forces. Cellular changes in PDL were the first events, and
inflammatory mediators such as prostaglandins (PGs), interleukins (ILs; IL-1, -6, and -17),
the tumor necrosis factor (TNF)-α superfamily, and the receptor activator of nuclear factor
(RANK)/ RANK ligand (RANKL)/osteoprotegerin (OPG) increased in the periodontium.
Their increased levels during OTM lead to biological responses that occur following the
application of orthodontic forces [1].

Mechanical stimuli cause biological responses in a variety of cell types in the PDL
and alveolar bone. The cellular mechanisms in response to tooth movement are very
complex and their elucidation is important for investigators. In particular, investigation of
inflammation during OTM focus on elucidation at the molecular level [2].

Many orthodontists consider orthodontically induced inflammatory root resorption
(OIIRR) to be an unavoidable and unpredictably pathologic consequence of OTM. OIIRR is
an iatrogenic disorder that occurs during orthodontic treatment, and the resorbed apical
root portion is replaced with normal bone. The cause of OIIRR is unknown, although
it is thought that complex inflammatory processes that involve various factors, such as
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mechanical forces, morphology of tooth roots, alveolar bone, PDL, cementum, and certain
known biological messengers, are involved [3].

In 1959, Köle pointed out that corticotomies can accelerate tooth movement by cutting
the alveolar bone [4–6]. Accelerated tooth movement is the result of the demineralization–
mineralization process around the corticotomy, not the movement of the bone block. In
2001, this phenomenon was advocated as “Frost’s regional accelerating phenomenon (RAP)
concept” by Wilcko et al. [7]. Wilcko et al. [8] also called it “bone matrix transportation”.
Therefore, the inflammation caused by RAP may be involved in accelerating orthodontic
tooth movement (AOTM).

In this article, we review current knowledge regarding inflammation in OIIRR and AOTM.

2. Optimal Orthodontic Force

According to Ren et al. [9] and Krishnan and Davidovitch [10], OTM is mediated
by bone resorption and formation in the compressed and stretched sides of the PDL,
respectively. Orthodontic force disturbs the homeostatic environment of the PDL space
by the altering of blood flow and the localized environment. This alteration initiates
biochemical and cellular events that maintain the alveolar bone conditions [11].

The concept of optimal force has changed considerably. Schwarz [12] proposed the
classic concept of optimal force, and defined optimal force as “the force leading to a change
in tissue pressure that approximated the capillary vessels’ blood pressure, thus preventing
their occlusion in the compressed periodontal ligament.” Oppenheim [13] and Reitan [14]
advocated the use of the lightest force for tooth movement.

The current concept of optimal force is that it is the mechanical force that leads to
the maximum rate of tooth movement with minimal irreversible damage to the root, PDL,
alveolar bone, and gingiva. The optimal force for tooth movement may differ for each
tooth and for each individual patient [15].

3. Inflammatory Mediators in Orthodontic Tooth Movement
3.1. Prostaglandins (PGs)

According to Yamaguchi and Gaelet [16], PGs, a product of arachidonic acid metabolism,
are local hormone-like chemical agents produced by mammalian cells, including os-
teoblasts, that are synthesized within seconds following cell injury. One of the derivatives
of the arachidonic acid cascade, PGE2, acts as a vasodilator by causing increases in vascular
permeability and chemotactic properties and it also stimulates the formation of osteoclasts
and an increase in bone resorption. The cyclooxygenase (COX) family of enzymes consists
of two proteins that convert arachidonic acid, a 20-carbon polyunsaturated fatty comprising
a portion of the plasma membrane phospholipids of most cells, to PGs [17,18]. The consti-
tutive isoform (COX-1) is found in nearly all tissues and is tissue protective. In contrast,
COX-2, the inducible isoform of COX, appears to be limited in basal conditions within most
tissues, and de novo synthesis is activated by cytokines, bacterial lipopolysaccharides), or
growth factors to produce PGs in large amounts in inflammatory processes [19]. There are
several lines of evidence showing that COX is also closely associated with periodontitis,
and that PGs are mediators of gingival inflammation and alveolar bone resorption [20,21].

PGE2 stimulates the formation of osteoclasts and an increase in bone resorption.
PGs are mediators of gingival inflammation and alveolar bone resorption [20,21]. The
PGE2 levels in periodontal tissues and gingival crevicular fluid (GCF) in particular are
highly correlated with periodontal tissue destruction [21]. Furthemorer, Lohinai et al. [22]
reported that COX-2, the inducible isoform of cyclooxygenase (COX), is induced in gin-
gival inflammation and alveolar bone destruction [22]. Ngan et al. [23] reported that
the expression of PGs increased in the PDL and alveolar bone during orthodontic treat-
ment. Shetty et al. [24] reported that the PGE2 levels in the GCF increased during OTM.
Leiker et al. [25] demonstrated that exogenous prostaglandins enhanced the rate of OTM
in rats. The administration of PGE or prostaglandin receptor EP4 also enhanced the rate of
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tooth movement [26,27]. Furthermore, indomethacin, a specific inhibitor of prostaglandin
synthesis, reduces the rate of OTM in rats [27,28].

3.2. Cytokines

Cytokines are proteins that act as signals between the cells of the immune system, and
are produced by inflammatory cells [2]. Cytokines such as IL-1, IL-6, IL-17, and TNF-α are
the key mediators involved in a variety of immune and acute-phase inflammatory response
activities [29–31].

IL-1 exists in two forms, α and β [32]; in particular, IL-β is involves with inflammation,
and stimulates bone resorption [33–35]. Lo et al. [36] reported that IL-1β is produced by
both macrophages and neutrophils, and is increased in inflamed gingival tissues. Kanda-
Nakamura et al. [37] suggested that IL-1 may exacerbate gingival inflammation.

IL-6 is a multifunctional cytokine produced by immune cells [38] and induces osteo-
clastic bone resorption [39–41]. In human gingival tissues, IL-6 is increased in inflamma-
tory periodontal diseases [42]. Irwin and Myrillas [43] reported that IL-6 is involved to
tissue destruction in the periodontal site. Yakovlev et al. [44] also reported that levels of
IL-1β and IL-6 are increased in inflamed gingival tissues in young adults. In addition,
Shimizu et al. [45] reported that IL-6 is stimulated by IL-1β from PDL cells in vitro.

IL-17 is an inflammatory cytokine that is produced by activated T cells (Th17 cells) [46].
IL-17 is an important mediator of autoimmune diseases, including rheumatoid arthritis
(RA) [47], multiple sclerosis [48], and allergic airway inflammation [49]. Yago et al. reported
that IL-17 induces osteoclastogenesis from monocytes [50]. In periodontal disease, IL-17
is related to bone destruction in periodontitis [47,51]. Furthermore, Honda et al. [52]
demonstrated that the expression of IL-17 increases with the tissue destruction from
periodontal diseases, and may be the Tcell-mediated pathogenesis of periodontal disease.

TNF-α is also a pro-inflammatory cytokine that is involved in inflammatory diseases,
including rheumatoid arthritis, inflammatory bowel disease [31], and periodontitis [53–55].
Takeichi et al. [56] reported that TNF-α is detected in periapical lesions with chronic pe-
riapical periodontitis and stimulates the initiation of inflammation and bone resorption.
Gaspersic et al. [57] reported that TNF-α accelerates the progression of rat experimental
periodontitis. Lee et al. [58] reported that TNF-α is increased in the GCF of periodontis
and proceeds alveolar bone resorption. Therefore, there is a possibility that TNF-α is
involved in osteoclastogenesis. The potential role of TNF-α in osteoclastogenesis is of
significance in periodontitis. Ramadan et al. [59] put forward that inflammatory processes
are accompanied by a large network of cytokines and chemokines in periodontitis. Cy-
tokines including IL-17, IL-6, IL-1β, TNF-α, and PGE2, stimulate osteoclast activity, thereby
causing bone resorption.

Considering the in vitro and animal studies in the relationship between inflammatory
cytokines and OTM, Saito et al. [60] demonstrated that IL-1 and PGE are involved in the
response of periodontal cells to mechanical stress in vivo and in vitro. Baba et al. [61] and
Vansant et al. [62] reported that OTM leads to the expression of the IL-1β gene in the PDL.
Moreover, Zhang et al. [63] reported that that compressive force enhanced the expression
of the IL-17 genes and osteoclastogenesis in osteoblasts in vitro. In addition, TNF-α is
expressed in the PDL and alveolar bone during orthodontic tooth movement [64,65].
Moreover, in GCF studies during OTM, many reports have shown that PGE, IL-1, IL-6,
IL-17, and TNF-α can be detected in compression and/or tension side [66–69]. Therefore,
these inflammatory cytokines intricately intertwined with one another during OTM, and
play important roles in bone remodeling.

RANK ligand (RANKL, osteoclast differentiation factor, and osteoprotegerin ligand)
and its receptor RANK are present on osteoblasts and precursor osteoclasts, respectively.
They are the key factors that stimulate osteoclast formation and osteoclastogenesis [70,71].
RANKL is required for osteoclast formation with macrophage-colony stimulating factor
(MCSF) from precursor monocyte/macrophages [72]. Osteoprotegerin (OPG), which a
soluble TNF receptor-like molecule, inhibits RANK–RANKL interactions [73]. It binds
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to RANKL and prevents RANK–RANKL ligation. Therefore, OPG prevents osteoclast
differentiation and activation. Animal studies using transgenic and gene knock-out mice
have demonstrated that RANK, RANKL, and OPG play an important role in regulating
physiologic osteoclast formation [74–76].

RANKL is produced by several types of cells in tissues adjacent to bone [77–80],
and in inflammatory cells in inflamed tissues adjacent to areas of pathological bone loss
in periodontal disease [77]. Liu et al. [81] and Ogasawara et al. [82] also reported that
RANKL, in inflammatory cells, stimulates the activation of osteoclastic bone destruc-
tion in periodontitis. Therefore, RANKL is a powerful mediator of the progression of
periodontal inflammation. Interestingly, the above-mentioned inflammatory cytokines
and the RANK/RANKL/OPG system may stimulate bone resorption via regulation of
the RANKL/OPG ratio. Previous studies have shown that IL-1, IL-11, IL-17, TNF, and
PGE2 increases RANKL mRNA expression by T cells, while PGE2 decreases OPG expres-
sion [83,84]. De Molon reported that the gene and protein expressions of IL-1β, IL-6, and
TNF-α are involved in osteoclastogenesis, as well as in the production of RANKL and OPG
in experimental periodontitis [85].

Considering the relationship between RANKL/OPG and mechanical stress, Kan-
zaki et al. [86] demonstrated that compression forces up-regulate RANKL expression
through induction of COX-2 in human PDL cells in vitro. Additionally, compression force
increases RANKL and decreases OPG secretion in human PDL cells in vitro [87,88]. Animal
studies [89,90] have demonstrated the expression of RANKL in periodontal tissues during
rat experimental tooth movement. Furthermore, Kanzaki et al. [91,92] demonstrated that
the amount of rat experimental tooth movement is accelerated by transfer of the RANKL
gene to the periodontal tissue, while it is inhibited by OPG gene transfer. In GCF studies
during OTM, the GCF levels of RANKL are increased, and the levels of OPG are decreased
in experimental canine movement [93]. Therefore, it is suggested that the RANK–RANKL
system is directly involved in the regulation of orthodontic tooth movement (Figure 1).

Accordingly, inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNF-α, and
the RANK–RANKL system play central roles in bone resorption during OTM (Tables 1–3).
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Table 1. In vitro studies in inflammation and mechanical stress.

Mechanical Stress Cell Inflammatory Mediator Ref.

Compression force Human PDL cells IL-1, PGE [60]

Compression force Human PDL cells IL-6 [94]

Compression force MC3T3-E1 cells IL-17 [63]

Compression force Human PDL cells RANKL/OPG [86]

Compression force Human PDL cells RANKL/OPG [87]

Table 2. Animal studies in inflammation and experimental tooth movement.

Type of TM Animal Inflammatory Mediator Ref.

Canin Tip Cat IL-1, PGE [60]

Molar Tip Rat TNF-α, IL-1β [61]

Molar Tip Rat TNF-α, IL-1α [64]

Rapid maxillary expansion Human TNF-α, RANKL [65]

Molar Tip Rat RANKL/OPG [89]

Human periapical
granulomas Human RANKL/OPG [90]

Table 3. Human GCF studies in inflammation and orthodontic tooth movement.

Tooth Collection Side Infammatory Mediator Ref.

Canine Pressure PGE2, IL-1β [66]

Canine Pressure IL-1β, IL-6, TNF-α [67]

Canine Pressure IL-6, TNF-α [68]

First premolar Tension and pressure IL-17 [69]

Canine Pressure RANKL/OPG [87]

4. Inflammation of Orthodontically Induced Inflammatory Root Resorption (OIIRR)
and Inflammation—Is Inflammation a Foe?

Orthodontically induced inflammatory root resorption (OIIRR) induced by orthodon-
tics is one of the inevitable complications of orthodontic tooth movement (Figures 2 and 3).
Factors related to orthodontic treatment and OIIRR—including prolonged treatment [94]
and strong correctional force [95]—have been noted. Risk factors for the patient include
genetic elements [96], age [97], root abnormalities [95], a history of tooth trauma [98], and
allergies [99] (Figure 4).

Among the above, the applications of orthodontic forces induce inflammation around
the PDL during OTM, and inflammatory factors are produced from PDL cells in response
to orthodontic forces. PGs [93] and inflammatory cytokines [100–103] not only play a
central role in bone resorption during OTM, but also in root resorption of the occurrence
and exacerbation of OIIRR.

In animal studies, Matsumoto et al. [104] reported that the expression of IL-1α, IL-1β,
TNF-α, COX-2, and PGE2 in the resorbed root increases under heavy force during rat
experimental tooth movement. Low et al. [105] reported that heavy force induces RANK
and OPG in rat experimental tooth movement, which are involved with the occurrence
of OIIRR. Furthermore, IL-6, IL-8, are IL-17 can be detected in resorbed root exposure to
heavy forces in rat experimental tooth movement, and these cytokines may be involved in
the occurrence of OIIRR [100,106,107] (Figures 5 and 6).



Int. J. Mol. Sci. 2021, 22, 2388 6 of 21Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 22 
 

 

 

Figure 2. The progress panoramic radiograph of severe root resorption. (A): Pretreatment, (B): 1 
year after start active treatment, (C): 2 years after start active treatment, (D): Post-treatment (2.5 
years after start active treatment). 

 

(A) (B) 

Figure 3. The dental radiograph of severe root resorption of Figure 2D (A): Right side, (B): Left 
side). 

Figure 2. The progress panoramic radiograph of severe root resorption. (A): Pretreatment, (B): 1 year
after start active treatment, (C): 2 years after start active treatment, (D): Post-treatment (2.5 years after
start active treatment).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 22 
 

 

 

Figure 2. The progress panoramic radiograph of severe root resorption. (A): Pretreatment, (B): 1 
year after start active treatment, (C): 2 years after start active treatment, (D): Post-treatment (2.5 
years after start active treatment). 

 

(A) (B) 

Figure 3. The dental radiograph of severe root resorption of Figure 2D (A): Right side, (B): Left 
side). 

Figure 3. The dental radiograph of severe root resorption of Figure 2D (A): Right side, (B): Left side).

In in vitro studies, Yamaguchi et al. [88] also reported that RANKL is produced by
compression force and up-regulates osteoclastogenesis in vitro. Kikuta et al. [108] reported
that excessive orthodontic forces stimulate the process of OIIRR via RANKL and IL-6
productions from hPDL cells. Tsukada et al. [109] reported that excessive compression
force enhances TNF-a production from PDL cells. Therefore, the exposured of PDL cells to
excessive compression force produces inflamatory cytokines and exacerbates the process
of OIIRR. Interestingly, cementoblasts have also investigated the relationship between
inflammatory cytokines and mechanical stress in vitro. Diercke et al. [103] demonstrated
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that IL-1β and compressive forces lead to a significant induction of RANKL expression
in cementoblasts. Minato et al. [110] and Iwane et al. [111] reported that the exposure of
cementoblasts to excessive orthodontic forces also produces a large amount of RANKL and
IL-6, which induce the process of OIIRR. Therefore, the occurrence of OIIRR is caused by
both PDL cells and cementoblasts.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 4. Risk factors of OIIRR. 

Among the above, the applications of orthodontic forces induce inflammation 
around the PDL during OTM, and inflammatory factors are produced from PDL cells in 
response to orthodontic forces. PGs [93] and inflammatory cytokines [100–103] not only 
play a central role in bone resorption during OTM, but also in root resorption of the oc-
currence and exacerbation of OIIRR.  

In animal studies, Matsumoto et al. [104] reported that the expression of IL-1α, IL-1β, 
TNF-α, COX-2, and PGE2 in the resorbed root increases under heavy force during rat ex-
perimental tooth movement. Low et al. [105] reported that heavy force induces RANK 
and OPG in rat experimental tooth movement, which are involved with the occurrence of 
OIIRR. Furthermore, IL-6, IL-8, are IL-17 can be detected in resorbed root exposure to 
heavy forces in rat experimental tooth movement, and these cytokines may be involved 
in the occurrence of OIIRR [100,106,107] (Figures 5 and 6). 

In in vitro studies, Yamaguchi et al. [88] also reported that RANKL is produced by 
compression force and up-regulates osteoclastogenesis in vitro. Kikuta et al. [108] re-
ported that excessive orthodontic forces stimulate the process of OIIRR via RANKL and 
IL-6 productions from hPDL cells. Tsukada et al. [109] reported that excessive compres-
sion force enhances TNF-a production from PDL cells. Therefore, the exposured of PDL 
cells to excessive compression force produces inflamatory cytokines and exacerbates the 
process of OIIRR. Interestingly, cementoblasts have also investigated the relationship be-
tween inflammatory cytokines and mechanical stress in vitro. Diercke et al. [103] demon-
strated that IL-1β and compressive forces lead to a significant induction of RANKL ex-
pression in cementoblasts. Minato et al. [110] and Iwane et al. [111] reported that the ex-
posure of cementoblasts to excessive orthodontic forces also produces a large amount of 
RANKL and IL-6, which induce the process of OIIRR. Therefore, the occurrence of OIIRR 
is caused by both PDL cells and cementoblasts. 

From the above, as OIIRR may be due to a large amount of inflammatory cytokines 
from PDL cells and cementoblasts in response to heavy forces. Light forces may be rec-
ommended for minimizing the side effects. However, Yamaguchi and Garlet [16] sug-
gested that heavy force may not be the most decisive factor for OIIRR, and that the severity 
of root resorption is highly dependent on how orthodontic force is applied. Acar et al. 
[112] and Maitha et al. [113] reported that intermittent forces cause less severe root resorp-
tion than continuous forces. Recently, jiggling force has become the focus as the cause of 
OIIRR. Jiggling forces produce more RANKL, IL-6, and IL-17 than in the heavy forces 
during rat experimental tooth movement [114–116]. These results suggest that jiggling 
force may be one of the risk factors for OIIRR.  

Yamaguchi and Garlet [16] made a new hypothesis about the relationship among 
inflammation, OTM, and OIIRR. It is possible that similar mechanisms operate in the 
“constructive” inflammation that mediates tooth movement, and in the “destructive” in-
flammation that results in root resorption. However, it is still unclear if differences in the 

Figure 4. Risk factors of OIIRR.

From the above, as OIIRR may be due to a large amount of inflammatory cytokines
from PDL cells and cementoblasts in response to heavy forces. Light forces may be
recommended for minimizing the side effects. However, Yamaguchi and Garlet [16]
suggested that heavy force may not be the most decisive factor for OIIRR, and that the
severity of root resorption is highly dependent on how orthodontic force is applied. Acar
et al. [112] and Maitha et al. [113] reported that intermittent forces cause less severe root
resorption than continuous forces. Recently, jiggling force has become the focus as the cause
of OIIRR. Jiggling forces produce more RANKL, IL-6, and IL-17 than in the heavy forces
during rat experimental tooth movement [114–116]. These results suggest that jiggling
force may be one of the risk factors for OIIRR.
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Yamaguchi and Garlet [16] made a new hypothesis about the relationship among
inflammation, OTM, and OIIRR. It is possible that similar mechanisms operate in the
“constructive” inflammation that mediates tooth movement, and in the “destructive” in-
flammation that results in root resorption. However, it is still unclear if differences in
the intensity of the inflammatory process could explain the constructive/destructive di-
chotomy. Further studies are necessary to investigate this interesting hypothesis of OTM
and OIIRR. From the above, OIIRR may be regulated by inflammatory cytokines, and
inflammation may be a foe for orthodontic treatment.

In the 10 g group RANKL positive cells (black triangle) were observed in the bone
resorption pit of the alveolar bone surface. In the 50 g group, RANKL positive cells (arrow
heads) were observed in the root resorption pit.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 6. The schema of mechanism of OIIRR. Abbreviations; OIIRR = orthodontically induced 
inflammatory root resorption, hPDL cells = Human periodontal ligament cells, PGE2 = prostaglan-
din E2, IL-1 = interleukin 1, IL-6 = interleukin 6, IL-17 = interleukin 17, RANKL = Receptor activa-
tor of nuclear factor ligand, RANK = Receptor activator of nuclear factor, TNF-alpha = tumor ne-
crosis factor-alpha. 

5. Accelerating Orthodontic Tooth Movement (AOTM) and Inflammation—Is Inflam-
mation a Friend? 

Many researchers and orthodontists have long attempted to reduce orthodontic treat-
ment time. Clinical studies have reported that photobiomodulation [117], pharmacologi-
cal approaches [118], and low-intensity laser irradiation [119] accelerate the rate of tooth 
movement. However, these stimulators still do not provide definite clinical effects. On the 
contrary, surgical procedures such as corticotomies are the most clinically applied and 
investigated [120].  

RAP, a physiological reaction of reformation around the damaged area of bone, was 
referred to by Frost [121]. RAP is a reaction that occurs to heal the damaged area in the 
hard and soft tissues. In bone tissue, RAP increases bone turnover and decreases bone 
density to promote bone healing. These tissue responses vary depending on the duration, 
strength, and size of the harmful stimulus. Shih and Norrdin [122] demonstrated that RAP 
increases in bone remodeling in healing defects in beagle dogs with fractured ribs. Yaffe 
et al. [123] also reported that RAP that occurrs by a mucoperiosteal flap in the mandible 
of rats elevates born turnover. 

Lee et al. [124] reported observations of demineralization/remineralization changes 
in the rat mandible by corticotomy, and that RAP occurrs at the operation site. RAP stim-
ulates biological responses such as bone metabolism, bone cell differentiation, progenitor 
cell activity, growth of bone and cartilage, and bone remodeling by bone multicellular 
units [125,126]. RAP may also be caused by pharmacological stimuli including PGE1 and 
2 and thyroxine [120–122]. In OTM, PGE1 and 2 increase the rate of OTM in animal exper-
imental tooth movement [127]. In orthodontic treatment, Iino et al. [128] demonstrated a 
treatment duration of only one year in a 24-year-old Japanese women with bimaxillary 

Figure 6. The schema of mechanism of OIIRR. Abbreviations; OIIRR = orthodontically induced inflammatory root resorption,
hPDL cells = Human periodontal ligament cells, PGE2 = prostaglandin E2, IL-1 = interleukin 1, IL-6 = interleukin 6, IL-
17 = interleukin 17, RANKL = Receptor activator of nuclear factor ligand, RANK = Receptor activator of nuclear factor,
TNF-alpha = tumor necrosis factor-alpha.

5. Accelerating Orthodontic Tooth Movement (AOTM) and Inflammation—Is
Inflammation a Friend?

Many researchers and orthodontists have long attempted to reduce orthodontic treat-
ment time. Clinical studies have reported that photobiomodulation [117], pharmacological
approaches [118], and low-intensity laser irradiation [119] accelerate the rate of tooth
movement. However, these stimulators still do not provide definite clinical effects. On
the contrary, surgical procedures such as corticotomies are the most clinically applied and
investigated [120].
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RAP, a physiological reaction of reformation around the damaged area of bone, was
referred to by Frost [121]. RAP is a reaction that occurs to heal the damaged area in the hard
and soft tissues. In bone tissue, RAP increases bone turnover and decreases bone density
to promote bone healing. These tissue responses vary depending on the duration, strength,
and size of the harmful stimulus. Shih and Norrdin [122] demonstrated that RAP increases
in bone remodeling in healing defects in beagle dogs with fractured ribs. Yaffe et al. [123]
also reported that RAP that occurrs by a mucoperiosteal flap in the mandible of rats elevates
born turnover.

Lee et al. [124] reported observations of demineralization/remineralization changes
in the rat mandible by corticotomy, and that RAP occurrs at the operation site. RAP stimu-
lates biological responses such as bone metabolism, bone cell differentiation, progenitor
cell activity, growth of bone and cartilage, and bone remodeling by bone multicellular
units [125,126]. RAP may also be caused by pharmacological stimuli including PGE1 and 2
and thyroxine [120–122]. In OTM, PGE1 and 2 increase the rate of OTM in animal experi-
mental tooth movement [127]. In orthodontic treatment, Iino et al. [128] demonstrated a
treatment duration of only one year in a 24-year-old Japanese women with bimaxillary
protrusion treated by corticotomy. Therefore, tooth movement may be accelerated by RAP
induced due to corticotomy, and as a result, treatment duration can be shortened compared
to conventional orthodontic treatment.

In an earlier study in rats, Zhou et al. [129] demonstrated that corticotomy AOTM
by increasing the gene expression of osteoblast-related factors (i.e., osteopontin, bone
sialoprotein, and osteocalcin), osteoclast regulators (M-CSF, and RANKL). Furthermore,
Zou et al. [130] reported that in rat experimental tooth movement, corticotomy + OTM in-
crease a greater number of osteoclasts on the compression side, while increases osteocalcin
on the tension side compared to OTM alone. Moreover, Sugimori et al. [131] reported that
that micro-osteoperforation (MOPs) accelerates the rate of tooth movement via activation
of the cell proliferation of PDL cells (Figures 7 and 8). Furthermore, Yamaguchi et al. [132]
reported that DNA chip analysis has demonstrated that the gene expression of minichro-
mosome maintenance (MCM) and cell division cycle (CDC), related to cell proliferation, is
increased by MOPs (Table 4). Therefore, inflammation stimulated by corticotomy/MOPs
may induce the cell proliferation of PDL cells. Further studies will be necessary to clarify
the relationship between inflammation and cell proliferation. Although corticotomy is an
invasive procedure, the inflammation caused by the operation induces RAP. RAP reduces
the resistance of bone during OTM, the stimulation of bone synthesis on the tension side,
the activation of bone resorption on the compression side, and the stimulation of PDL
metabolism, thereby shortening the period of orthodontic treatment and minimizing ad-
verse effects on the teeth. Therefore, inflammation in surgical procedures may be a friend
for orthodontic treatment.
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mean ± SD of 5 rats.

Table 4. DNA Chip analysis for MOPs during rat experimental tooth movement. Increasing minichro-
mosome maintenance (MCM) and cell division cycle (CDC) gene expressions by MOPs [132].

Gene Symbol Change (Fold)

CDC23 32.2

CDC7 12.1

MCM5 52.3

MCM7 19.0

A 29 year 2-month old Japanese woman presented with a chief complaint of protrusion
of the maxillary incisors and upper and lower lips. The patient had no history of allergies
or medical problems, and no signs or symptoms of temporomandibular dysfunction
were observed.

Pretreatment facial photographs showed convex type and facial symmetry. The
maxillary dental midline was shifted 0.5 mm to the right, compared to her facial midline.
The patient had an Angle Class I malocclusion, with a 2.0 mm overjet and a 1.0 mm overbite.
Both the maxillary and mandibular arches were irregularly aligned, with 2.0 mm maxillary
and 0.5 mm mandibular arch length discrepancy (Figure 9). A panoramic radiograph
showed four third molars. The lateral cephalometric analysis revealed the following
characteristics: A normal skeletal relationship with an ANB angle of 0.5◦, a moderate
mandibular plane angle (FMA) of 24.0◦, lingual inclination incisors with a maxillary central
incisor to the Frankfort plane angle (FH-U1) of 126.5◦, and a mandibular central incisor to
the Frankfort plane angle (FMIA) of 52.0◦ (Figure 10 and Table 5).
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Table 5. Cephalometric analysis before treatment and post-treatment.

Measurement Normal (Japanese Woman) Pretreatment (29 y 19 m) Posttreatment (31y 2m)

SNA (◦ ) 81.3 ± 2.7 80.0 80.0

SNB (◦ ) 78.6 ± 2.7 79.5 79.0

ANB (◦ ) 2.6 ± 1.1 0.5 1.0

FMA (◦ ) 26.3 ± 4.1 24.0 24.0

FMIA (◦ ) 56.9 ± 6.4 52.0 61.0

IMPA (◦ ) 96.8 ± 6.4 104.0 95.0

U1-FH (◦ ) 112.1 ± 4.2 126.5 115.5

U1-L1 (◦ ) 123.5 ± 5.5 105.0 125.0

U1-A-Pog (mm) 6.2 ± 1.5 11.2 4.6

L1-A-Pog (mm) 3.0 ± 1.5 8.1 2.3

Gonial angle (◦ ) 118.8 ± 6.1 117.5 117.5

E-line: Upper (mm) 1.4 ± 2.0 −0.5 −2.0

E-line: Lower (mm) 1.4 ± 2.0 +0.3 −0.7

6. Diagnosis and Etiology
6.1. Diagnosis

The patient was diagnosed with an Angle Class I malocclusion with bimaxillary protrusion.

6.2. Treatment Objectives

The main objective of the treatment of this malocclusion was to improve the protrusion
of the maxillary and mandibular incisors and upper and lower lips.

6.3. Treatment Alternatives

This patient strongly requested orthodontic treatment with lingual appliances and
desired a shortened treatment period. Therefore, we used corticision and piezocision of
the maxillary and mandibular anterior teeth to shorten the active treatment period. In
this case, the first premolars in the maxillary and the second premolars in the mandibular
were extracted.

6.4. Treatment Progress

The treatment was characterized by a combination of an upper lingual (Fukasawa
Lingual Bracket (FLB), BIODENT, Japan) and lower labial (Empower, American Orthodon-
tics, Sheboygan, WI, USA) appliance. Corticision and piezocision were planned after the
appliance placements.

The corticision procedure was performed between the lower canine to canine areas.
Subsequently, the patient underwent the piezocision procedure. In the corticision proce-
dure, a scalpel (Blade No.15, Feather Safety Razor Co., Ltd., Osaka, Japan) was inserted
into the anterior area to cut both the cortical bone and the cancellous bone. The scalpel was
tapped with a mullet, following Park’s procedure. This procedure causes a surgical trauma
at approximately 10 mm in depth, facilitating the next procedure. Next, a piezoelectric
knife (Piezosurgery, Insert OT7, OT7S-4, MECTRON, Italy) was carefully inserted into the
previously described area, following Dibart’s procedure.11 The purpose of this procedure
was to stimulate the cancellous bone with a piezoelectric knife. Therefore, the depth of
the piezoelectric knife insertion is critical in this procedure. Following extraction, the
ostectomy procedure was performed to remove the alveolar bone bucco-lingually. In order
to maintain the volume of the extraction sites, the removed bones can be used as autografts.
Importantly, appropriate hemostasis procedures and medications are needed in the course
of these surgical procedures.
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Premolar extraction on both sides and the corticision and piezocision in the maxillary
and the mandibular were archived (Figure 11), and leveling and alignment of the teeth
were initiated with a preadjusted edgewise appliance (0.018 × 0.025 inches). In the present
case, follow-up appointments took place every two weeks. Two months later, en masse
retraction of the maxillary and mandibular anterior teeth was initiated. The extraction
spaces were almost closed after six months of active treatment in the maxillary arch. The
total active treatment period was only 16 months. The preadjusted edgewise appliance was
removed and Hawley retainers were applied full time to the maxillary and mandibular
arches, respectively.
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6.5. Treatment Results

Owing to the successful retraction of the upper canines and anterior teeth, the pa-
tient showed an acceptable occlusion and good facial profile (i.e., balanced lip line). The
dental arches were aligned and leveled, and an ideal overjet and overbite were achieved
(Figures 12 and 13). During active treatment after debonding, no significant periodontal
problems (e.g., gingival recession or loss of tooth vitality) were observed (Figure 14). Pre-
and post-treatment panoramic radiographs showed no significant reduction in the crest
bone height and no marked apical root resorption (Figure 15). Additionally, pre- and
post-treatment cephalometric superimpositions showed the absence of anchorage loss of
the maxillary and mandibular molars. Furthermore, the interincisal angle (U1 to L1) was
125.0◦ post-treatment (Figure 16 and Table 5).

6.6. Case Summary

In this case of an adult patient with bimaxillary protrusion, the total treatment time
was 16 months. This case report showed a correlation between orthodontic tooth movement
and inflammation. Corticotomy shortens the orthodontic treatment period, including the
extraction case by fixed lingual appliance, in adult patients.
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7. Conclusions

OTM causes inflammatory reactions in the periodontium. These reactions stimulate
the release of various biochemical signals and mediators, causing alveolar bone and PDL
remodeling. The control of inflammation and the efficiency of OTM are closely intertwined.
This review demonstrated that inflammation causes OIIRR as a foe and AOTM as a friend.
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Therefore, orthodontists should treat patients while bearing in mind which inflammation
will become a friend and a foe.
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Abbreviations

OIIRR orthodontically induced inflammatory root resorption
AOTM accelerating orthodontic tooth movement
EARR external apical root resorption
PDL periodontal ligament
RAP the regional acceleratory phenomenon
M-CSF macrophage-colony stimulating factor
RANKL receptor activator of nuclear factor ligand
OTM orthodontic tooth movement
MOPs micro-osteoperforations
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