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Abstract: An inter-layer dielectric (ILD) deposition process to simultaneously form the conductive
regions of self-aligned (SA) coplanar In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) is demonstrated.
N+-IGZO regions and excellent ohmic contact can be obtained without additional steps by using a
magnetron sputtering process to deposit a SiOx ILD. The fabricated IGZO TFTs show a subthreshold
swing (SS) of 94.16 mV/decade and a linear-region field-effect mobility (µFE) of 23.06 cm2/Vs. The
channel-width-normalized source/drain series resistance (RSDW) extracted using the transmission
line method (TLM) is approximately as low as 9.4 Ω·cm. The fabricated ring oscillator (RO) with a
maximum oscillation frequency of 1.75 MHz also verifies the applicability of the TFTs.

Keywords: self-aligned coplanar; IGZO TFT; S/D region; n+-formation; magnetron sputtering
inter-layer dielectric

1. Introduction

Indium-Gallium-Zinc-Oxide (IGZO) thin-film transistors (TFTs) with staggered struc-
tures, such as etch-stopper (ES) and back-channel-etched (BCE) structures, have been
proven to be useable as circuit devices in flat-panel displays [1,2]. However, due to the
overlap between gate and source/drain (S/D) electrodes, these staggered-structure devices
inevitably have large parasitic capacitances, which result in a low operating speed of TFT
devices. A self-aligned (SA) coplanar structure is a promising solution to overcome this
parasitic capacitance problem [3]. Forming conductive n+-IGZO to obtain ohmic contact
between active S/D regions and S/D electrodes is an important process for SA coplanar
devices. Many methods for this process have been proposed, and the fabricated IGZO
devices have good performance. Plasma treatment (Ar, H2, etc.) [4,5] and deep-ultraviolet
(DUV) irradiation [6] are commonly used. However, these solutions require an extra step,
as shown in Figure 1a, which leads to additional process costs. Forming n+-IGZO during
the overetching of a SiO2 gate insulator (GI) is a simple method [7,8]. However, this method
is not applicable when the GI-etching plasma can etch IGZO films. Recently, the formation
of n+-IGZO regions by simply coating an organic inter-layer dielectric (ILD) has been
demonstrated, and a channel-width-normalized S/D series resistance (RSDW) of 24 Ω·cm
was obtained [9]. This report shows the possibility of forming n+-IGZO regions during the
ILD deposition process. Based on this idea, other novel methods to fabricate low-RSDW SA
coplanar IGZO TFTs are worth investigating.

In this work, we use a magnetron sputtering process to deposit a SiOx ILD and
simultaneously form n+-IGZO regions for SA coplanar IGZO TFTs. In this way, ILD
deposition and n+-formation can be combined into one step, as shown in Figure 1b. The
fabricated devices have quite low RSDW. The mechanism of reducing the IGZO film
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resistivity by the sputtering process is investigated by X-ray photoelectron spectroscopy
(XPS) analysis. Ring oscillators (ROs) composed of the fabricated SA coplanar TFTs show
good frequency characteristics, which indicates that these TFTs have the potential to be used
in high-speed circuits. SiOx is a commonly used insulating layer [10]; moreover, sputtering
SiOx and sputtering IGZO can share one piece of sputtering equipment. Considering
the material compatibility and equipment compatibility of sputtered SiOx, as well as the
reduction in process steps, this sputtering treatment method is expected to become an
industrial production technology for SA coplanar IGZO TFTs.
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Figure 1. (a) Common two-step process and (b) proposed one-step process for IGZO n+-region
formation and ILD deposition. (c) Cross-sectional diagram and (d) optical microscope image of the
fabricated SA coplanar IGZO TFT.

2. Experiment

SA coplanar IGZO TFTs are fabricated on a 300-nm-thick thermal silicon dioxide
substrate. First, an IGZO film with a thickness of 20 nm is deposited as an active
layer by a magnetron sputtering process using an IGZO target with an atomic ratio of
In2O3:Ga2O3:ZnO = 1:1:2 mol.%. After depositing 30-nm-thick Al2O3 as a GI by atomic
layer deposition (ALD), a 50/50-nm-thick Ti/Cr bilayer is formed as a gate electrode by a
lift-off process. By using the gate electrode as a shield layer, the GI can be SA-etched by
Ar/BCl3 (10 sccm/40 sccm) plasma etching [11] without an additional photolithography
step. This plasma etching must be precisely controlled to avoid etching the IGZO layer
since Ar/BCl3 plasma can also etch IGZO films [12]. Diluted acid is used as a wet etchant
for patterning the IGZO layer [13]. Then, a SiOx ILD layer with a thickness of 50 nm is
deposited by a magnetron sputtering process under an Ar:O2 gas ratio of 20:1 sccm, and,
simultaneously, the n+-formation process of the S/D region in the IGZO layer is completed.
The SiOx layer is etched by a dry etching process to form contact holes. A 20/80-nm
Ti/Au bilayer is deposited as S/D electrodes and patterned by a lift-off process. Finally, a
postannealing process is performed at a temperature of 180 ◦C for 2 h.

Figure 1c shows a cross-sectional diagram of the fabricated devices. Figure 1d shows
an optical microscope image of a fabricated device with a channel width (W) of 20 µm and
a channel length (L) of 10 µm.
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3. Results and Discussion

The fabricated SA coplanar IGZO TFTs are measured using an Agilent B1500A semi-
conductor parameter analyzer in a dark box. Figure 2a shows the transfer characteristics
and gate leakage characteristics of the TFT with W = 10 µm and L = 15 µm at drain voltages
(VDS) of 0.1 and 7 V. The transfer curves exhibit excellent device performance with a low
gate leakage current characteristic. The transistor parameters of the device presented in
Figure 2a can be estimated from the linear-region transfer curve (VDS = 0.1 V). The turn-on
voltage (Von) and subthreshold swing (SS) are estimated to be−0.3 V and 94.16 mV/decade,
respectively. The field-effect mobility (µFE) can be calculated from the transfer curve in the
linear region (VDS = 0.1 V) using the following equation [6]:

µFE =
Lgm

WCiVDS
=

L(dI D/dVGS)

WCiVDS
(1)

where L is the channel length, gm is the transconductance, ID is the drain current, VGS is
the gate voltage, W is the channel width, Ci is the capacitance per unit area of gate oxide,
and VDS is the drain bias (0.1 V). According to this equation, the calculated µFE of the
presented device is approximately 23.06 cm2/Vs. In addition, the average µFE and SS of
the 37 devices under test (DUTs) are approximately 21.37 cm2/Vs and 100.35 mV/decade,
respectively. Figure 2b shows the output characteristics of the same TFT under varying gate
voltage (VGS) from 0 V to 8 V. The output curves exhibit a good saturation characteristic at
large VDS and good ohmic behavior at low VDS, which means that the IGZO film of the
fabricated device has good ohmic contact with the S/D electrodes.
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Figure 2. (a) Transfer characteristics and (b) output characteristics of a fabricated device. (c) Variation
in the total resistance (RTOT) as a function of channel length (channel width is fixed at 20 µm) at
various gate voltages. (d) RTOT values at L = ∆L of the TFTs with different channel widths extracted
using the transmission line method.
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The S/D series resistance (RSD) is extracted by using the transmission line method
(TLM) [6,14]. In this method, the total resistance (RTOT) of a fabricated device is given
by VDS/IDS from the transfer curve in the linear region. RTOT can be expressed by the
following equation [6]:

RTOT =
VDS
IDS

= Rch+RSD =
L− ∆L

µFECiW(VGS −Vth)
+RSD (2)

where Rch is the channel resistance, L is the designed channel length, ∆L is the difference
between the designed channel length and the actual channel length, Ci is the capacitance per
unit area of gate oxide, W is the channel width, and Vth is the threshold voltage. According
to this equation, when L − ∆L = 0, RSD equals RTOT. Therefore, by fitting the RTOT–L
relationship of the TFTs with a fixed W and varying VGS, the fitted lines will intersect at
the point of L − ∆L = 0, and the y-axis value of this point will be RSD. Figure 2c shows the
RTOT–L relationship of the fabricated devices with a fixed W of 20 µm at VDS = 0.1 V. The
intersection is defined as the point where the RTOT variance of the fitted lines is minimal,
and the mean value of the corresponding RTOT is estimated as RSD. Details near the
intersection are shown as the inset in Figure 2c. RSD and ∆L are evaluated to be 4.68 kΩ
and 1.03 µm, respectively. The RTOT values under different VGS at L = ∆L (∆L = 1.03 µm
when W = 20 µm) are shown as the blue line in Figure 2d. Since the RSD value is related
to W [15], the RSD values of the fabricated devices with W of 10 µm and 50 µm are also
extracted using the TLM, and the corresponding RTOT at L = ∆L (∆L = 1.23 µm when
W = 10 µm and ∆L = 0.88 µm when W = 50 µm) are shown as the red line and yellow line
in Figure 2d, respectively. According to Figure 2d, the RSD values obtained from the mean
value of the corresponding RTOT are 10.77 kΩ and 2.09 kΩ when W = 10 µm and 50 µm,
respectively. The channel-width-normalized RSD (RSDW) is obtained by the product of RSD
and W [15]. Therefore, the RSDW values of the TFTs with W = 10 µm, 20 µm, and 50 µm
are approximately 10.8 Ω·cm, 9.4 Ω·cm, and 10.5 Ω·cm, respectively, and the mean value
of these three RSDW values is the average RSDW, which is 10.2 Ω·cm. At different W, the
RSDW values are similar and quite small, which proves that the extracted RSDW values
are convincing, and the fabricated TFTs have good ohmic contacts with good uniformity.
Table 1 shows the comparison of the RSDW extracted from IGZO TFTs with different n+-
formation processes. The RSDW value of this work is the smallest among these works,
which further proves that the excellent ohmic properties of the fabricated TFTs in this work
are competitive in the field of IGZO TFTs.

Table 1. Benchmark of minimum RSDW for IGZO TFTs with different n+-formation processes.

Reference n+-Formation Process RSDWmin (Ω·cm)

[8] Overetch SiO2 GI 21.8
[9] Organic ILD 24

[16] H2 plasma treatment 75.5
[5] Ar plasma treatment 128

[17] UV irradiation 27
This work Sputtered ILD 9.4

The mechanism of reducing the IGZO resistivity by sputtering treatment is also in-
vestigated using XPS analysis. The O 1s peaks of IGZO films without and after sputtering
treatment are shown in Figure 3a,b, respectively. The peak is fitted by three Gaussian distri-
butions, centered at the low binding energy peak (OL) of 530.15 eV, the medium binding
energy peak (OM) of 531.25 eV, and the high binding energy peak (OH) of 532.4 eV. OL is
related to the oxygen in the metal-oxide bond (M-O), which forms the stable amorphous
structure of IGZO films [18]. OM can be assigned to oxygen vacancies (OV), which are
generally considered to be donor defects [6,19]. OH is commonly attributed to the oxygen
in hydroxide (O-H), which is associated with shallow donors [6,18,20]. Compared to the
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19.6% concentration of OV in the untreated IGZO film in Figure 3a, the OV concentration of
the IGZO film after sputtering treatment significantly increases to 55.88%. The dissociation
energies of Si-O, Ga-O, In-O, and Zn-O bonds are 799 kJ/mol, 374 kJ/mol, 346 kJ/mol,
and <250 kJ/mol, respectively [21]. During the sputtering deposition of the SiOx ILD,
the ion bombardment breaks the M-O bonds in the IGZO film. Since the oxygen content
in the sputtering atmosphere is very low (<4 mol%) and the Si-O bond exhibits a larger
dissociation energy, Si may take away the oxygen ions in the IGZO film. This process can
be represented by the following equation:

SiOx + InGaZnO4 → SiOx+n + InGaZnO4-n + n × OV (3)
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Figure 3. XPS spectra of IGZO films showing O 1s peaks in different states. (a) Without sputtering
treatment. (b) After sputtering treatment.

This reaction could be the mechanism for the increase in the OV concentration after
sputtering deposition. Generally, OV are considered to act as donor defects in IGZO films
that supply electron carriers for conduction [19,22], and an increase in the OV concentration
in IGZO films usually means high conductivity. Therefore, sputtering SiOx as the ILD of
SA coplanar IGZO TFTs can effectively form ohmic contact between the IGZO-S/D region
and the S/D electrode.

To demonstrate the usability of the proposed SA coplanar IGZO TFTs, inverters and
ROs consisting of the fabricated devices are also measured [23,24]. Figure 4a shows the
voltage transfer characteristic (VTC) and corresponding cross current of the inverter with a
beta ratio (β) of 9/1. Specifically, the W/L ratios of the load TFT (WL/LL) and driving TFT
(WD/LD) are 50 µm/10 µm and 450 µm/10 µm, respectively. The inset of Figure 4a shows
a schematic of the inverter. This inverter shows good level conversion at a supply voltage
(VDD) of 5 V. Figure 4b shows an optical microscope image of the fabricated seven-stage
RO with a buffer inverter. The buffer inverter is connected to the “OUT” pad for measuring
the output signal of the RO. During the measurement, a constant voltage signal of different
values is applied on the “VDD” pad, and the “GND” pad is connected to a ground signal.
An oscilloscope is used to detect the output signal through the “OUT” pad. Figure 4c shows
the RO frequency (fOSC) measured under different VDD varying from 5 V to 25 V. As VDD
increases, fOSC increases accordingly. When VDD = 5 V, the measured fOSC is 105.8 kHz.
A maximum fOSC of 1.75 MHz is measured when VDD = 25 V. According to Figure 4c,
the frequency of the fabricated RO exhibits a linear correlation with the supply voltage.
Figure 4d shows the waveform of the output signal with a maximum frequency of 1.75 MHz
detected by the oscilloscope. The inset of Figure 4d shows the waveform after zooming
in. The smooth transition between high level and low level observed from the waveform
indicates that the measured RO can work stably, which means that the fabricated TFTs are
suitable for the application of high-speed IGZO TFT circuits.
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(b) Optical microscope image of the fabricated 7-stage RO. (c) RO frequency under different VDD.
(d) RO output at VDD = 25 V measured by an oscilloscope.

4. Conclusions

A direct n+-region formation process for SA coplanar IGZO TFTs is proposed and
studied. By employing magnetron sputtering to both deposit the SiOx ILD layer and reduce
the resistivity of the IGZO S/D regions, ohmic contact between the IGZO layer and the
S/D metal electrode can be simply obtained without additional steps or equipment. The
fabricated TFTs exhibit excellent performance, with Von, SS, and linear-region µFE of −0.3 V,
94.16 mV/decade, and 23.06 cm2/Vs, respectively. By using the TLM, the extracted minimum
RSDW is approximately 9.4 Ω·cm. XPS analysis reveals that the improved conductivity of
IGZO films can be attributed to the significant increase in OV concentration. The fabricated
inverter shows good level conversion. The measured maximum fOSC of the RO output
waveform can reach 1.75 MHz with a smooth transition. Because of the process compatibility
and excellent device performance, the fabrication technology proposed in this work is expected
to be applied in the production of high-speed TFT circuits and flat-panel displays.
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