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Abstract
Since “Warburg effect” has been firstly uncovered in cancer cells in 1956, mounting evidence has supported the molecular
mechanism underlying the energy metabolism in induced chemoresistance in cancers. MicroRNAs can mediate fine-tuning of
genes in physiological process. MicroRNAs’ energy metabolic role in chemoresistance has been probed recently. In this review,
we summarize 5 microRNAs in regulating glucose and lipid metabolism and other energy metabolism. They partially modulate
chemoresistance to cancer treatments. Furthermore, we discuss the great therapeutic potential of metabolism-related micro-
RNAs in novel combinatorial means to treat human cancers.
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Introduction

In the last decade, reprogramming of energy metabolism has

been added to the list of hallmark traits in neoplastic diseases.1

Arguably, the best characteristic of these metabolic changes is

the “Warburg effect.” The Warburg effect is referred to as the

process where cancer cells preferentially metabolize glucose

through aerobic glycolysis rather than oxidative phosphoryla-

tion (OXPHOS).2 This metabolic switch facilitates biosynth-

esis of macromolecules and fuels proliferation and invasion of

cancer cells.3,4 In addition, energy metabolic alterations in fatty

acid oxidation (FAO) and glutamine also impact tumor growth

to certain extent.5,6 Chemoresistance is recognized as the pri-

mary cause of failing chemotherapeutic treatments in human

cancers. MicroRNAs (miRNAs) are important regulators in

multistep process of animal physiology and diseases including

drug resistance. It is reported that dysregulations of specific

miRNAs link to chemoresistance via drug efflux increase,

alterations in drug targets, DNA repair pathways, evasion of

apoptosis, cell cycle control, and so on.7-9 Gradually, roles of

miRNAs in the association between energy metabolism and

chemoresistance have garnered much interest in the field of

cancer researches in recent years. In this review, we focus on

the miRNAs that modulate chemosensitivity by regulating the

energy metabolism of tumors which provide a potential therapy

to reverse chemoresistance less or more.
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miR-122

miR-122, an abundant liver-specific miRNA, demonstrated the

antitumorigenic functions in hepatocellular carcinomas

(HCCs).10 Recent studies have elucidated the pivotal role of

miR-122 in conventional chemotherapeutic resistance involved

in glucose metabolism. Overexpression of miR-122 resensi-

tizes 5-fluorouracil (5-FU)-resistant colon cancer cells to 5-

FU through the inhibition of M2 splice isoform of pyruvate

kinase (PKM2) in vitro and in vivo.11 Besides, elevated

miR-122 in HCC overcomes doxorubicin (DOX) resistance

through decreasing PKM2, without influencing the intracellu-

lar DOX accumulation.12 Pyruvate kinase regulates the final

rate-limiting step of glycolysis accompanied by dephosphory-

lation of phosphoenolpyruvate to pyruvate. It’s reported that

downregulation of PKM2 expression is able to reverse gemci-

tabine resistance in pancreatic cancer cells.13 But intriguingly,

PKM2 enhances chemosensitivity to cisplatin through interac-

tion with the mammalian target of rapamycin (mTOR) pathway

in cervical cancer.14 In addition to miR-122, other miRNAs

could also regulate PKM2 expression in human cancers, such

as miR-133a and miR-133b in tongue squamous cell carci-

noma,15 miR-326 in glioblastoma,16 and miR-338-3p in ovar-

ian cancer.17 But further investigations are needed to elucidate

the mechanisms underlying these miRNAs in metabolic regu-

lations and their potential to modulate chemoresistance.

Meanwhile, miR-122 also shows pleiotropic effects on che-

moresistance in cancers via other metabolic reprogramming

phenotypes. Solute carrier family 7 (SLC7A1) was identified

as an arginine transport as well as the direct target of miR-122.

In HCC, silenced miR-122 expression causes upregulation of

SLC7A1 and increased intracellular arginine levels, which ren-

der sorafenib-resistant cancer cells.18 Furthermore, miR-122

regulates cholesterol and fatty acid metabolism. Systemic

miR-122 inhibition by antisense oligonucleotide leads to a

broad reduction in plasma cholesterol by regulating the genes

involved in cholesterol biosynthesis.19 Esau et al discovered

that miR-122 inhibition led to reduced serum fatty acid synth-

esis and increased hepatic FAO by causing effect on several

lipogenic genes, including reduction in stearoyl-coA

desaturase-1 (SCD-1), a rate-limiting enzyme in lipogenesis

and acetyl-CoA carboxylase 1 (ACC1), regulator of malonyl-

CoA production.20 This is of significance because fatty acids

and cholesterol can serve as a kind of energy storage and com-

ponents for biosynthesis of cellular biomembrane which aid

tumor cells in maintaining high rate of proliferation. However,

the underlying mechanisms between miR-122 regulation and

chemosensitivity in human cancers involved in fatty acids and

cholesterol synthesis remain active investigations.

miR-125b

miR-125b has been considered as a diverse factor in anticarci-

nogenic therapy depending on the cellular contexts. Ectopic

expression of miR-125b reverses DOX resistance in human

breast cancer.21 But inversely, miR-125b could desensitize

Ewing sarcoma cells to DOX by suppressing p53 and Bak.22

miR-125b overexpression was previously verified in modulat-

ing glucose, glutathione, lipid, and glycerolipid metabolism,

with implications for inhibition of metabolic adaption of B

cells to their malignant phenotype.23 We further dissect the

potential function of miR-125b in the resistance to chemother-

apy. There was also an indication of downregulated level of

miR-125b in 5-FU-resistant HCC cells. miR-125b is able to

inhibit glucose metabolism by directly targeting hexokinase 2

(HK2). Consequently, it performs tumor-suppressor function to

reverse 5-FU resistance in HCC cells.24 In chondrosarcoma

cells, overexpression of miR-125 can enhance the sensitivity

of both parental and DOX resistant cells to DOX through direct

targeting on the ErbB2-mediated upregulation of glycolysis.25

Hexokinase 2 catalyzes the first irreversible step in aerobic

glycolysis by which glucose is phosphorylated into glucose-

6-phosphate. A retrospective study showed that HK2 overex-

pression was associated with chemoresistance and was an

independent prognostic indicator for early tumor recurrence

in epithelial ovarian cancer.26 What’ s more, blocking SLUG/

HK2 pathway by curcumin noteworthily reversed 4-

hydroxytamoxifen resistance in breast cancer cells.27 Data

imply that aim at HK2 targeted by miR-125b directly may

serve as an attractive approach to render cancer cells more

sensitive to chemotherapeutic reagents.

In maintaining high rates of growth and proliferation inside

tumor cells, especially in chemoresistant cancers, nucleotide,

membrane phospholipid, fatty acid, and other kinds of macro-

molecules are predominantly acquired. We further explore the

effect of miR-125b on the underlying drug resistance mechan-

isms implicated in the above multiple processes. In primary

adipocytes, miR-125b mimic can decrease lipid droplets and

triglyceride (TG) accumulation versus the control by directly

regulating SCD-1.28 Estrogen strongly boosts miR-125b level

via ERa in HepG2 cells. Ovariectomized or liver-specific ERa
knockdown mice treated with miR-125b-overexpressing ade-

noviruses were resistant to hepatic steatosis, due to decreased

fatty acid uptake and decreased TG synthesis.29 However, the

potential behavior of miR-125b implicated in the aforemen-

tioned energy reprogramming in chemoresistance needs more

investigations. Moreover, given that miR-125b exhibits dual

function in regulating chemosensitivity,21,22 it remains an

energy metabolic topic for intensive and exciting researches

in chemoresistant cancer cells.

miR-34a

miR-34a acts as a tumor suppressor in multiple solid tumors. It

can antagonize several oncogenic processes including cell pro-

liferation, apoptosis, stemness, metastasis, and drug resistance

by modulating various cellular signaling pathways.30 Although

extensive evidence has uncovered the antichemoresistant

mechanisms of miR-34a in different cellular pathways, its

potential role in energy reprogramming was not addressed until

recently. Elevated miR-34a expression reduces level and activ-

ity of lactate dehydrogenase A (LDHA) in 5-FU-resistant colon

2 Technology in Cancer Research & Treatment



cancer cells, which resensitizes colon cancer cells to 5-FU.31

Additionally, overexpression of miR-34a renders radioresistant

HepG2 cells sensitivity to radiation through the inhibition of

LDHA.32 Lactate dehydrogenase A, one of the predominant

isoforms of LDH, is responsible for the conversion of pyruvate

to lactate in the last cellular glycolytic reaction.33 It has been

revealed that inhibition of LDHA resensitizes breast cancer

cells to Taxol34 and chondrosarcoma cells to DOX.35 Collec-

tively, it is cued that targeting miR-34a-LDHA axis could mod-

ulate chemosensitivity in diverse resistance types of cancers.

p53-inducible miRNA-34a could regulate glucose metabolism

via repressing glycolytic enzymes (HK1, HK2, glucose-6-

phosphate isomerase [GPI]) and pyruvate dehydrogenase

kinase 1 (PKD1) in HCT116 (wild-type p53) cells.36 But the

functional cancer relationship between miR-34a and its down-

stream targets HK1, HK2, GPI, and PKD1 in chemosensitivity

remains unclear.

Accumulating evidence has elucidated that miR-34a overex-

pression and its downstream targets sirtuin 1 (SIRT1) downex-

pression attenuate the chemoresistance in human colon cancer

and prostate cancer.37,38 We try to address the potential associ-

ation between miR-34a-SIRT1 axis and other energy metabolic

phenotypes. Sirtuin 1, as a key mediator of beneficial effects of

caloric restriction, regulates lipid and glucose metabolism in an

NADþ-dependent manner by deacetylating.39 It has been

proposed that a farnesoid X receptor (FXR)-miR-34a-SIRT1

regulatory loop plays a causative role in the pathological

process of hepatic lipid metabolism in livers. Activation of

FXR signaling smartly decreased miR-34a expression, subse-

quently resulting in increase in hepatic SIRT1 levels. In meta-

bolic diseases, elevated miR-34a suppresses the expression of

SIRT1 and further decreases FXR activity, which delineates a

vicious FXR/miR-34a/SIRT1 circuit.40,41 Likewise, isocalo-

ric pair-fed high-carbohydrate diet induced greater severity in

hepatic steatosis and inflammatory response and cholesterol

deposition than high-fat carbohydrate diet in mice potentially

through higher expression of hepatic miR-34a and lower lev-

els of SIRT1 axis. In detail, this faulty axis elevated inflam-

matory cytokine genes (Il1b, Tnfa, and Mcp1) to induce

hepatic inflammation, increased de novo lipogenesis through

related proteins expression (ACC, SCD1), suppressed FAO

via downregulating relevant genes (Cpt1, Ppara, and Pgc1a),

and decreased expression of cholesterol metabolism-related

genes (Abcg5, Abcg11, and Cyp7a1 etc).42 Apart from miR-

34a/SIRT1 axis, miR-34a is highly induced in human liver

tissues with nonalcoholic steatohepatitis, diabetic mice, and

high-fat diet-fed mice models and its expression inversely

correlates with hepatocyte nuclear factor 4a, which leads to

very-low-density lipoprotein (VLDL) secretion inhibition in

hepatocyte and diminished levels of low-density lipoprotein,

VLDL, and TG in plasma.43 Although the role of miR-34a in

chemoresistance in aforementioned metabolic reprogram-

ming remains unclear, it is still significant because if delivery

of miR-34a is applied into personalized cancer therapy to

Table 1. The 5 miRNAs in Energy Metabolic Changes.

miRNA Tumor Models Observation Targets Biological Consequences

miR-122 Colon cancer # PKM2 Glucose metabolism"11

HCC # PKM2 Apoptosis#12

HCC # SLC7A1 Arginine"18

Antagomir-122-treated mice # NA Plasma cholesterol#19

ASO-miR-122-treated mice # NA

miR-125b HCC # HK2 Fatty-acid synthesis# þ FAO"20

Glucose uptake, lactate production"24

Chondrosarcoma # ErbB2 Glycolysis"25

miR-125b-overexpression mice " SCD-1 Hepatic TG#28

ERa knockdown and miR-125b-overexpression mice " NA Fatty acid uptake# þ TG#29

miR-34a Colon cancer # LDHA Glucose metabolism"31

HCC # LDHA Glycolysis"32

miR-125b overexpression lung cancer " HK1, HK2, GPI,

PKD1

Glycolysis# mitochondrial

respiration"36

HCLD fed mice " SIRT1 DNL" þ FAO# þ cholesterol#42

Human liver tissues with NASH, diabetic mice and mice

fed a high-fat diet

" HNF4a Hepatocytic VLDL secretion#
LDL, VLDL, and TG in plasma#43

miR-155 ERþ breast cancer " HK2 Sensitization of MCF7-LTED cells to

metformin48

Rm155LG/Alb-Cre double transgenic mice " Ces3/TGH Total cholesterol þ TG þ HDL#
Hepatic lipid þ TG þ HDL þ FFA#50

miR-205 Prostate cancer " NA Shift OXPHOS to a glycolysis54

Abbreviation: Ces3/TGH, carboxylesterase 3/triacylglycerol hydrolase; DNL, de novo lipogenesis; FAO, fatty acid oxidation; FFA, free fatty acid; GPI, glucose-

6-phosphate isomerase; HDL, high density lipoprotein; HK2, hexokinase 2; HNF4a, hepatocyte nuclear factor 4a; LDL, low density lipoprotein; LDHA, lactate

dehydrogenase A; PKM2, M2 splice isoform of pyruvate k; SIRT1, Sirtuin 1; SLC7A1, solute carrier family 7; SCD-1, stearoyl-CoA desaturase-1; TG,

triglyceride; VLDL, very-low-density lipoprotein.
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cancel the chemoresistance,37,38 it is critical to take compre-

hensive administration to attenuate side effects in lipid and

cholesterol metabolism.

miR-155

miR-155 functions as an oncomiR and is significantly elevated

in human cancers.44 Inhibition of miR-155 can restore sensi-

tivity of lung cancer to cisplatin via negative regulation of

Apaf-1 expression45 and reverse tamoxifen resistance by acti-

vating suppressor of cytokine signaling 6-signal transducer and

activator of transcription 3 pathway in breast cancer.46 How-

ever, miR-155 also exerts a possible tumor-suppression func-

tion to attenuate cisplatin resistance in human epidermoid

carcinoma cells.47

A recent study has demonstrated that miR-155 drives meta-

bolic reprogramming in estrogen receptor–positive (ERþ)

breast cancer cells following long-term estrogen deprivation

(LTED).48 In this study, aerobic glycolysis is enhanced through

higher expressions of GLUT1 (glucose importer), HK2, lactate

exporter monocarboxylate transporter-4 in MCF7-LTED cells,

and an aromatase inhibitors (AIs)-resistant breast cancer line.

Yet, miR-155/HK2 axis was further deciphered to be associ-

ated with the response to AI therapy and tumor plasticity in

ERþ breast cancers. Here, miR-155 augment and miR-143

reduction in MCF7-LTED cells are consistent with Jiang and

his colleagues’ study that miR-155 promotes HK2 transcription

by activation of STAT3 and suppression of miR-143.49 In other

metabolic phenotypes, overexpression of miR-155 reduced

total cholesterol, TG, and high-density lipoprotein, and free

fatty acid both in serum and hepatic cells via lower carboxy-

lesterase 3/triacylglycerol hydrolase in Rm155LG/Alb-Cre

double transgenic mice.50 Collectively, it’s smoothly reasoned

that miR-155 might be a potent metabolic regulator that med-

iates response to chemotherapy in malignant tumors.

miR-205

As same as miR-125b, miR-205 exhibits dual properties

involved in chemosensitivity in different cancer types depend-

ing on the specific tumor contexts.51-53 Overexpression of miR-

205 promoted the growth, metastasis, and chemoresistance of

non-small cell lung cancer by targeting phosphatase and tensin

homolog deleted on chromosome 10 (PTEN).52 However,

Figure 1. MicroRNAs and their targets in the association between energy metabolism and chemoresistance in cancer cells.
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overexpression of miR-205 is able to rescue melanoma cells

from drug resistance by reduced levels of Bcl-2, ABCA2, and

ABCA5 (ABC transporter family members).51 More evidence

delineates the association with the role of miR-205 in drug-

induced metabolic adaptations and chemoresistance in cancers

recently. Docetaxel-resistant PC3 cells can utilize glucose, glu-

tamine, and lactate by the OXPHOS; therefore, it has more

efficient respiratory phenotype than sensitive cells. Here, reex-

pression of miR-205 is able to shift OXPHOS to a glycolysis

metabolism, thereby resulting in restoral of chemosensitivity to

docetaxel.54

Conclusions and Future Directions

Mechanistic studies were conducted to discuss the roles of 5

miRNAs and their targets in energy metabolic regulation in

human cancers, especially in chemoresistance (see Table 1 and

Figure 1). Given a specific miRNA could bind to 30-untrans-

lated regions of different targeted messenger RNAs, fine

miRNA mediations and the synergy effects of multiple miR-

NAs may skillfully alter energy metabolism to adapt tumor

chemoresistant condition in human cancer cells. It is promising

that liposomal formulation of miR-34 (MRX34) was the first

miRNA-based antineoplastic agent to enter phase I clinical trial

for advanced HCC or other solid tumors on April 2013 (https://

clinicaltrials.gov/show/NCT01829971). Full usage of novel

technologies, such as miRNAs mimics and inhibitors, can

potentially normalize the dysregulated energy metabolic

enzymes and signaling pathways in chemoresistant cancer

cells. Moreover, given that miRNAs regulate target genes

involved in multiple cellular bioprocesses, they can function

as oncogenes or tumor suppressors in different tumor entities.

These miRNAs, can, thereby, act as brakes or triggers on the

progression of chemotherapeutic resistance in human cancer

cells. The insights highlight that miRNAs may serve as novel

candidates for therapeutic intervention to elevate therapeutic

efficiency for human cancers in the future.
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