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Rhinoviruses (RV) have been shown to inhibit subsequent infection by heterologous
respiratory viruses, including influenza viruses and severe acute respiratory syndrome-
coronavirus 2 (SARS-CoV-2). To better understand the mechanisms whereby RV protects
against pulmonary coronavirus infection, we used a native murine virus, mouse hepatitis
virus strain 1 (MHV-1), that causes severe disease in the lungs of infected mice. We found
that priming of the respiratory tract with RV completely prevented mortality and reduced
morbidity of a lethal MHV-1 infection. Replication of MHV-1 was reduced in RV-primed
mouse lungs although expression of antiviral type I interferon, IFN-b, was more robust in
mice infected with MHV-1 alone. We further showed that signaling through the type I
interferon receptor was required for survival of mice given a non-lethal dose of MHV-1. RV-
primed mice had reduced pulmonary inflammation and hemorrhage and influx of
leukocytes, especially neutrophils, in the airways upon MHV-1 infection. Although MHV-1
replication was reduced in RV-primed mice, RV did not inhibit MHV-1 replication in
coinfected lung epithelial cells in vitro. In summary, RV-mediated priming in the
respiratory tract reduces viral replication, inflammation, and tissue damage, and prevents
mortality of a pulmonary coronavirus infection in mice. These results contribute to our
understanding of how distinct respiratory viruses interact with the host to affect disease
pathogenesis, which is a critical step in understanding how respiratory viral coinfections
impact human health.

Keywords: rhinovirus, mouse hepatitis virus, interferon, respiratory virus co-infection, coronaviral infection, mouse
model, coronavirus
INTRODUCTION

During the first year of the COVID-19 pandemic, public health measures that were implemented to
halt severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) transmission effectively
reduced transmission of other respiratory viruses, particularly influenza viruses and respiratory
syncytial virus (RSV) (1). Once societies began easing restrictions, the circulation of these viruses
returned. In the case of RSV, this occurred out of its normal seasonal pattern (2, 3). As SARS-CoV-2
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continues to circulate in human populations worldwide, there
are overlapping incidences of COVID-19 and other respiratory
viral infections (4). Circulation of rhinovirus (RV) was less
affected than influenza viruses and RSV by public health
measures intended to slow SARS-CoV-2 transmission, and RV
has been frequently detected as a co-pathogen in COVID-19
patients (4, 5). Multiple studies have proposed that RV infections
mediate viral interference with heterologous respiratory viruses,
including influenza viruses and SARS-CoV-2 (6–8). While these
studies are insightful, animal models in which disease outcomes
can be studied in controlled systems of known viral doses,
strains, and timing of infections are critical for determining
viral interference mechanisms within a shared host.

Mouse hepatitis virus (MHV), in the Betacoronavirus genus,
naturally infects the enteric tract of mice but various strains differ in
tissue tropism and virulence. MHV strain 1 (MHV-1) has tropism
for and causes disease in the respiratory tract (9–11). Mouse strain-
and dose-dependent severity of MHV-1 infection allows researchers
to study a broad range of pulmonary coronavirus disease severities
under biosafety level 2 conditions. MHV-1 is particularly virulent in
A/J and C3H/HeJ mice, causing severe lung pathology that
resembles lethal infections by SARS-CoV or SARS-CoV-2 in
addition to pathology in the liver, brain, heart, and kidneys (9, 12,
13). MHV-1 infection of BALB/c mice results in milder pulmonary
disease with dose-dependent severity (9, 11, 14). Others have
reported moderate disease upon infection of BALB/c mice with
MHV-1 (9, 11). We have observed significant weight loss and 20%
mortality of BALB/c mice infected with 2x103 PFU of MHV-1 (14).
The aim of these studies was to establish MHV-1 as a model for
lethal pulmonary coronavirus infection in BALB/c mice and use it
to study RV-mediated interference of coronavirus infection. We
previously showed that inoculation of BALB/c mice with RV two
days prior to inoculation with a lethal dose of influenza A virus
(PR8) or pneumonia virus of mice (PVM) resulted in complete
protection against mortality (14, 15). Here, we show that priming
with RV reduced morbidity and prevented mortality of a lethal
MHV-1 infection. This model system will be important for
understanding the immunological mechanisms that underpin
viral interference of pulmonary coronaviruses within hosts.
MATERIALS AND METHODS

Ethics Statement
All procedures involving mice were approved by the University of
Idaho’s Institutional Animal Care and Use Committee (Protocols
2017-29 and 2020-20), in compliance with the National Research
Council Guide for the Care and Use of Laboratory Animals (16).
Mice were monitored daily and were euthanized by an overdose of
sodium pentobarbital if they reached humane endpoints, including
loss of more than 20-25% of their starting weight or exhibiting
severe clinical signs of disease.

Cell Lines and Viruses
Murine fibroblast line 17Cl.1 (provided by Dr. Kathryn Holmes,
University of Colorado Denver School of Medicine) and HeLa
Frontiers in Immunology | www.frontiersin.org 2
Cells (ATCC CCL-2) were grown in Dulbecco’s modified Eagle
medium (DMEM) supplemented with 10% fetal bovine serum
(FBS; Atlanta Biologicals), and antibiotic-antimycotic
(ThermoFisher Scientific). The LA4 cell line derived from
murine lung epithelial cells (ATCC CL-196) was grown in
Ham’s F12 (Kaign’s modified) medium (F12K; Caisson)
supplemented with 10% FBS and antibiotics. Mouse hepatitis
virus strain 1 (ATCC VR-261) was grown in 17Cl.1 cells and
titrated by plaque assay or TCID50 assay using 17Cl.1 cells.
Human rhinovirus 1B (ATCC VR-1645) was grown in HeLa
cells, concentrated by ultracentrifugation through 30% sucrose,
and titrated by TCID50 assay using HeLa cells.

Viral Infection
Six- to eight-week-old female BALB/c mice were purchased from
Envigo and were allowed to acclimatize to the facility for 10 days
prior to experimentation under animal biosafety level 2
conditions. Mice housed in individually vented cages with
controlled light/dark cycles and regulated temperature were
maintained by the University of Idaho Lab Animal Research
Facilities and received food and water ad libitum. Mice were
anesthetized with inhaled isoflurane and inoculated intranasally
with 50 uL of virus or saline control (mock). Seven mice per
group were inoculated with 7.6x106 TCID50 units of RV or mock
on day -2 and a lethal dose of MHV-1 (2x105 PFU) on day 0. The
mice were weighed daily and given a clinical disease score of 0 to
3 in each of four categories: ruffled fur, lethargy, labored
breathing, and hunched posture. The daily scores were totaled
for each individual mouse and averaged across the group of mice.

Five mice per group (mock/MHV and RV/MHV) were
euthanized on days 2 and 5 after MHV-1 inoculation to
analyze viral loads, interferon gene expression, histopathology
in the lungs, and cellular infiltration of the airways. For titration
of MHV-1, lung tissues were weighed and homogenized in 1 mL
cold DMEMwith 10% FBS and quantified by TCID50 assay using
17Cl.1 cells. Preliminary assays were done to demonstrate that
RV does not interfere with titration of MHV-1 in 17Cl.1 cells
(data not shown). RT-qPCR was performed on RNA isolated
from whole lung tissues as described previously and below (14).
Mouse lungs were lavaged twice with 1 mL cold phosphate
buffered saline. Cells were counted on a hemocytometer with
or without prior RBC lysis and spun on glass slides using a
Shandon Cytospin. Slides were stained with HEMA3 staining kit
for differential cell analysis. Lung tissues were fixed in formalin
and processed and stained with hematoxylin and eosin as
previously described (14). Images were acquired on a Zeiss
axiolab microscope with Axiocam 105 color camera.

To inhibit type I interferon (IFN) signaling, mice were given
0.05 mg anti-IFNAR1 antibody (clone MAR1-5A3; Bio X Cell)
intranasally with a sublethal dose of MHV-1(1x103 PFU) and
two days after inoculation. Control mice were given antibody of
the same isotype (mouse IgG1k, clone MOPC-21; Bio X Cell).

Quantitative PCR
Lung tissues were stored in RNALater and RNA was extracted
using TRIzol (Invitrogen) according to the manufacturer’s
protocol. RNA was reverse transcribed using SuperScript IV
May 2022 | Volume 13 | Article 886611
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VILO (Invitrogen). Quantitative PCR was performed using
PowerUp SYBR green and StepOne Plus instrument (Applied
Biosystems) using previously published primer pairs for IFN-b
(17), Mx1 (18), and GAPDH (19). Fold change compared to
values for mock-inoculated mice was calculated using the 2-DDCt

method (20).

Analysis of Viral Replication in LA4 Cells
LA4 cells were inoculated with RV and MHV-1 concurrently
(RV+MHV) or sequentially with RV 6 h prior to inoculation with
MHV-1 (RV/MHV), both viruses at a multiplicity of infection
(MOI) of 1. Supernatant medium was collected every 6 h through
the 24 h time point and at 48 h. Cells were removed by
centrifugation, and MHV-1 titers in the medium were quantified
by TCID50 assay using 17Cl.1 cells. LA4 cells seeded onto coverslips
were inoculated with RV and MHV-1 concurrently and fixed with
formaldehyde 18 h post-infection. Viral antigens were fluorescently
labeled in triton X-100-permeabilized cells using monoclonal
antibody against MHV nucleocapsid protein (provided by Dr.
Julian Leibowitz, Texas A&M University) and donkey anti-
mouse-555 (Jackson Immuno Research), and RV1B antiserum
(ATCC, V-113-501-558) and donkey anti-guinea pig-488
(Jackson Immuno Research). Nuclei were stained with DAPI and
images were obtained using a Nikon Eclipse E800 epifluorescence
microscope and Nikon DS-Ri1 camera.

Transcriptome Analysis
In all cases, LA4 cells were inoculated with viruses at an MOI of
1. For concurrent coinfection, cells were simultaneously
inoculated with MHV-1 and RV and incubated for 12 h
(MHV12+RV12). For sequential coinfections, cells were
inoculated with RV for 12 h, followed by MHV-1 for an
additional 12 h (RV24/MHV12) or vice versa (MHV24/RV12).
Cells inoculated with RV or MHV-1 for 12 or 24 h as single virus
controls and mock-inoculated cells served as negative controls.
RNA isolation and microarray processing and analysis was done
as previously described (21). Raw and processed data are
available from NCBI Gene Expression Omnibus, accession
numbers GSE89190 and GSE201471.

Differential gene expression between treatments was analyzed
using normalized expression data and linear mixed-effect models
followed by linear contrasts corrected for multiple comparisons
(16). Expression was modeled as a function of infection, while
probes for a particular gene were treated as random effects. The
models used the nlme::lme function in R. The data contained
three coinfection combinations in addition to the single virus
infections, which were reported previously (16). The following
nine post-hoc, two-sided contrasts were performed on the fitted
models using the multcomp::glht function in R: each virus
coinfection combination (MHV12+RV12, RV24/MHV12,
MHV24/RV12) vs. mock and each pairwise combination of
coinfection vs. single virus infection (MHV12+RV12 vs.
MHV12, MHV12+RV12 vs. RV12, RV24/MHV12 vs. RV24,
RV24/MHV12 vs. MHV12, MHV24/RV12 vs. MHV24,
MHV24/RV12 vs. RV12). These tests had their p-values
adjusted by the multcomp::summary.glht function according to
their joint distribution.
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Statistics
Statistical analyses were performed using Prism9 software
(GraphPad). Survival curves were compared using log rank
Mantel-Cox curve comparison. Weight loss and clinical score
data were analyzed using multiple Student’s t test with Holm-
Sidak multiple-comparison correction. Viral titers and qPCR data
were compared between groups using Student’s t tests without
correction for multiple comparisons. Statistical analysis of
transcriptome data is described above.
RESULTS

Inoculation With RV Reduces Morbidity
and Prevents Mortality of a Lethal
MHV-1 Infection
Based on our previous finding that BALB/cmice infected with 2x103

PFU ofMHV-1 experienced 20%mortality (14), we inoculatedmice
with 2x105 PFU of MHV-1. This dose of MHV-1 resulted in 100%
lethality (Figure 1A). In comparison to mice that received a mock
inoculation two days before MHV-1 (mock/MHV), those that
received RV (RV/MHV) were completely protected from mortality
(Figure 1A). RV/MHV infectedmice also had less severemorbidity,
as determined by weight loss and clinical scores, compared tomock/
MHV infected mice (Figures 1B, C). Although RV/MHV infected
miceexperiencedsignificantweightloss, therateof losswaslowerthan
mock/MHVinfectedmiceandtheybeganregainingtheirbodyweight
byday7afterMHV-1 infection.Clinical signs of diseaseweredelayed
by two days and were much less severe in RV/MHV compared to
mock/MHVinfectedmice.Clinicalsignsinmock/MHVinfectedmice
included severely ruffled fur and hunched posture with mild to
moderate lethargy and labored or shallow breathing. In contrast,
clinical signs inRV/MHVinfectedmicewere limited tomildly ruffled
fur and hunched posture with occasional shallow breathing. Mock/
MHV infected mice were humanely euthanized or succumbed to
infection on days 4-7, while all RV/MHV infected mice survived
through the end of the study (day 14).

Inoculation With RV Reduces Replication
of MHV-1 in the Lungs and Infiltration of
Immune Cells into the Airways of Mice
To determine whether priming with RV inhibited replication of
MHV-1, lungs from mock/MHV and RV/MHV infected mice
were collected on days 2 and 5 after MHV-1 inoculation and
MHV-1 titers were determined by TCID50 assay (Figure 2A).
Although priming with RV did not completely prevent infection
by MHV-1, titers on day 2 were approximately 1 log10 per gram
of tissue lower in RV/MHV compared to mock/MHV infected
mice. Mock/MHV infected mice that survived to day 5 had
reduced viral loads in the lungs compared to day 2, indicating
that lethality was not dependent on sustained viral replication.
These data suggest that RV stimulates innate defenses that limit
MHV-1 replication, resulting in reduced disease severity.

Bronchoalveolar lavage (BAL) fluid was collected frommice and
the cellular content was stained for differential quantification.Mock/
MHV infected mice had high numbers of cells in the airways on day
May 2022 | Volume 13 | Article 886611
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2 that consisted of ~60% macrophages, and ~20% each neutrophils
and lymphocytes (Figure 2B). RV/MHV infected mice had lower
overall cell numbers and the cells were predominantly macrophages
with a reduced proportion of neutrophils compared to mock/MHV
infected mice. Both groups had reduced total cell counts in the
airways on day 5 after inoculation compared to day 2.

Expression of IFN-b Corresponds With
Higher MHV-1 Replication
Type I interferons, such as IFN-b, are antiviral cytokines that limit
viral replication. Thus, we quantified levels of IFN-b and IFN-
stimulated gene Mx1 mRNA from mock/MHV and RV/MHV
infected lungs (Figure 3). Expression of IFN-b did not correspond
with reduced viral titers in RV/MHV infected mice rather was
significantly higher in mock/MHV infected mice (Figure 3A).
Frontiers in Immunology | www.frontiersin.org 4
Similarly, we previously observed limited induction of IFN-b
expression upon inoculation with RV, compared to robust
induction of an IFN response upon MHV-1 infection in BALB/c
mice (14). The pattern of Mx1 expression was similarly high in
mock/MHV infected mice, though not significantly higher than in
RV/MHV infected mice (Figure 3B). These data suggest that IFN-b
expression is strongly induced by MHV-1 infection but is not
limiting viral replication early during infection and is not sufficient
to protect from lethality in mock/MHV infected mice.

Type I IFN Signaling Is Required for
Survival Upon Infection by a Non-Lethal
Dose of MHV-1
To determine if signaling through the IFNa/b receptor (IFNAR)
is protective during a non-lethal infection with MHV-1, we used
A

B

C

FIGURE 1 | Priming with RV reduces morbidity and prevents mortality upon MHV-1 infection. Mice (n=7 per group) were inoculated intranasally with RV (7.6x106

TCID50) or saline (mock) on day -2, and MHV-1 (2x105 PFU) on day 0. Mice were monitored daily for (A) mortality (p=0.0004) (B) weight loss (p>0.05) and (C) clinical
scores (days 2-7: p<0.001).
May 2022 | Volume 13 | Article 886611
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an anti-IFNAR1 blocking antibody to prevent IFNa/b-mediated
responses. Mice were inoculated with a non-lethal dose of MHV-
1 intranasally along with an irrelevant isotype control or anti-
IFNAR1 antibody. Mice were given a second dose of antibody
intranasally on day 2 post-infection. All mice that were given
anti-IFNAR1 rapidly succumbed to MHV-1 infection by day 4,
while the mice treated with control antibody all survived the
MHV-1 infection (Figure 4A). Control antibody-treated mice
lost weight early during MHV-1 infection and starting regaining
weight after day 4 (Figure 4B). Although the robust production
of IFN-b was not sufficient to protect against lethal MHV-1
infection (Figure 3), type I IFN signaling was required for
protection against a non-lethal dose (Figure 4).

Priming by RV Limits Pulmonary
Inflammation and Hemorrhage
Upon MHV-1 Infection
We performed histopathology analysis of lung tissues to determine
the effects of RV priming on inflammation and damage upon
MHV-1 infection (Figure 5). Lung tissues from mock/MHV and
Frontiers in Immunology | www.frontiersin.org 5
RV/MHV infected mice were similar on day 2, with slightly
increased peribronchiolar and perivascular cuffing in RV-primed
mice. In contrast, by day 5, mock/MHV infected lungs had
extensive inflammation in the alveoli and around bronchioles.
Red blood cells were seen through-out the sections, indicating
widespread pulmonary hemorrhage. Despite the early infiltration
of immune cells on day 2 in RV-primed mice, by day 5 RV/MHV
infected lung sections were clear of infiltrating leukocytes and had
reduced peribronchiolar and perivascular cuffing compared to day
2. Thus, RV appeared to induce early recruitment of immune cells
to the lungs and limited pulmonary inflammation and pathology
induced by MHV-1 infection.

RV Does Not Inhibit MHV-1 Replication in
a Mouse Lung Epithelial Cell Line
Other studies have shown that RV inhibits SARS-CoV-2 replication
in primary respiratory epithelial cells in vitro (8). We tested whether
RV would inhibit MHV-1 infection in a murine lung epithelial cell
line, LA4. LA4 cells were inoculated with MHV-1 and
RV concurrently or sequentially with RV 6 h prior to
A

B

FIGURE 2 | Priming with RV limits MHV-1 replication in the lungs and recruitment of leukocytes to airways. Mice (n=5 per group and time point) were inoculated
intranasally with RV (7.6x106 TCID50) or saline (mock) on day -2, and MHV-1 (2x105 PFU) on day 0. (A) Lungs were collected, homogenized, and viral titers were
determined by TCID50 assay using17Cl.1 cells. (B) Cells were counted and collected from bronchoalveolar lavage (BAL) fluid and stained with Wright-Giemsa stain
for differential analysis. *p<0.05, **p<0.01, ***p<0.001.
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MHV-1 (Figure 6). In contrast to our in vivo findings (Figure 2),
RV did not inhibit replication of MHV-1 either during concurrent
or sequential coinfection (Figures 6A, B). In order to determine
whether RV and MHV-1 were infecting the same cells within a
coinfected culture, we performed IFA for viral antigens 18 h after
concurrent coinfection. As we have previously shown, MHV-1
formed syncytia among infected cells, while cells infected with RV
alone were dramatically condensed (21). Several cells contained
antigens from both viruses (Figure 6C, arrows), indicating that
neither virus inhibited super-infection of the cell by the other virus.

RV Dominates the Transcriptional
Response of Mouse Lung Epithelial Cells
Over That of MHV-1
To understand how coinfection by MHV-1 and RV affects gene
expression in epithelial cells, LA4 cells were inoculated with
Frontiers in Immunology | www.frontiersin.org 6
MHV-1 alone, RV alone, or coinfected with both viruses
(concurrently and sequentially) and total gene expression was
analyzed using microarrays. Genes were more dramatically up-
or down-regulated by RV infection at both 12 and 24 h (RV12;
RV24) time points compared to MHV-1 (MHV12; MHV24;
Figure 7). Cells coinfected with both viruses for 12 h (MHV12+
RV12) had a similar gene expression profile to those infected by
RV for 12 h (RV12). The difference in gene expression levels vs.
mock was increased in cells infected with MHV-1 for 12 h prior
to RV for an additional 12 h (MHV24/RV12) compared to RV
alone for 12 h (RV12). However, when MHV-1 was added to
cells 12 h after RV and gene expression was analyzed 24 h after
RV inoculation (RV24/MHV12), gene expression was nearly
identical to cells infected by RV alone for 24 h (RV24), seen by
the similar log2 fold changes vs. mock (Figure 7) and list of
differentially expressed genes (Supplementary Table 1). There
A

B

FIGURE 3 | Priming with RV results in reduced expression of type I IFN response genes. Mice (n=5 per group and time point) were inoculated intranasally with RV
(7.6x106 TCID50) or saline (mock) on day -2, and MHV-1 (2x105 PFU) on day 0. Total lung RNA was isolated and expression of (A) IFN-b and (B) Mx1 were
quantified by RT-qPCR. **p<0.01, ***p<0.001.
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were only 64 genes with significantly different expression in
RV24/MHV12 vs. RV24, whereas 2360 genes were differentially
expressed between RV24/MHV12 vs. MHV12 (Supplementary
Table 1). Thus, RV induced stronger gene expression changes
than MHV-1, as we have shown previously (21), and dominated
gene expression patterns during sequential and concurrent
coinfection with MHV-1.
DISCUSSION

While clinical and epidemiological data indicate that respiratory
viruses can interfere with replication or circulation of distantly
related viruses and alter pathogenesis within a coinfected host,
animal models are critical for determining the immunological
mechanisms that contribute to viral interference. Here, we show
that inoculation of mice with RV two days before a lethal dose of
MHV-1 completely protected against mortality and reduced
morbidity, viral replication, inflammatory cell recruitment to the
airways, and inflammation and pathology in the lungs. While RV
did not inhibit replication of MHV-1 in cultured lung epithelial
cells, it dominated the gene expression response of these cells
to infection.

Multiple viral pairs have been found to attenuate disease upon
coinfection. In addition to MHV-1, we have shown that RV
Frontiers in Immunology | www.frontiersin.org 7
protects mice against lethal infections by influenza A virus (IAV)
and PVM when given two days prior to the lethal virus (14, 15).
Interestingly, attenuation of IAV disease was found to be
dependent on type I IFN signaling, while protection against
PVM was not (15). We further showed that a non-lethal dose of
MHV-1 protects mice against subsequent infection by IAV,
which is associated with a robust type I IFN response induced
by MHV-1 in mouse lungs (14). Similarly, others have shown
that an MHV-1 infection limited to the upper respiratory tract of
mice prevents mortality of a subsequent SARS-CoV infection
and reduces the severity of IAV (22). They further showed that
nasal priming by MHV-1 triggers type I IFN-independent
recruitment of immune cells to the lungs that can then be
activated upon challenge with a lethal pulmonary virus (22). A
recent study found that prior infection with RSV protects mice
against IAV, but not vice versa (23). In contrast to the two-day
separation between viral inoculations we used, Hartwig et al.
showed that protection was effective when RSV was given to
mice 4, 8, or 30 days before IAV (23). This timing is much later
than the type I IFN response induced by RSV, suggesting other
correlates of protection are involved. Thus, different viral
combinations result in attenuated disease upon coinfection,
and there are multiple mechanisms responsible for disease
attenuation including both type I IFN-dependent and
-independent mechanisms.
A

B

FIGURE 4 | Signaling through the type I IFN receptor, IFNAR, is required for survival of sublethal MHV-1 infection. Mice (n=5 per group) were inoculated intranasally
with MHV-1 (1x103 PFU) and 0.05 mg of anti-IFNAR1 or control (Ctl) antibody on day 0. A second dose of antibody was given on day 2. (A) Mortality (p=0.0027)
and (B) weight loss were monitored daily.
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Other studies in animal models have found viral pairs that
exacerbate disease severity. In contrast to Hartwig et al. described
above, George et al. found that IAV given to mice 24 h prior to RSV
resulted in more severe disease than either virus alone (24).
However, the studies differed in the severity of IAV infection and
timing between viruses. In a Syrian hamster model, concurrent or
sequential coinfections with SARS-CoV-2 and an H1N1 stain of
IAV resulted in enhanced disease (25). In contrast, an H3N2 strain
of IAV was inhibited by SARS-CoV-2 coinfection in the hamster
model (26). Additional studies in hACE2-transgenic mice and
ferrets observed enhanced disease upon SARS-CoV2 and
influenza virus coinfection (27–31). We have shown that when
RV was given two days after IAV infection, mice succumbed to the
Frontiers in Immunology | www.frontiersin.org 8
infection faster than when given IAV alone (14). In addition to virus
combinations and host susceptibility, the order, timing, and doses of
coinfecting viruses are likely important factors in determining if
disease is enhanced or attenuated.

IFNAR signaling was required for survival upon non-lethal
MHV-1 infection. However, the robust expression of IFN-b in
the lungs of mock/MHV infected mice did not limit viral replication
or protect from lethal disease and RV/MHV infected mice had
lower levels of IFN-b. These seemingly contradictory results are
likely due to the timing of the IFN response. We inhibited IFNAR
signaling from the start of MHV-1 infection, thus giving the virus a
head start to overwhelm other innate immune signaling. Although
RV-primed mice had lower levels of IFN-b on day 2 after MHV
FIGURE 5 | Priming with RV limits pulmonary inflammation and damage upon MHV-1 infection. Mice (n=2 per group and time point) were inoculated intranasally
with RV (7.6x106 TCID50) or saline (mock) on day -2, and MHV-1 (2x105 PFU) on day 0. Lungs were collected on days 2 and 5, fixed in formalin, and 5 mm sections
were stained with hematoxylin and eosin. Representative images from one mouse per group are shown at 20X magnification of alveoli and bronchioles.
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infection (day 4 after RV priming), we previously showed that RV
induces an early, albeit low, type I IFN response (14, 15). This
response is likely adequate to suppress early replication of MHV-1,
which results in lower IFN-b expression in contrast to mock/MHV
infected mice.

The reduced leukocyte recruitment and inflammation in the
lungs of RV-primedmice may be due to early suppression of MHV-
1 replication, direct inhibition of inflammatory signaling, or both.
We previously showed that priming with RV reduces inflammatory
responses upon IAV infection, which is independent of IAV
replication (14). Although we did not evaluate RV-induced
cellular recruitment prior to MHV-1 inoculation, we have
previously shown that RV induces low numbers of inflammatory
cells into the lungs by day 2 after inoculation (15). RV-inoculated
mice had similar total cells in the airways as mock-inoculated mice,
but had a lower percentage of macrophages and higher neutrophil
population (15). Macrophages are target cells for MHV-1 infection
in mouse lungs (9), so this reduction in macrophages could limit the
availability of target cells and thus MHV-1 replication. Others have
shown rapid recruitment of neutrophils to the airways of RV-
inoculated BALB/c mice and a return to baseline by day 4 (32).
Thus, the time points we evaluated were likely after RV-induced
cellular infiltration had cleared. The potential role of early
recruitment and retraction of immune cells upon RV inoculation
in limiting the availability of target cells for MHV-1 infection and/or
excessive inflammatory responses will be evaluated in future studies.
Others have shown that RV down-regulates signaling by
macrophages and epithelial cells upon secondary bacterial
infections, resulting in reduced neutrophil recruitment and
Frontiers in Immunology | www.frontiersin.org 9
enhanced disease (33, 34). While suppression of neutrophil
responses is detrimental during bacterial infection, neutrophils
can contribute to excessive pathology during respiratory viral
infections, including coronaviruses (35, 36). Thus, the reduced
recruitment of neutrophils in RV-primed mice may limit
pulmonary damage, thereby attenuating disease severity.

Coinfection with RV did not limit replication of MHV-1 in
vitro despite induction of a type I IFN response (Figures 6 and 7;
Supplementary Table 1) (21). In contrast to our findings, others
have found that RV inhibits replication of SARS-CoV-2 in vitro
when these two viruses are inoculated simultaneously or
sequentially (8, 37, 38). Furthermore, interference of SARS-
CoV-2 replication was dependent on type I IFN signaling (8,
37, 38). The difference in outcomes could be due to differential
sensitivity of SARS-CoV-2 vs. MHV-1 to IFN-dependent
inhibition or differences in cell type specificity of inhibition. In
agreement with studies using other mouse strains (12), we found
that type I IFN signaling is required to protect BALB/c against a
non-lethal MHV-1 infection. Additional studies have
demonstrated that mouse strain-dependent differences in
susceptibility to MHV-1 infection correlate with type I IFN
responses (9, 12, 39). However, mechanisms besides direct
inhibition of viral replication likely contribute to protection;
for example, stimulation of natural killer cells, dendritic cells, or
CD4+ or CD8+ T cells, or modulation of inflammatory responses
(18, 40–45). Type I IFN signaling by hemopoietic cells, especially
macrophages and cDCs, is critical for protection from severe
disease upon infection of mice with the A59 strain of MHV
(46, 47). Future studies will be important to identify potential
A B

C

FIGURE 6 | RV does not inhibit MHV-1 replication in a coinfected epithelial cell line. LA4 cells were inoculated with (A) RV and MHV-1 concurrently or (B) RV 6 hours
before MHV-1. Supernatant media from triplicate samples per time point were titrated for MHV-1 by TCID50 assay using 17Cl.1 cells. (C) LA4 cells were inoculated with
RV and MHV-1 concurrently, and viral antigens were labelled by IFA 18 hours later. Antibodies against RV were detected with Alexa488 (green) and MHV-1 with Alexa555
(red) and nuclei were labelled with DAPI (blue). The panels show RV (green), MHV-1 (red), and overlay of both images. White arrows show examples of coinfected cells
containing both RV and MHV-1 antigens.
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IFN-dependent mechanisms of RV-mediated protection against
MHV-1 and the cell-type specificity of these mechanisms.

We found thatMHV-1 upregulated a robust type I IFN response
in vivo, but not in vitro (Figures 3 and 7) (21). This is likely also due
to cell type-specific responses. Our in vitro studies were done in LA4
cells, an immortalized epithelial cell line derived from murine lung
tissue. This is a convenient system for our studies because it is
susceptible to infection by a diverse set of respiratory viruses used in
mouse model systems, including RV strain 1B and MHV-1 (21).
However, MHV-1 has been reported to replicate predominantly in
alveolar macrophages in mouse lungs (9). The robust type I IFN
mRNAs detected in vivo may be expressed by MHV-1-infected
alveolar macrophages and/or additional cell types responding to the
infection, such as NK cells and plasmacytoid dendritic cells (12, 46).
Furthermore, MHV-1 causes more severe disease in strain A/J mice,
which corresponds with reduced type I IFN production (9).
Frontiers in Immunology | www.frontiersin.org 10
LA4 cells were derived from strain A/He mice (48) and thus
might be expected to have reduced IFN responses to MHV-1
infection. Related strains of MHV (JHM and A59) also do not
induce expression of type I IFN in vitro (49). However, they do not
actively inhibit type I IFN production induced by other triggers,
such as dsRNA (49). Like other positive-stranded RNA viruses,
MHV replicates within double membrane bound vesicles in the
cellular cytoplasm (50, 51). These vesicles likely hide viral dsRNA
intermediates from pattern recognition receptors that would trigger
expression of type I IFNs.

In summary, we observed viral interference when mice were
primed with RV prior to a lethal pulmonary coronavirus
infection, including complete protection from mortality.
Although replication of MHV-1 was reduced in RV-primed
mice, RV did not inhibit replication of MHV-1 in cultured
epithelial cells, suggesting that interference involves
FIGURE 7 | RV dominates gene expression patterns over MHV-1 in coinfected epithelial cells. LA4 cells were inoculated with RV or MHV-1 for 12 or 24 hours (RV12,
RV24, MHV12, MHV24), both viruses for 12 hours (MHV12+RV12) or one virus 12 hours before the other virus (RV24/MHV12, MHV24/RV12). RNA was isolated and
host gene expression was analyzed using a mouse genome microarray. Heat map includes expression of all significantly up (blue) or down (red) regulated genes
compared to mock-inoculated cells with colors indicating log2 fold change vs. mock (see inset key). Gene and sample clustering (dendograms) were performed using
hclust in R. See Supplementary Table 1 for all significant gene expression changes for each relevant pairwise comparison.
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immunological mechanisms not present in our in vitro system.
This mouse model will be critical for identifying cellular and
molecular mechanisms of viral interference that may explain
observations of altered disease severity in coinfected patients.
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