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Use of common spatial patterns 
for early detection of Parkinson’s 
disease
Aleš Smrdel

One of the most common diseases that affects human brain is Parkinson’s disease. Detection of 
Parkinson’s disease (PD) poses a serious challenge. Robust methods for feature extraction allowing 
separation between the electroencephalograms (EEG) of healthy subjects and PD patients are 
required. We used the EEG records of healthy subjects and PD patients which were subject to auditory 
tasks. We used the common spatial patterns (CSP) and Laplacian mask as methods to allow robust 
selection and extraction of features. We used the derived CSP whitening matrix to determine those 
channels that are the most promising in the terms of differentiating between EEGs of healthy controls 
and of PD patients. Using the selection of features calculated using the CSP we managed to obtain 
the classification accuracy of 85% when classifying EEG records belonging to groups of controls or PD 
patients. Using the features calculated using the Laplacian operator we obtained the classification 
accuracy of 90%. Diagnosing the PD in early stages using EEG is possible. The CSP proved to be a 
promising technique to detect informative channels and to separate between the groups. Use of the 
combination of features calculated using the Laplacian offers good separability between the two 
groups.

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases  worldwide1–3. The incidence 
and prevalence of the disease have been rising rapidly in the last two  decades4–6, although there are reports 
regarding decreasing trends in the PD in several countries world-wide7. One recent  study8 also indicated, that 
the incidence and prevalence of the PD are slightly higher in the west, compared to the east. Manifestation of the 
PD differs among individuals, but cardinal signs of the PD are related to motor dysfunction, such as hypokinesia, 
resting tremors, problems with starting or also stopping the movement, lead pipe rigidity, and mask face and 
postural reflex  impairment9. In addition to motor symptoms also non-motor symptoms, such as depression, 
anxiety, psychosis, apathy and/or impulse control disorders manifest in PD  patients10,11. The manifestations of 
the PD change with passing of time, but the progress is related to the age of the patient rather than the age of 
the onset of the  disease12.

The exact cause of the PD is not known, but studies suggest that different factors such as genetic and environ-
mental might be responsible for the  appearance13. No cure for the PD exists but different treatments can alleviate 
the symptoms and delay progression of the disease. Therefore it is important to diagnose the disease as early as 
possible. Clinical examinations, especially in early stages of the PD, are not very  accurate14. The diagnosis of the 
PD is predominately based on motor symptoms, which develop after the neuropathological changes are already 
 rampant15. Consequently, additional approaches are required, which could help diagnose the PD already in the 
early stages. In the past various approaches to diagnose the PD have been investigated and proposed.

Different non-invasive methods to characterize or detect the PD have been already proposed using e.g. voice 
measurements, gait or non-invasive signal acquisition techniques using wearable sensors. Several  studies16–19 
analyzed voice measurements from healthy subjects and PD patients to differentiate between the two groups (con-
trols and PD patients). One  study20 used the chi-square distance of the gaits to diagnose the PD, while  studies21,22 
evaluated the dynamics during freezing of gait in patients with the PD. As one of the possible non-invasive 
methods researchers also employ wearable sensors to record signals such as signals of electrical brain activity, 
i.e. electroencephalograms (EEG). The EEG signals can be used to characterize neuropsychological activity con-
nected to the PD and are reliable method for monitoring the PD  progression23. Numerous approaches can thus 
be used in order to help in detection and recognition of possible PD. To differentiate between the EEG signals of 
PD patients and healthy subject diverse machine learning strategies are often employed. Among those, machine 
learning for cognitive profiling in the PD was used  in24. Another  study25 used higher order spectral features to 
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separate between the EEG signals of PD patients and healthy subjects. Oh et al.26 employed a convolutional neural 
network, while a  study27 analyzed effects of using various neural network functions on the ability to differentiate 
between the EEG recordings of PD patients and healthy subjects. Another  study28 employed the EEG channels 
cross-correlation, while  in29 they employed wavelet transform for feature extraction and combined it with sup-
port vector machine and multilayerperceptron based classifier to detect the PD from EEG signals. To improve 
the detection of PD patients, EEG signals together with the electromyogram signals were also used in the  past30.

The studies which differentiate between the healthy subjects and patients with the PD based on the EEG signal 
analysis used different features of the signals. Although these studies have achieved good differentiation between 
the healthy subjects and patients with the PD there is still a pressing need to identify various features and EEG 
channels which could help in reliable diagnosis of the PD in a patient. In previous years different studies explored 
viability and proposed features extracted using diverse methods and electrode placements to facilitate robust 
PD detection. A  study31 explored various methods to select the optimal feature selection. Another  study32 used 
19 electrodes to detect brain activity in basal ganglia, while  study28 used cross-correlation of EEG channels to 
select pairs of channels and binary classifier to select the number of channels.

In this paper we propose and investigate use of two techniques, common spatial patterns (CSP) and Laplacian 
mask. We employed these techniques with the aim of deriving robust features enabling separation of EEG records 
belonging either to a group of healthy subject or a group of patients with the PD, subjected to an auditory task. 
Another aim of this study was to propose and investigate the use of the CSP technique to find the most informa-
tive channels within the EEG, reducing the number of EEG signals required for the classification.

Background. A  study33 classified EEGs of controls and PD patients on the basis of the habituation to audi-
tory events (Standard, Novelty, Target). The authors reported achieving the best accuracy when classifying the 
records of 82% when using around 20 features. So far this is the best accuracy achieved using this dataset. To 
match these results we used classical techniques for feature extraction, such as sample entropy, root mean square, 
median frequency and peak frequency. We divided frequency range in typical EEG bands (e.g. delta, theta, 
alpha, beta and gamma). Next, we calculated features for each record for different auditory task. Each feature 
was calculated as an average of the features extracted for each interval for a particular auditory task, yielding 
three numbers for each of the frequency bands for each feature for each channel of each record. This yielded over 
3500 features for each record. For the classification we selected several features which seemed most promising. 
The best classification accuracy was achieved using 10 features, which yielded classification accuracy of 90%. 
Although these results seem promising, there is a problem that in all likelihood the classifier was overfitted to 
the data. It seems, that more informative features are required, which could help in distinguishing between the 
EEG records of healthy subjects and patients with the PD. We investigated two techniques and employed them 
in a new way with the aim of determining the most informative EEG channels and deriving small set of features 
which would allow for robust separation of the two groups.

Methods
We used the publicly available EEG records, which were obtained in the scope of a study regarding the habitu-
ation to novel  events33. For that study, the University of New Mexico Office of the Institutional Review Board 
approved the study. All participants also provided written informed consent. All methods were performed in 
accordance with relevant guidelines and regulations.

Materials. For this study we used the EEG records, that were obtained in the scope of the study exploring 
differences in the habituation to auditory events between the patients with the PD and healthy  controls33. The 
records and other data pertaining to the records are available through the Predict repository. The records in the 
database contain 60 EEG channels across 0.1 to 100 Hz frequency range sampled at 500 Hz, with additional 
collected information for each of the patients (e.g. age, gender). The database consists of 75 EEG records of 50 
subjects (25 healthy and 25 PD patients). For each of the healthy subjects one EEG record exists in the database, 
while there are two EEG records for each of the PD patients. Both groups were asked to undergo the auditory 
oddball tasks, while the recording was taking place. Healthy subjects had to undergo these auditory oddball tasks 
once, while PD patients had to undergo these tasks twice, one week apart. During one of the takes of the tasks 
the PD patients were off their medications for the period of 15 h. One take consisted of several runs, where the 
subjects were exposed to different auditory sounds (designated as Standard, Novelty, Target), while the EEG scalp 
recordings were taken. There was no discernible difference in general data between the control subjects and PD 
patients. Altogether 9 female and 16 male patients diagnosed with the PD, and also 9 female and 16 male control 
subjects were included in the study. Average age of the patients with the PD was 69.98 years, while the average 
age of the control subjects was 69.32 years. The patients with the PD also underwent neuropsychological and 
questionnaire assessment.

Data processing. Artifacts due to eye blinking were removed following the Independent Component anal-
ysis. The EEG signals were then filtered using the two-way least-squares FIR band-pass filter. Previous  study33 
indicated that the most information allowing separation between the two groups (controls and PD patients) was 
contained primarily in low frequency (Delta) band. Due to this reason we decided to leave the lower frequency 
for this study at 0.1 Hz in order to remove only very low frequencies, and only vary the upper frequency of the 
band-pass filter. The signals of the EEG records were then band-pass filtered using several bands: 0.1–4 Hz, 
0.1–13 Hz, 0.1–20 Hz and 0.1–30 Hz. The EEG signals for each record were split into segments according to dif-
ferent auditory tasks (Standard, Novelty, Target). Each segment was 4 seconds long (2000 samples). The start of 
the task was centered in the middle of the given segment. From each of the segments we extracted intervals of 
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different lengths (e.g. 1000 ms, 500 ms and 250 ms), starting at different times after the start of the auditory task 
to identify the most informative part of the signal.

Next, we constructed the average interval containing 60 EEG channels for each group (controls and PD 
patients) and each auditory task. There are two possible ways: namely as an average of all average intervals, 
which were calculated for the records in the group; and as an average of all intervals in the group. To construct 
the average interval in the first way the average of all intervals belonging to a given auditory task for each record 
has to be constructed. The average intervals belonging to EEG records in a given group for a given task have to 
be averaged to obtain the average interval comprising of 60 channels. For the average interval constructed in the 
second way all intervals for all records in the given group for an auditory tasks have to be averaged. To construct 
average signal for this study we used the second approach.

Common spatial patterns. To obtain the optimal features of the EEG records of the two sets we employed 
the  CSP34. The CSP algorithm consists of several steps.

• First, the matrix E of M × N size is constructed, where M is number of EEG channels and N is the interval 
length in samples.

• In the second step, the covariance matrix C for the matrix E is calculated by multiplying matrix E with its 
transposed version and dividing the resulting matrix with the sum of diagonal values. The above procedure is 
performed for the two classes of EEG signals, and the resulting covariance matrices are summed to produce 
the composite covariance.

• In the next step, the whitening transformation is performed. For this transformation, first the eigenvectors and 
eigenvalues are calculated. Then the square root of the inverse of diagonal matrix of eigenvalues is multiplied 
with the matrix of eigenvectors to obtain the whitening transformation W.

• This is then used to transform matrices E for both classes, to obtain whitened EEG data matrices, which share 
common eigenvectors. Projecting the whitened EEG data on the first and last eigenvectors yields feature 
vectors which are optimal in the least squares sense. The obtained matrix W can then be used for mapping 
of EEG signals into component space.

For feature extraction we had to calculate the matrix W for signal mapping first. Since there are several records 
in each group (control and PD) and each record contains numerous intervals belonging to a given auditory task, 
we had to calculate average interval for each auditory task (Standard, Target or Novelty) and for the two groups 
(controls and PD patients). Average signals for a specific task and for a given group were summed and divided 
by the number of intervals:

where g indicates either control or PD group, M represents number of records of a given type (control or PD) 
in a set, Nk represents the number of intervals of a given type (Standard, Target or Novelty) for a k-th record, i 
represents channel number, j represents sample number in the selected interval, while ztot represents total number 
of intervals of a given type for the entire group of records: ztot =

∑M
k=1 Nk . Averaged signals for a given auditory 

task for the two groups were then used as an input into the CSP algorithm ( Eg = (ag (i, j)), i = 1..M, j = 1..N ). As 
the output of the algorithm we obtained the mapping matrix W, which extremizes variances of the two groups. 
Since there are several intervals for each auditory task, we calculated the mapping for a given record and task in 
two ways. We calculated average of all intervals for given auditory task in the record, which was then mapped 
into component space, and we also calculated mappings for each of the intervals and then averaged mappings to 
obtain mapping for the record and the task. To obtain the single value feature for each signal of the given record 
we calculated the logarithm of the variance of the given signal in the interval of the segment. Selected features 
were then used for the classification of records.

Besides the original version, various versions of the CSP algorithm are commonly used in brain computer 
interfaces to distinguish between the EEG signals from the subjects performing two distinctive  tasks35–38.

Laplacian mask. As another technique to extract features we used the Laplacian mask. This is a differential 
operator, and is extensively used in image processing and also in signal processing. For EEG processing, the 
computation of Laplacian mask consists of determining the central electrode and then subtracting quarter of the 
values of the neighboring electrodes:

where n indicates the sample number, r and c indicate relative row and column number (assuming that scalp 
electrodes are mapped onto a 2-D matrix), while d ∈ {1, 2} indicates neighboring channel (in this 2-D matrix, 
where d represents immediate neighbor if d = 1 , or next to immediate neighbor if d = 2 , in horizontal or verti-
cal direction).

The mapping for a given EEG record using the CSP was performed in two ways, due to numerous intervals 
for each auditory task. This was not required for the Laplacian mask for a given record, since calculating the 
Laplacian mask of the average interval yields the same result as averaging results of Laplacian mask for each 
interval. For the feature extraction we first averaged intervals belonging to a given auditory task using Eq. (1) 

(1)ag (i, j) =
1

ztot

M∑

k=1

Nk∑

l=1

sg ,k(i, j)

(2)y(r,c)(n) = x(r,c)(n)−
1

4
(x(r−d,c)(n)+ x(r,c−d)(n)+ x(r+d,c)(n)+ x(r,c+d)(n)),
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and then we used Eq. (2) to calculate values of the Laplacian mask for the entire averaged interval. Finally, all 
the calculated values in the interval of the segment for given auditory task were averaged to obtain a single value, 
which we used as a classification feature.

Classification. For the classification we extracted set of features for each record. The features could be 
derived in two ways, namely the average of the intervals for the auditory task to derive the feature could be 
employed or the features for each of the intervals could be obtained and then averaged to obtain the feature for 
the record. We used the first possibility. To perform the classification and to obtain the real world performance 
we divided the entire set into a learning and validation set. The division was performed before the start of the 
study and has not changed during the study. Learning set comprised of 60% of the records (15 records were from 
the patients with the PD and 15 from the controls), while validation set contained the remaining 40% of the 
records (12 from the patients with the PD and 12 from the control subjects). We used the learning set to train the 
classifiers, while the validation set was used to assess the classification performance.

We used different classifiers to find the one with the best possibility of separating the groups. We tested the 
Support Vector Machine using either the polynomial kernel or the radial basis function (RBF), the Bayes classifier 
and the Linear and Quadratic Discriminant Analysis (LDA and QDA respectively) classifiers.

For the classification we used features obtained using the CSP and the features obtained using the Laplacian 
mask. Although the CSP is used to separate the signals belonging to different tasks performed by the same subject 
(e.g. motor movement imagery), we decided to try instead to use this method to separate the signals belonging 
to subjects in the two groups (control and PD), which were subject to the same auditory stimulus (task). In this 
study the Standard task was used. To obtain features using the CSP we used the CSP method on the learning 
set to obtain the mapping matrix W, which was next used on the training set to extract features for each of the 
records used for learning. The obtained matrix W was then used on the validation set to extract the features for 
each of the records, which were then used for the classification.

To classify the records using the Laplacian mask or combination of masks we calculated average intervals 
for a selected task for each of the records in the learning set first and than extracted classification features for 
the records in the learning set, which were then used to train the classifiers. Next, we used Laplacian mask or a 
combination of masks to extract the features for the records in the validation set, which were then used for the 
classification.

Results
We used the learning set, which contained 60% of the database, to train the classifiers. These classifiers were then 
used on the validation set, containing remaining 40% of the database, to asses the expected performance in the 
real world. When using CSP usually features for first and last three components with extremized variances are 
calculated and used for the classification. To obtain the optimal results of classification we extracted and tested 
different combinations of components for feature extraction and different values of parameters. Components 
were selected from the first three components, which have maximized variance of the PD group and minimized 
variance of the control group (MxPMnC), and from the last three components, having minimized variance of 
the PD group and maximized variance of the control group (MnPMxC). We also tested different interval lengths, 
upper band frequencies of band-pass filter and classifiers. Figure 1 shows the results when using combinations of 
parameters used for feature extraction and classification. The best results were obtained using the SVM classifier 
with RBF kernel (SVMRBF ) when the upper band of the band-pass filter was set to 20 Hz, the interval length was 
500 ms and only the first two features, extracted from the second and the third CSP component with maximized 
variance for the PD group and minimized variance for the control group (MxPMnC1,2 ), were used. The clas-
sification accuracy on the validation set was 85% (sensitivity of 70% and specificity of 100%) for the Standard 
task, which improves on the classification accuracy reported  in33. Classification results using other combina-
tions of parameters were lower and did not exceed 75%. Generally slightly better overall results were obtained 
when using the 20 Hz upper band frequency of the band-pass filter and 500 ms interval for feature extraction. 
According to these results we can also see, that generally SVMRBF , Bayes and LDA classifiers performed better 
as Decision tree classifier.

Next, we investigated the ability of classifying the EEG records belonging to the two groups when using the 
features obtained using the Laplacian mask. First, we determined perspective channels for feature extraction. 
We calculated the average intervals for each of the tasks for the two groups (control and PD), which were used to 
obtain the matrix W for the two groups for different auditory tasks. We used the inverse of the first and the last 
three components from the obtained matrix W to identify the most informative channels. As the most informa-
tive electrodes we selected those electrodes, which exhibited substantial changes in close vicinity of the electrode. 
Figure 2 shows the obtained plots with maximized variances for PD and minimized for control groups (plots 
MxPMnC l  , l = 1, 2, 3 ), and minimized variances for PD and maximized for control groups (plots MnPMxC l  , 
l = 1, 2, 3 ). In Fig. 2 we see, that the values for a given channel in the extremized plots are not substantially differ-
ent for l-th component, with maximized variance of the PD group and minimized variance of the controls, and 
l-th component with minimized variance of the PD group and maximized variance of the controls (e.g. channel 
F3 shows larger difference only for plots MxPMnC3 and MnPMxC3 , but not for MxPMnC1 and MnPMxC1 , or 
MxPMnC2 and MnPMxC2 ). Despite that, we expected, that the contributions of neighboring channels when 
calculating Laplace mask for the records belonging to the groups would further help in separating the two groups 
by introducing, to various degrees, information from neighboring channels. Based on topological plots we identi-
fied several channels as a possible center of the Laplacian mask, which exhibited substantial variances in their 
neighborhood as can be observed in Fig. 2: F3, F Z , F4, FC3, FCZ , FC4, C3, and CPZ . We also included channel 
C4 to maintain the symmetry of the selected channels. Some channels had to be omitted due to the inability of 
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calculating Laplacian (i.e. not having all neighbors). We also calculated features using the large Laplacian mask 
where possible, where we skipped the immediate neighbors in all directions and instead took channels that were 
further from the center (d has value of 2 in Eq. 2).

We obtained better classification results when using the features calculated with the Laplacian mask as were 
those obtained using the CSP. We also tested how different parameters affect classification results, e.g. Laplacian 
mask position, using more than one Laplacian mask, changing the upper band frequency of the band-pass filter 
and varying length of the interval for feature extraction. We also tested different classifier. Using combination 
of different masks we managed to achieve classification accuracy of 90% on the validation set with various com-
binations of parameters. Table 1 shows combinations of different values of parameters with which the highest 
classification results were obtained. The results in Table 1 show, that the best separability was achieved using 
combination of several Laplacian masks. We can also see from the results in the Table 1, that when using three 
features, the sensitivity and specificity were balanced, while when using only two, sensitivity dropped, while 
specificity rose. Figure 3 shows results of classification when different values of parameters were used. Similarly 
as before, better overall results were obtained when using the higher upper band frequency of the band-pass filter 
(in this case 30 Hz). Selection of interval length for feature extraction also affected classification results, where 
overall slightly better results were obtained with the interval of the length of 500 ms. According to these results 
Bayes and LDA classifiers performed generally better as Decision tree and also SVMRBF classifiers. The most 
important role in the classification played the selection of channels for feature extraction. According to results, 
from the 8 selected informative channels, four are such, that in combination, offered very good separability 
between the groups. The most promising seems to be channel F Z . Promising channels are also channels F3, F4 
and C3, when using normal or large Laplacian mask. Several classifiers using channels F Z , F3 and F4 (different 
combinations of parameters interval length and upper band frequency of band pass filter) as well as several 
classifiers using electrodes F Z and C3 (different combinations of parameters) achieved classification accuracy of 
90%. Classification when using features obtained on other channels yielded lower classification accuracy, which 
was still at least 80% in several cases.

Figure 1.  Classification results of the validation set when different parameters for feature extraction and 
classification were used when using the CSP. Shown are results when the upper frequency of the band-pass filter 
was 4 Hz or 20 Hz, the length of interval was 250 ms or 500 ms, the classifier used was either SVMRBF , Bayes, 
Decision Tree or LDA, for different combinations of CSP components. On x-axes are plotted combinations 
of channels, where MxPMnC l  denotes selected components (l) with maximized variance for PD group and 
minimized variance for control group, while MnPMxC l  denotes selected components (l) with minimized 
variance for PD group and maximized variance for control group. For better visibility results for only selected 
values for upper band frequency and interval length are presented. Omitted are also the results obtained with 
SVM classifier with polynomial kernel and QDA classifier, since the results were similar to those obtained using 
the SVMRBF and LDA, respectively, although generally lower. Figure was created using Matlab 2020b (https:// 
www. mathw orks. com/ produ cts/ matlab. html).

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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Figure 2.  Topological plots of EEG channel contributions. In the top row are presented plots for the 
signals with maximized variance for the PD group and minimized variance for the control group (plots 
MxPMnCl , l = 1, 2, 3 ), while in the second row are plots for the signals with the minimized variance for the PD 
group and maximized variance for the control group (MnPMxCl , l = 1, 2, 3 ). For the calculation the interval 
of the length of 500 samples was used. Signals were band-pass filtered using the [0.1–20 Hz] filter. Figure was 
created using Matlab 2020b (https:// www. mathw orks. com/ produ cts/ matlab. html).

Table 1.  Classification results using validation set for different combinations of values. Shown are the best 
results when using interval length of 250 ms, 500 ms and 1000 ms, different Laplacian masks, upper frequency 
band of 4 Hz, 13 Hz, 20 Hz and 30 Hz, and several classifiers (Linear Discriminant Analysis (LDA), Quadratic 
Discriminant Analysis (QDA), Bayes and Support Vector Machine (SVM) with radial basis function (RBF)). 
Subscripted L in channel designations of Laplacian masks indicates large Laplacian mask.

Acc (%) Se (%) Sp (%) Int. len. (ms) Laplacian mask Frequency Classifier

90.0 90.0 90.0 1000 FZ , F3L , F4L 0.1–4,13,20,30 Hz Bayes

90.0 80.0 100.0 1000 FZ , C3L 0.1–30 Hz LDA

90.0 90.0 90.0 500 FZ , F3L , F4L 0.1–4,13,20,30 Hz Bayes

90.0 80.0 100.0 500 FZ , C3L 0.1–30 Hz LDA

90.0 90.0 90.0 250 FZ , F3L , F4L 0.1–4,13,20Hz Bayes

90.0 80.0 100.0 250 FZ , C3L 0.1–4 Hz SVMRBF

https://www.mathworks.com/products/matlab.html
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Discussion
Parkinson’s disease is a neurodegenerative disease for which no cure yet  exists39. But treatments  exist40, which 
can help alleviate and control the symptoms of the disease and maintain the quality of live. Early diagnosis of the 
disease can thus initiate early treatment, preferably even before the motor symptoms emerge, since by that time 
there is already a significant neurological damage. Proper and early treatment is important since it is supposed to 
be more effective in early stages of the disease and can significantly delay the need for additional antiparkinsonian 
 treatments41. Also non-pharmacological treatments can be performed more easily in early stages and might help 
in slowing the progression and improving quality of  life42.

In this paper we investigated use of different techniques to extract features from the EEG, which could help in 
separating EEGs belonging to PD patients from those belonging to healthy subjects before the motor symptoms 
emerge. The first technique, which we investigated, was the CSP technique. This technique is mainly used to 
separate EEGs of a person performing two distinct tasks as a means of implementing brain–computer interface. 
We used this technique in a different way, namely, we tried to separate the EEGs belonging to either a healthy 
subject or a PD patient performing the same task. The reasoning behind using this technique in this way is that 
the PD affects responses to a given task. Therefore, EEG signals of a subject performing a given task should be 
different for a PD patient as are for a healthy subject. Consequently, this method can be employed on EEG signals 
belonging to PD patients and to healthy controls performing the same task. Use of this technique then allows to 
differentiate between EEG signals of PD patients from those of healthy controls. This allows to obtain the trans-
formation for extracting features enabling separation between the EEG records belonging to either of the two 
groups. The difference is that the same task is performed by the subjects in one of the two groups instead of two 
tasks being performed by a given subject. To obtain the transformation the averages of signals when perform-
ing a given task has to be performed. This also makes the method more resilient to possible noises, which are 
attenuated, and might otherwise skew the results. The results indicate, that this technique can be used for this 
task, although selection of appropriate parameters is extremely important. With proper selection of parameters 
the classification accuracy was higher as was the classification accuracy of the authors of the  database33, that was 
used for this study. Despite good classification results, results also show, that adjustments of different parameters 
caused drop of classification performance.

The most important parameter appeared to be the selection of components in component space. Classifica-
tion using the features extracted from components with maximized variance of the PD group and minimized 
variance of the control group generally yielded higher accuracy as did classification using the features extracted 
from components with minimized variance of the PD group and maximized variance of the control group. On 
the other hand, despite having to select components in component space, this technique otherwise does not 

Figure 3.  Classification results of the validation set when different parameters for feature extraction and 
classification were used when using the Laplacian mask. Shown are results when the upper frequency of the 
band-pass filter was 4 Hz or 20 Hz, the length of interval was 250 ms or 500 ms, the classifier used was either 
SVMRBF , Bayes, Decision Tree or LDA, for different combinations of CSP components. On x-axes are plotted 
combinations of channels for positioning Laplacian mask, where L in subscript indicates large Laplacian mask. 
For better visibility results for only selected values for upper band frequency and interval length are presented. 
Results obtained with SVM classifier with polynomial kernel and QDA classifier are also omitted, since the 
results were similar to those obtained using the SVMRBF and LDA, respectively, although generally lower. Figure 
was created using Matlab 2020b (https:// www. mathw orks. com/ produ cts/ matlab. html).

https://www.mathworks.com/products/matlab.html
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require selecting the most informative channels. The selection of contributions of the most informative channels 
is already performed by the method itself, and allows good classification with only a limited feature set.

According to results, the interval length and the upper bound frequency also affect the classification results 
when CSP is used for feature extraction, although the influence is not as important as is component selection. 
Results show, that generally better performance is obtained using the 20 Hz upper band of the band-pass filter. 
Use of the 500 ms interval for feature extraction also yielded generally slightly better classification results, when 
the CSP method was used for feature extraction.

We also investigated the use of the Laplacian masks for feature extraction, where different masks and com-
binations were used for classification. For the selection of the most informative channels we used the CSP 
transformation (the matrix W), to observe contributions of different channels to extremized signals. The CSP 
method calculates the contributions of different channels, indicating, which channel contributes the most to a 
given extremized component. By observing contributions of the channels and their surroundings we identified 
several possible candidates for feature extraction using Laplace mask. We also tested selected values for different 
parameters and several combinations of identified channels to extract features and perform classification. The 
highest classification accuracy was 90% and was even higher as when using the CSP. This accuracy was obtained 
using different values of parameters and different combinations of selected channels, indicating that this method 
is relatively robust. Results indicate that more then just one channel (feature) is recommended, and also that the 
channel F Z should be among selected channels for feature extraction. Use of only one feature generally did not 
offer enough separability between the groups of records.

We used CSP technique to identify the most informative channels for feature extraction using the Laplacian 
mask. Results support our initial selection of channels for feature extraction, indicating, that CSP is also promis-
ing technique, when channel selection is required. Interestingly, using the CSP to identify the most promising 
channels, we initially did not include channel C4. We added this channel so that the channels were selected 
symmetrically on both parts of the head. Classification results using also this added channel C4 were generally 
lower. The selection of channels for feature extraction also supports results  in33, where the most informative 
features were predominantly in frontal area.

For the classification of the features extracted using Laplacian mask the best suited classifiers seem to be 
Bayesian classifier, followed by LDA, while Decision tree seems to be the least suited. The performance of the 
Bayes classifier was similar to that of the LDA but with balanced sensitivity and specificity.

Previous  study33 showed, that low frequency content is important and that higher frequency bands contain 
less relevant information. Our results support their finding, that the majority of information is contained in the 
low frequency area, but also show, that some important information, allowing separation between the groups, is 
also present in higher frequency bands. Depending on the interval length and selection of classifier, higher clas-
sification results were generally obtained when using also the higher frequencies, which can be also observed in 
Fig. 3 (e.g. solid lines generally above dashed lines, but not always, dotted lines generally above dash-dotted lines).

Two aspects, which can influence the classification performance are also length of the interval for feature 
extraction and the start of that interval. We did not present the results of classification when features were 
extracted using different start times of intervals, since we did not observe any significant changes in classifica-
tion performance. Possible reason is, that the start times were selected only after the initial response to auditory 
task has already diminished. Start of an interval was in each case on a more or less linear slope, which resulted 
in negligible overall influence on the classification performance. On the other hand, the length of the interval 
actually affected classification performance. With longer interval length for feature extraction the classification 
results were generally slightly better, which can be also observed in Fig. 3 (e.g. solid lines are generally above 
dotted lines, dashed lines are above dash-dotted lines). The reason might be that the signals, despite filtering, still 
contain some random noise, which can affect the classification. By using longer intervals for feature extraction 
such noises are more attenuated.

Conclusions
Diagnosis of Parkinson’s disease needs to be set in the  early stages of the disease. Waiting for motor symp-
toms to appear might be too late for timely treatment so other techniques are needed. Analysis of EEG signals 
offers inexpensive and non-invasive alternative. Numerous analysis approaches have been proposed in the past. 
In this paper we investigated use of the CSP method and Laplacian mask method for feature extraction to classify 
EEG records belonging to the groups of healthy controls and those belonging to PD patients. We have shown, 
that both methods can be used to extract features allowing to separate EEG records belonging to the two groups. 
The results show, that separation between the two groups might be possible with a relatively small set of features 
(two to three features) using either of the methods. We have also shown, that the CSP method can be used to 
perform selection of most informative channels. The results indicated that the most informative channel for 
classification using features extracted with Laplace is F Z , while when using the CSP, the method itself performs 
selection of channels. The classification accuracy on the validation set using features extracted using either of the 
techniques was quite high. Furthermore, only a few features were required for the classification, which avoids 
classifiers to be over-fitted to the training data.

The problem of separating EEG records from the two groups is not an easy one. We employed two known 
techniques in a new way to explore the possibility of using them for this task. Both techniques proved to be 
capable of delivering features allowing separating EEG records of subjects belonging to different groups.

Data availability
The dataset supporting the conclusions of this article is available in the Predict repository, http:// predi ct. cs. 
unm. edu/.

http://predict.cs.unm.edu/
http://predict.cs.unm.edu/
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