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Abstract: New modifiers (i.e., acrylic syrups; ASs) of epoxy-resin-based thermally curable structural
self-adhesive tapes (SATs) were prepared via a free radical bulk polymerization (FRBP) of n-butyl
acrylate, butyl methacrylate, glycidyl methacrylate, and hydroxybutyl acrylate. In the process, two
kinds of UV-photoinitiators (i.e., monoacylphosphine oxide/Omnirad TPO and bisacylphosphine
oxide/Omnirad 819) and various mixing speed of the monomers mixture (200–1000 rpm) were
applied. The TPO-based syrups exhibited a lower copolymers content (10–24 wt%), dynamic viscosity
(<0.1 Pa·s), molecular weights (Mn and Mw, and polydispersity (1.9–2.5) than these with Omnirad
819. Additionally, the higher mixing speed significantly reduced monomers conversion and viscosity
of ASs as well as molecular weights of the acrylate copolymers. These parameters influenced
the properties of thermally uncured (e.g., adhesion) and thermally cured SATs (shear strength of
aluminum/SAT/aluminum overlap joints). Better self-adhesive features were observed for SATs-TPO
(based on ASs with lower monomers conversion, Mn and Mw); however, a slightly higher shear
strength was noted for the thermally cured SAT-819 (ASs with higher monomers conversion, Mn

and Mw). An impact of polydispersity of the acrylate copolymers as well as crosslinking degree of
thermally cured SATs on the mechanical strength was also revealed.

Keywords: thermoset polymers; epoxyacrylate compositions; structural adhesives; photopolymer-
ization; aerospace

1. Introduction

Epoxy resins (ERs) are widely used in coatings, adhesives, fiber-reinforced composites,
electrical cast insulations, and other applications [1–3]; however, their high crosslinking
density leads to low-impact and crack-propagation resistance of the materials. Many at-
tempts have been made to improve these features, i.e., chemical and physical modification,
including the incorporation of solid polymers or inorganic micro-and nanoparticles [4–9]
as well as liquid (meth) acrylate monomers into uncured ERs. One of the first reports
on this subject referred to in situ UV radiation copolymerization processes of n-butyl
acrylate (BA) with glycidyl methacrylate (GMA) or monoethylene glycol dimethacrylate
in the presence of ER. The influence of the interaction between acrylic polymer domains
and an epoxy matrix (due to their chemical reactions or IPN structure creation) on in-
ternal stress reduction was proved [10]. Copolymers of butyl acrylate (BA) and glycidyl
methacrylate (GMA), prepared via an in situ polymerization process, were also tested as
impact modifiers of ERs [11]. Results showed that the copolymers improve the tough-
ness of the epoxy systems, regardless of a slight reduction of the tensile modulus and
glass transition temperature. Besides, triblock copolymers, i.e., poly(styrene-b-butadiene-b-
methylmethacrylate) and poly(methylmethacrylate-b-butylacrylate-b-methylmethacrylate)
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improve fracture toughness of the epoxy materials as well [12–14]. Acrylate copolymers
can be incorporated into ERs in the form of hybrid nanoparticles consisting of an inorganic
core (silica or aluminum oxide) and a reactive methacrylate-based shell. A UV/heat dual-
curable epoxy–acrylate adhesive containing the mentioned core-shell particles exhibits
outstanding water resistance [15]. Applications of epoxyacrylate copolymers (based on BA,
GMA, and 2-hydroxyethyl acrylate) prepared by a conventional radical polymerization
process in an organic solvent [16–19] or by bulk photopolymerization [20] are also known.
In the latter case, the acrylate-type modifier was used in the form of a prepolymer also
called acrylic syrup (i.e., a solution of the copolymer in the unreacted monomers). Incorpo-
ration of these acrylate-based modifiers allows the preparation of structural adhesives as
self-adhesive tapes (SATs) that have relatively high adhesion to bonded substrates (before
their thermal curing) and very high shear strength (after the process). This type of adhesive
is commonly used in the aviation industry [21–25]. Preparation of the structural adhesives
as thin films (based on epoxyacrylate copolymers obtained by a relatively new method, i.e.,
free radical bulk photopolymerization process (FRBP)) was first described in the literature
by the authors of this manuscript [20].

Physicochemical properties of the prepolymers (prepared via the FRBP method)
strongly depend on the process parameters such as UV dose, type and concentration of a
photoinitiator, and mixing speed. This technique—as the other methods of photopolymeriz-
ation—is characterized by high reaction rates and low energy costs. Moreover, it does not
require elevated temperature and can be realized in the absence of organic solvents [26–32].
Listed advantages defined photopolymerization as a pro-ecological process, especially
if cheap light-emitting diodes (LEDs) are used as a source of excitation light [33–38].
Nevertheless, the FRBP method is also subject to certain limitations. One of the main
drawbacks is the formation of a gel fraction. Due to the fact that this process is carried
out without solvents and the radical polymerization is a highly exo-energetic reaction, it
must be conducted under appropriate conditions (such as photoinitiator or irradiation
doses) to achieve a useful product. The preparation of a few different products from
acrylic syrups was presented in the literature; however, the FRBP process has not yet been
thoroughly explored. In detail, the influence of mixing speed on properties of acrylate
(co)polymers and related adhesives has not been investigated as well. It should be noted
that mixing speed was recognized as early as the 20th century as a crucial parameter of
bulk photopolymerization processes. In 1969, Yemin and Hill described the influence of
agitation on nonuniformly photoinitiated homopolymerization of methyl methacrylate
(MMA). It should be noted that they used no photoinitiator. They also reported that the rate
of MMA bulk photopolymerization increases with the increase in the speed of mixing [39].
Mendiratta et al. (1975) revealed that partial illumination of a reactor charge (styrene) (at
a relatively low mixing speed) causes the formation of high molecular weight polymer
chains in a shaded part of a reactor [40]. It is noteworthy that the above-mentioned papers
described one-monomer-type photopolymerization reactions (homopolymerization of
methyl methacrylate or styrene) based on benzoin or benzoin methyl ether as “sensitizers”
and the monomer conversion value never exceeded 2%.

The main aim of this study was to investigate the influence of the mixing speed
value applied during the preparation of acrylic syrups (ASs) on the selected mechanical
and thermal properties of epoxy-based SATs. The free radical bulk photopolymerization
process (FRBP) of various (meth)acrylates was realized using UV-LED lamps surrounding
the whole reactor and resulted in the formation of ASs with different solids content and
molecular weight of copolymers.

2. Materials and Methods
2.1. Materials

The following components were used for the preparation of the acrylic syrups (ASs): n-
butyl acrylate (BA), butyl methacrylate (BMA), 2-hydroxyethyl acrylate (HEA) (BASF, Lud-
wigshafen, Germany), and glycidyl methacrylate (GMA) (Dow Europe, Horgen, Germany).
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Acylphosphine oxides, i.e., bis(2,4,6-trimethylbenzoyl)-phenyl phosphine oxide (Omni-
rad 819, IGM Resins, Waalkwijk, The Netherlands), and 2,4,6-trimethylbenzoyl-diphenyl
phosphine oxide (Omnirad TPO; IGM Resins, Waalkwijk, The Netherlands) were used as
type I radical photoinitiators. Thermally curable double-sided SATs were compounded
using ASs, the Bisphenol A-based liquid epoxy resin with an epoxy equivalent weight of
202 g/equiv. and viscosity of 25 Pa·s (Epidian; Ciech Sarzyna, Nowa Sarzyna, Poland),
the Omnirad 127 photoinitiator (IGM Resins, Waalwijk, The Netherlands), 1,6-hexanediol
diacrylate (Laromer HDDA, BASF, Ludwigshafen, Germany), the epoxy-modified acrylic
resin (Laromer 9023; BASF, Ludwigshafen, Germany), the Lewis acid adduct (as a latent
curing agent) (Nacure Super Catalyst A218; Worleé Chemie, Hamburg, Germany), Byk
4510 as an adhesion promoter, and Byk 378 as a surface additive (Byk-Chemie, Wesel,
Germany).

2.2. Synthesis of Acrylic Syrups

ASs were prepared via the free radical bulk photopolymerization process of BA
(6 moles), BMA (2 moles), GMA (1 mole), and HEA (1 mole) under UV-LED irradiation and
using 0.01 mole of the photoinitiator. Chemical structures of the monomers, photoinitiators,
and synthesized copolymer are shown in Figure 1. The copolymerization process was
initialized at 20 ◦C and carried out for 20 min in a glass reactor (250 cm3) equipped with
a mechanical stirrer and a thermocouple, and in the presence of argon as an inert gas. A
mixture of the monomers (50 g) was introduced into the reactor and purged with argon for
20 min. As a UV light source, the UV-LED stripe (390 ± 5 nm; MEiSSA, Warsaw, Poland)
was used. The UV irradiation density (10 mW/cm2) was controlled inside the reactor by
means of the UV-radiometer SL2W (UV-Design, Brachttal, Germany). The composition of
monomers/photoinitiator systems used for the synthesis of ASs is presented in Table 1.
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Figure 1. Schematic chemical structures of the tested monomers, photoinitiators, and the prepared acrylic syrups (BA:
n-butyl acrylate, BMA: butyl methacrylate, GMA: glicydyl methacrylate, HEA: hydroxyethyl acrylate, O.819: Omnirad 819,
O.TPO: Omnirad TPO).
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Table 1. The composition of monomer/photoinitiator systems used for ASs preparation (at different
mixing speeds).

AS Symbol PI (0.01 mol%)
Mixing Speed

(rpm)
Monomers (mol%)

BA BMA GMA HEA

AS-TPO-200 Omnirad TPO
200

60.8 19.6 9.8 9.8
AS-819-200 Omnirad 819

AS-TPO-400 Omnirad TPO
400

AS-819-400 Omnirad 819

AS-TPO-600 Omnirad TPO
600

AS-819-600 Omnirad 819

60.8 19.6 9.8 9.8
AS-TPO-800 Omnirad TPO

800
AS-819-800 Omnirad 819

AS-TPO-1000 Omnirad TPO
1000

AS-819-1000 Omnirad 819
PI: photoinitiator; BA: n-butyl acrylate; BMA: butyl methacrylate; GMA: glycidyl methacrylate; HEA:
2-hydroxyethyl acrylate.

2.3. Characterization of Acrylic Syrups

The maximum temperature (the peak temperature; Tmax) of the FRBP process was
determined using an electronic thermometer equipped with a K-type thermocouple. Dy-
namic viscosity of ASs was measured at 23 ◦C by means of the DV-II Pro Extra viscometer
(spindle #6 or #7, 50 rpm; Brookfield, New York, NY, USA). Solids content (SC) of the
prepared syrups was determined using the MA 50/1.X2.IC.A moisture analyzer (Radwag,
Radom, Poland); samples (ca. 2 mg) were heated in aluminum pans at 105 ◦C for 4 h. The
SC parameter was calculated according to Equation (1),

SC =
m2

m1
· 100(wt%) (1)

where m1 is the initial weight of a sample snf m2 is the residual weight after an evaporation process.
Gel permeation chromatography (GPC) was used for determination of molecular

weights (Mn, Mw) and polydispersity (PDI) of the copolymers (the syrups were dried
at 140 ◦C for 4 h before the test in order to remove unreacted monomers); the GPC
apparatus contained the refractive index detector (Merck Lachrom RI L-7490), the pump
(Merck Hitachi Liquid Chromatography L-7100, Abingdon, UK), the interface unit (Merck
Hitachi Liquid Chromatography D-7000, Abingdon, UK), and the Shodex OHpak SB-
806M MQ column connected with the Shodex OHpak SB-G pre-column (Merck Hitachi
Liquid Chromatography L-7100, Abingdon, UK). The GPC tests were performed using the
polystyrene standards (Fluka, Germany and Polymer Standards Service, Mainz, Germany)
and tetrahydrofurane.

2.4. Preparation of Structural Self-Adhesive Tapes (SATs)

SATs were compounded using the epoxy resin (50 wt parts), the prepared ASs
(50 wt parts), the latent curing agent (1.5 wt part), the multifunctional monomers (i.e., the
epoxy-modified acrylic resin; 2 wt parts), the difunctional acrylate monomer (1 wt part),
the Omnirad 127 photoinitiator (3 wt parts), and the adhesion promoter (0.1 wt part).
The multifunctional monomers and photoinitiators were incorporated in order to increase
the crosslinking density of the UV-irradiated system. The preparation steps of SATs are
graphically presented in Figure 2.
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Figure 2. The preparation steps of the self-adhesive structural tapes (SATs).

The SATs components were mixed using a high-speed mechanical mixer (T10 Basic
Ultra-Turrax, IKA, Königswinter, Germany). The prepared mixtures were applied onto
a polyester foil (samples for self-adhesive tests) or a siliconized paper (other tests) and
UV-irradiated for 30 s (8 J/cm2) using the medium pressure mercury lamp (UV-ABC;
Hönle UV-Technology, Gräfelfing, Germany). The UV exposition was controlled with the
radiometer (Dynachem 500; Dynachem Corp., Westville, IL, USA). The thickness of the
prepared self-adhesive layers (i.e., the thermally uncured SATs) was ca. 120 µm.

2.5. Characterization of Thermally Uncured Structural Self-Adhesive Tapes (SATs)

Self-adhesive properties of the thermally uncured SATs were tested according to
Association des Fabricants Européens de RubansAuto-Adhésifs (AFERA) standards, i.e.,
AFERA 4001 (adhesion to a steel substrate), AFERA 4015 (tack), and AFERA 4012 (cohesion).
These parameters were evaluated using three samples of each adhesive tape by means
of the Z010 machine (Zwick/Roell, Ulm, Germany). Generally, adhesion is defined as a
force value required to remove a pressure-sensitive material from a stainless steel plate;
the process is realized at the angle of 180◦ at a removal speed of 300 mm/min. Tack is
characterized as a force value required for the separation of a stainless steel plate and an
adhesive tape applied under low pressure (contact time of 0.5 s). Cohesion (i.e., static shear
adhesion) describes the time needed to shear off an adhesive tape sample (under a load of
1 kg) from a defined steel surface.

Differential scanning calorimetry (DSC Q100, TA Instruments, New Castle, DE, USA)
was used for determination of the glass transition temperature (Tg) of SATs, enthalpy
of SAT curing processes (∆H), the onset temperature of the curing reactions (Ti), and
maximum temperature of the curing reaction (Tp). Samples (ca. 10 mg) were analyzed
using standard aluminum pans at the temperature from −80 to 350 ◦C (the heating rate of
10 ◦C/min). Two DSC measurements for each composition were carried out.

2.6. Preparation and Characterization of Aluminum Joints with Thermally Cured SATs

Aluminum–SAT–aluminum overlap joints (Al/SAT/Al) were prepared using the UV-
crosslinked SATs and degreased 2024 aluminum panels (100 × 25 × 1.6 mm3). The joints
were thermally cured at 170 ◦C for 60 min. Shear strength of the thermally cured Al/SAT/Al
overlap joints was measured at room temperature according to the ASTMD1002-10 stan-
dard (10 samples of each system) using the Z010 machine (Zwick/Roell, Ulm, Germany).
Additionally, aging tests were conducted according to the MMM-A-132B standard (shear



Polymers 2021, 13, 189 6 of 13

strength of the cured overlap joints was determined after their exposition at 82 ◦C for
10 days). The glass transition temperature of the cured SATs was determined using the
DSC method. Samples of the cured SATs (ca. 10 mg) were analyzed using standard
aluminum pans at the temperature from −80 to 350 ◦C (the heating rate of 10 ◦C/min).
Crosslinking degree (α) of the thermally cured SATs was calculated using the DSC data
according to Equation (2) [41],

α =

(
∆HT − ∆Hres

∆HT

)
(a.u.) (2)

where ∆HT is the total enthalpy of an SAT curing process (J/g) and ∆Hres is the enthalpy
of a post-curing process of the thermally cured SAT in an Al/SAT/Al joint.

3. Results
3.1. Properties of the Acrylic Syrups

Two groups of the acrylic syrups, i.e., syrups prepared with different photoinitiator
types (Omnirad TPO: monoacylphosphine oxide or Omnirad 819: bisacylphosphine oxide),
were tested. These photoinitiators were used due to their relatively high absorption
of the light emitted by the UV-LED lamps (the maximum absorption at 390 nm). Five
syntheses were carried out for each group (10 syrups) with different mixing speeds of the
reactor charge (200, 400, 600, 800, or 1000 rpm). Values of the selected physicochemical
parameters of the prepared ASs (i.e., viscosity, solids content, average molecular weights,
polydispersity) are presented in Table 2.

Table 2. Dynamic viscosity, solids content, average molecular weights, and polydispersity of the acrylic syrups.

AS Symbol Tmax (◦C) η (Pa·s) SC (wt%) Mn (g/mol) Mw (g/mol) PDI

AS-TPO-200 40 0.2 24 19,840 48,835 2.46
AS-TPO-400 38 0.1 21 17,955 37,570 2.09
AS-TPO-600 26 <0.1 10 12,530 23,020 1.84
AS-TPO-800 30 <0.1 12 13,580 26,545 1.95

AS-TPO-1000 31 <0.1 12 14,120 26,760 1.89
AS-819-200 100 gel 68 43,515 359,085 8.25
AS-819-400 51 13 49 28,670 103,285 3.60
AS-819-600 38 0.4 31 22,380 54,985 2.46
AS-819-800 42 1.2 37 24,865 63,370 2.55

AS-819-1000 39 0.7 34 22,700 55,090 2.43

Tmax-process temperature peak; η—viscosity; Mn—number-average molecular weight; Mw—weight-average molecular weight; PDI—
polydispersity index.

As can be seen, the mixing speed value (MS) of the reactor charge markedly affects
the properties of the syrups. Generally, an increment of MS causes a reduction in the
temperature peak value (Tmax) of the photopolymerization process (MS influences the
kinetics of the process). Probably, the recorded decrement of the reaction rate (lower
temperature) is caused by rapid radical extinction (reactions between two radicals resulting
in polymer chain termination) and limited formation of longer/larger macroradicals. It
can be confirmed by the measured viscosity of the prepared ASs, their solids content, and
the molecular weights and polydispersity (PDI) of the copolymers. As can be observed,
the solids content value decreases (for both product types AS-TPO and AS-819) with the
increase in mixing speed value. It should be mentioned that photolysis of the Omnirad 819
photoinitiator generates four different radicals, while the TPO photoinitiator creates only
two types of radicals (per one molecule) [42]. In this case, ASs prepared using Omnirad
819 are characterized by a higher viscosity, solids content, Mw, and Mn values than the
AS-TPO-type syrups. It was previously proved by the authors (considering NMR studies)
that a solids content value directly correlates with monomers conversion in ASs [20]. The
syrups based on TPO and prepared at the lowest agitation speed values (200 rpm or
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400 rpm) exhibited the highest monomers conversion (24% or 21%, respectively). Under
such conditions, the monomers conversion in AS-819 syrups was two-fold larger (68%
and 49%). It is noteworthy that the viscosity of the AS-819-200 system was extremely
high; the low MS value (200 rpm) revealed a high reactivity of the bisacylphosphine oxide
photoinitiator-based system (Tmax = 100 ◦C) and its gelling tendency. Additionally, it can
be seen that the MS increment (from 600 rpm to 1000 rpm) causes only slight changes of
viscosity, SC, molecular weights, and PDI of AS-819-type syrups. Nevertheless, it seems to
be interesting that all the tested ASs reached the lowest values of these parameters exactly
at MS = 600 rpm. Markedly, higher molecular weights (Mw and Mn) were measured at the
lower stirring speed values (200 rpm or 400 rpm) and for the Omnirad 819 photoinitiator.
Moreover, these systems exhibited the highest PDI values (8.25 at 200 rpm and 3.60 at
400 rpm). For the other samples, the PDI values were lower than 2.5 (<2 for the TPO-based
systems prepared at 600–1000 rpm). It should be noted that the AS-TPO and AS-819-type
syrups (MS = 600 rpm or higher) were characterized by very low viscosity (ca. 1 Pa·s or
less). The significant influence of these parameters on features of the SATs is presented in
further discussion.

3.2. Properties of the Thermally Uncured SATs

Structural self-adhesive tapes (SATs) were compounded using the Bisphenol A-type
epoxy resin (ER) and the prepared acrylic syrups. After the UV-crosslinking process, their
thermal properties were tested by the DSC method; the results are presented in Table 3.

Table 3. Thermal features of the UV-crosslinked structural self-adhesive tapes (SATs), the results from the differential
scanning calorimetry (DSC) tests, and the crosslinking degree of the thermally cured SATs.

SAT Symbol Tg (◦C) Ti (◦C) Tp (◦C) ∆H (J/g) α (a.u.) Tg * (◦C)

SAT-TPO-200 −11 114 193 211 0.78 46
SAT-TPO-400 −11 113 193 232 0.82 47
SAT-TPO-600 −11 114 192 231 0.90 51
SAT-TPO-800 −10 110 191 232 0.90 51
SAT-TPO-1000 −12 111 193 235 0.90 51

SAT-819-200 n.d. n.d. n.d. n.d. n.d. n.d.
SAT-819-400 −12 107 198 217 0.75 15
SAT-819-600 −12 116 196 224 0.78 29
SAT-819-800 −11 121 194 230 0.78 27
SAT-819-1000 −11 121 192 238 0.84 27

Tg—the glass transition temperature of uncured SATs; Ti—the onset temperature of the curing reactions; Tp—the maximum temperature of
the curing reaction; ∆H—enthalpy of the SAT curing process; α—the crosslinking degree of thermally cured SATs; Tg *—the glass transition
temperature for the thermally cured SATs; n.d.—no data.

As can be seen, the prepared SATs exhibit similar values of glass transition temper-
ature (Tg varies from −10 to −12 ◦C), and these values are not markedly affected by the
physicochemical properties of the applied ASs. Nevertheless, significant differences can be
observed during the thermal hardening processes of the tapes. Namely, SATs based on the
ASs with a higher content of unreacted monomers (a lower SC value) are characterized
by the wider and flatter curing peak and lower onset temperature value (Ti) (Figure 3). It
is especially visible for all the systems based on the AS-819 syrups exhibiting higher SC
values (31–68%). In the case of the AS-819-200 syrup (the highest solids content), the Ti
reached the relatively lowest value (107 ◦C), while the Ti for the AS-819-1000 system (the
lowest SC) was 121 ◦C. These variations of the SATs curing processes (consisting of cationic
polymerization of epoxy groups of the epoxy resin and the acrylate copolymers) can be
explained by the different content of linear copolymers (i.e., flexible chains of acrylate
copolymer prepared via the FRBP process) and crosslinked polyacrylate network structure
(created during the UV-irradiation process of SATs). The research shows that the thermal
hardening of SATs, i.e., the reaction of the epoxy groups is easier (a lower Ti) in the case of
the systems based on ASs with a higher solids content (a higher content of the mentioned
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linear copolymers than the UV-crosslinked products). Therefore, it is resulted from a lower
concentration of the initial polyacrylate network in SATs. In contrast, this effect was not
so markedly observed for the SAT-TPO samples (the similar Ti values: 110–114 ◦C) due
to the relatively high content of the UV-crosslinked components (the low SC value for the
AS-TPO syrups, i.e., <24%) and low molecular weights of the linear acrylate copolymers.
For these reasons, the initial temperature of the epoxy groups polymerization in the SATs-
TPO-type tapes was lower (ca. 112 ◦C) in relation to the SAT-819-800 and SAT-819-1000
systems (121 ◦C). Generally, it can be concluded that SAT-TPO materials contain more UV-
crosslinked components (a denser polyacrylate network) than SATs-819. This phenomenon
has a significant impact on the other parameters of SATs. Values of the temperature peak
(Tp) of the epoxy groups polymerization process were similar for all the SATs-TPO samples
(191–193 ◦C) and slightly varied for SATs-819-type materials (192–198 ◦C). On the other
hand, the values of this process enthalpy (∆H) were higher for the SATs-TPO and SATs-819
systems based on the syrups with lowered SC parameter, i.e., the ∆H value increased with
increasing content of the UV-crosslinked polyacrylate networks).
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Figure 3. Differential scanning calorimetry (DSC) thermographs for the uncured (a) SATs-TPO and
(b) SATs-819 tapes.

Self-adhesive features of the UV-crosslinked SATs samples (i.e., adhesion to steel, tack,
and cohesion) were tested before their thermal curing as well. Generally, it can be claimed
that these properties depend on SC, the average molecular weights, and polydispersity
of the acrylic syrups incorporated into SATs (while the latter parameters are affected
by the mixing speed value of the reactor charge during the ASs preparation process).
As can be seen, the adhesion values of SATs are relatively low (2.0–3.9 N/25 mm for
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SATs-TPO and 0.6–1.0 N/25 mm for SATs-819; Figure 4) and they are similar to the tack
values; however, the SATs-TPO-type samples exhibited relatively better adhesion and
tack. That phenomenon can be explained by the structure of SATs. The tested tapes were
compounded using ca. 50 wt% of the acrylic syrup (a mixture of epoxyacrylate copolymers
and unreacted monomers); the rest was the epoxy resin and the auxiliary additives. During
the UV-crosslinking process, the liquid SATs compositions formed the solid double-sided
pressure-sensitive films via radical photopolymerization of the acrylic compounds with
double bonds. Finally, the intact epoxy resin is trapped in the acrylic matrix consisting of
the epoxyacrylate copolymers and created epoxyacrylate network. In the authors’ opinion,
the self-adhesive properties mainly depend on the content of linear acrylate copolymers
(formed in the free radical bulk polymerization (FRBP) process) in the applied syrup and
especially on their molecular weights (as it was presented in [20]); it is known that end
groups of (co)polymers act as dipoles and can interact with surface groups of steel (during
the adhesion or tack tests). Thus, all the SAT samples based on the AS-TPO syrups (Mn in
the range of 19,840–14,120 g/mol) reached higher values of these self-adhesive features
than the SAT-819-type samples (28,670–22,700 g/mol). Additionally, the higher Mn (or Mw)
of the selected syrup type, the better the adhesion and tack of prepared SATs. On the other
hand, the SATs-819 systems exhibited much better cohesion (2559–4722 min; Figure 4c)
than the SATs-TPO tapes. In this case, the mentioned parameter depends on ASs features
as well. It seems that the cohesion of SATs directly depends on linear copolymer content
(and its molecular weight) in the applied syrup (Table 2).
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Figure 4. Self-adhesive features of the selected UV-crosslinked (thermally uncured) SATs: (a) adhesion to steel, (b) tack, and
(c) cohesion at 20 ◦C.
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The tested SATs exhibited limited adhesion and tack; however, the values of these pa-
rameters are enough to apply them as pressure-sensitive adhesives in aluminum-aluminum
overlap joints. It should be mentioned that SATs reach their final mechanical properties
after their thermal curing.

3.3. Properties of the Thermally Cured SATs and the Al/SAT/Al Joints

The UV-crosslinked SATs were applied between aluminum panels and thermally
cured at 170 ◦C for 60 min. Additionally, a few of the prepared Al/SAT/Al joints were
thermally aged. Shear strength (τ) values for the joints (before and after thermal aging test)
are presented in Figure 5.
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As can be seen, the best shear strength (before the aging test) was recorded for the
joint with SAT-819-800 (17.6 MPa), while the lowest value of this parameter was noted for
SAT-819-400 (15.5 MPa). It should be noted that the latter system was based on the syrup
characterized by the highest PDI value (3.6) in relation to the other samples; the thermally
cured SAT-819-400 joint exhibited the lowest α value (0.75 a.u), as well. In the case of
SATs-TPO-based joints, the τ values were quite similar for all the samples (16.5–17.1 MPa).
It is known that the shear strength of structural adhesives depends on their crosslinking
degree and an optimal range of the latter parameter value is often observed [20]. Figure 6a
shows the relationship between the shear strength of Al/SAT/Al joints and the crosslinking
degree of the applied SAT sample. The highest τ values for the tested joints were noted at
crosslinking degree of ca. 0.78 a.u. or higher (the SATs-819-based systems) and 0.82–0.84 a.u.
(the SATs-TPO-type samples). It was also found (Figure 6b) that the crosslinking degree
of SATs increases with increasing mixing speed value (or with increasing content of the
unreacted monomers, which finally participate in the UV-crosslinking process and increase
the crosslinking density of SATs). It can be generally concluded that the higher content and
molecular weights of the acrylate copolymer in the syrups (prepared via the FRBP method)
positively affect the shear strength of thermally cured Al/SAT/Al joints. It is noteworthy
that SATs based on syrups with lower SC values have a greater tendency to flow out from
Al/SAT/Al joints during a thermal curing process (exemplary photos are presented in
Figure 7).
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Additional mechanical measurements (after the aging test) revealed a larger decrement
of the shear strength of the SATs-TPO-based joints (the decrement of 24–32%) in relation to
the joints with SATs-819 (reduction by 16–24%). Probably, it was affected by the increased
crosslinking degree of the former SATs during the long-lasting thermal aging process. The
thermally cured SATs-TPO (the unaged systems) exhibited a markedly higher value of this
parameter (i.e., 0.78–0.90 a.u.) than SATs-819 (0.75–0.84 a.u.; Table 3). It was presented in
references [16,20] that too high α value may deteriorate the shear strength of Al/SAT/Al
overlap joints.

4. Conclusions

In this paper, a new preparation method (i.e., free radical bulk polymerization; FRBP)
of epoxyacrylate components (acrylic syrups, ASs) for epoxy-based structural self-adhesive
tapes (SATs) was presented. The influence of the applied photoinitiators (monoacylphos-
phine oxide/Omnirad TPO and bisacylphosphine oxide/Omnirad 819) and the mixing
speed of a reactor charge (during the FRBP process) on selected features of ASs and SATs
were studied.

It can be claimed that an increment of mixing speed causes a reduction of viscosity
and solids content (monomers conversion) in ASs as well as molecular weights and PDI of
the acrylate copolymers. Nevertheless, this relation was not significantly observed at the
mixing speed higher than 600 rpm. The mentioned features influence selected parameters
of SATs (prepared via UV-photopolymerization/crosslinking of mixtures consisting of ASs,
an epoxy resin, multifunctional acrylate monomers, a photoinitiator, and a latent curing
agent of the epoxy components). Conversion of the acrylate monomers in ASs generally
represents the content of linear acrylate copolymers in SATs. It was revealed that SATs-TPO
systems (based on ASs with monomers conversion lower than 24%) contain more dense
polyacrylate networks because larger amounts of unreacted monomers are involved in a
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polymeric phase (based on multifunctional acrylate monomers) created during the UV-
crosslinking process of SATs. It was also found that the cationic polymerization process
(i.e., the thermal curing of UV-crosslinked SATs) occurs more easily in systems with a
higher content of the linear polyacrylates (samples based on ASs with higher monomers
conversion values; SATs-819) than in the presence of a dense polyacrylate network (SATs-
TPO). Additionally, adhesion and tack of SATs depend on monomers conversion as well as
molecular weights of the linear acrylate copolymers in the applied ASs; higher values of
these self-adhesive features were observed at low monomers conversion values (<24%) and
molecular weights (SATs-TPO). In the case of the thermally cured SATs (i.e., Al/SAT/Al
joints), the lowest shear strength value was recorded for SAT-819-400 (15.5 MPa) based on
the syrup with the highest polydispersity (3.6) while the highest value of this mechanical
parameter was observed for SAT-819-800 (17.6 MPa). Thermally cured SATs-TPO systems
were characterized by higher crosslinking densities (0.78–0.9 a.u.) and higher glass tran-
sition temperatures (46–51 ◦C) than SATs-819 (0.75–0.84 a.u. and 15–27 ◦C, respectively).
These features increased with the increase in the mixing speed value (and with decreasing
monomer conversion). Additionally, it was observed that ASs with low monomers con-
version create SATs, which flowed out from the overlap Al/SAT/Al joints during their
thermal hardening process. It may negatively affect the mechanical strength and aesthetics
of the SAT-based overlap joints.
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