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Ecosystem services (ES) approaches to biodiversity conservation are curren-

tly high on the ecological research and policy agendas. However, despite a

wealth of studies into biodiversity’s role in maintaining ES (B–ES relationships)

across landscapes, we still lack generalities in the nature and strengths of these

linkages. Reasons for this are manifold, but can largely be attributed to (i) a lack

of adherence to definitions and thus a confusion between final ES and the

ecosystem functions (EFs) underpinning them, (ii) a focus on uninformative

biodiversity indices and singular hypotheses and (iii) top-down analyses

across large spatial scales and overlooking of context-dependency. The bio-

diversity–ecosystem functioning (B–EF) field provides an alternate context

for examining biodiversity’s mechanistic role in shaping ES, focusing on

species’ characteristics that may drive EFs via multiple mechanisms across con-

texts. Despite acknowledgements of a need for B–ES research to look towards

underlying B–EF linkages, the connections between these areas of research

remains weak. With this review, we pull together recent B–EF findings to

identify key areas for future developments in B–ES research. We highlight a

means by which B–ES research may begin to identify how and when multiple

underlying B–EF relationships may scale to final ES delivery and trade-offs.
1. Introduction
In recent decades, conservation science has seen a gradual shift of focus away from

traditional ‘fortress conservation’ towards balancing the requirements of both bio-

diversity and humans [1]. The fundamental means by which people benefit from

the world’s ecosystems is through the goods and services that their healthy func-

tioning provides [2]. By directly producing goods and facilitating ecosystem

functions (EFs; [3,4]), biodiversity may be a key driver of ecosystem services (ES)

[5,6]. Areas of high importance for biodiversity conservation and ES delivery can

sometimes be identified [7,8], meaning that there may be clear co-management

opportunities [9,10]. This has led to increasing policy-level emphasis on whole-

ecosystem approaches to biodiversity conservation [11]. However, significant

debate remains over the relevance of ES approaches to biodiversity conservation

[12,13], especially so as our understanding of biodiversity and ES linkages (B–ES

relationships) remains incomplete [5]. A linear positive association between biodi-

versity and delivery of individual ES is indeed not always manifest. B–ES

relationships have been found to (i) take varying forms and shapes (e.g. nonlinear

relationships; [14–16]), (ii) display mixed relationships [5] or (iii) be altogether non-

existent [5,6]. The existence of mixed B–ES relationships for individual ES high-

lights the great variability in the influence of biodiversity on a given ES in a

given context [5,6]. Moreover, variation in individual B–ES relationships can

ultimately result in trade-offs, as well as synergies, between multiple ES [5,15–20].

So why do we see such variability in B–ES relationships? B–ES research has his-

torically taken a rather top-down, correlative approach, with the underlying

ecological mechanisms being mostly ignored [18,21]. As a result, and despite the

ever-increasing body of the B–ES literature, we are still a long way from
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Figure 1. Schematic of the complex linkages (‘cascade’ [25]) involved in final ES delivery. The examples of ES, underlying ecosystem functions (EFs; also termed
‘intermediate services’ [24]), abiotic and societal factors represent a non-exhaustive selection.
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understanding the mechanisms shaping B–ES relationships

across landscapes. Some of the means by which we may begin

to deepen our understanding of biodiversity’s mechanistic

influence on ES lie within the theory, recent findings and metho-

dologies of the biodiversity–ecosystem functioning (B–EF)

literature. However, the B–ES and B–EF fields are increasingly

acknowledged to be detached [5], rarely working together and

generally being conducted in different contexts and at com-

pletely different scales. Lessons from the wealth of emerging

mechanistic B–EF research are not currentlyextended to examin-

ing B–ES relationships. We may thus be looking at too simplistic

a picture of B–ES relationships and overlooking opportunities to

link biodiversity and ES delivery via full functional pathways.

This review aims to bridge this gap, drawing from recent

findings and theories from the B–EF literature to develop a

greater mechanistic understanding of B–ES relationships,

working from the bottom-up and extending linkages between

biodiversity and the EFs underlying individual ES to multiple

ES delivery across landscapes. We begin by highlighting key

areas for concern in current understanding of B–ES; we then

discuss lessons to be learned from the B–EF field; we finally

introduce a hierarchical research framework based on combin-

ing recent theoretical advances in both fields to enhance the

mechanistic basis of current B–ES understanding.
2. The role of biodiversity in ES delivery:
key areas for concern

(a) Inappropriate indices and proxies
(i) ES
The B–ES field has historically seen much ambiguity in ES

definition [4,22–24]. Rigorous re-characterization has now

resulted in clear separation of ‘intermediate services’ (in rea-

lity EFs and referred to as such hereafter) that underpin ‘final

ES’ delivery (figure 1; [24,25]). Observational B–ES research

has, however, been slow to adopt this classification [4,24],
the result being use of misinformed and inconsistent ES

proxies [26–28]. Underlying EFs are routinely measured

(e.g. soil retention, net primary productivity; NPP), under

the assumption that such proxies will hold to single [8,29]

or multiple final ES [30] (see also [27]). A recent study has

revealed that this latter assumption is not always plausible,

with some ES (pest control and pollination) diminished in

highly productive cropland areas [31]. Use of partial EF proxies

means that complete B–ES linkages are rarely explored, redu-

cing the mechanistic and predictive capacity of B–ES research

[21]. For example, ecosystem carbon sequestration and storage

ES relies upon, e.g. plant biomass production, nutrient cycling,

soil turnover and water retention EFs, and these may have

complex interconnections and independent linkages with bio-

diversity (e.g. [29,32]). Furthermore, there has been much

variability in the indices used to quantify final ES ([33];

i.e. the field has yet to reach consensus on a standard set of

proxies [34]); this is currently limiting our ability to generalize

from observed B–ES relationships.

(ii) Biodiversity
Inherent to the Convention on Biological Diversity’s defi-

nition is that biodiversity is multifaceted and a complex

beast to measure (box 1; [35]). Strict B–ES research relies on

simplistic, species-level indices of biodiversity, e.g. species

richness (box 1; [6,27]; but see [43]), despite acknowledgements

of their limited relevance [30]. There is indeed little theoretical

basis that increasing units of species should always result

in increased ES delivery [3]. Biodiversity is fundamentally

composed of three axes (taxonomic, structural (community

complexity) and functional diversity), and species richness

captures little of this overall information [35]. Species identity

and relative abundance may instead assert key controls on

EFs and final ES [44–46]. Use of simplistic indices means

B–ES research currently lacks evaluation of how organisms

contribute to final ES delivery.

B–ES research has frequently indexed biodiversity using

policy- over ecologically-relevant measures: threatened species



Box 1. Biodiversity: definitions and selected taxonomic and functional indices.

CBD definition of biodiversity

The variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems

and the ecological complexes of which they are part; this includes diversity within species, between species and of

ecosystems.

Taxonomic diversity

Species richness. The number of species in a community or taxonomic group in a specific area (Hill Numbers of ‘True Diver-

sity’ N0; [36]).

Alpha diversity. Combined diversity measures describing species richness and evenness of a community (Hill Numbers 1N,
2N . . . InfN; [36]).

Species evenness. The relative abundance structure of species in a community (Hill Numbers evenness ¼ 2N/1N; [36]).

Gamma diversity. The total diversity of species across a landscape (e.g. Hill Numbers 1Ng ¼
1Na � 1Nb, 2Ng ¼

2Na þ 2Nb;

[36,37]).

Beta diversity. The diversity of species among communities; the difference in composition and diversity between communities

occupying different areas across a landscape (e.g. Hill Numbers 1Nb ¼
1Ng/1Na, 2Nb ¼

2Ng 2 2Na; [36,37]).

Functional diversity

Functional diversity comprises three major components: richness, evenness and divergence [38].

Functional richness. A measure of the functional (niche) space filled by a community, e.g. single-trait: FRci [38]; multi-trait:

FRic [39].

Functional evenness. A measure of the regularity of functional trait distribution in trait space according to abundances, e.g.

single-trait: Evar [40]; multi-trait: FEve [39].

Functional divergence. A measure of variance in functional traits in trait space, maximized when the most abundant species are

highly divergent, e.g. single-trait: FDvar [38]; multi-trait: FDiv [39].

Functional dispersion. An index combining functional richness and functional divergence, e.g. single- or multi-trait: Rao’s Q

[41]; multi-trait: FDis [42].

Community-weighted mean functional traits. A measure of dominant functional traits; the mean functional trait value for a given

trait within a community, weighted by abundance.
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richness [47,48] or biodiversity priority areas [15]. While clearly

important in identifying existing spatial congruence in conser-

vation priorities, findings from such studies serve only to

describe spatial patterns in incomplete B–ES linkages. The eco-

logical mechanisms driving B–ES relationships are controlled

by the whole suite of organisms in a given area [43,49–51].

Excepting for some specific ES (e.g. pollination; [14,52,53]),

B–ES studies have then focused on groups unlikely to produce

a direct mechanistic influence, linking e.g. diversity of mam-

mals to carbon storage or trees to game production [16,48]. EF

is controlled by intricate trophic interactions, yet much B–ES

research ignores this inherent complexity (but see [49,54,55]).

(b) The importance of scale
B–ES research has largely involved spatially correlative

studies across extremely large management-relevant scales

(e.g. [15,30,47,48]). Such studies have generated a wealth of

knowledge on broad B–ES linkages and ES valuation [5]. How-

ever, working at such extensive spatial scales incurs substantial

information loss regarding the mechanisms underpinning

B–ES relationships, as key EFs promoted by organisms operate

at much finer scales [14]. Common landcover-based B–ES

studies [7,9], in addition to providing poor fits to actual ES

data [19,26,56], do not enable examination of B–ES relation-

ships within ecosystems. For example, while mangrove forest

areal loss produces important trade-offs between coastal pro-

tection and shrimp farming [57], little is known about the

role mangrove biodiversity itself plays in this relationship,

despite it strongly influencing functionality [58]. Findings

from B–ES relationships across multiple ecosystem types (but
see [16,53]) may moreover be obscured by the type and diver-

sity of ecosystems present. For example, carbon storage across

the UK is greatest in areas of intermediate biodiversity, due to

strong abiotic controls on carbon cycling in temperate uplands

[29]. Use of coarse biodiversity data over large areas can then

confound landscape-level biodiversity phenomena (box 1;

[26]), weakening our understanding of local B–ES relation-

ships by confusing spatial and temporal complementarity

effects of beta and gamma diversity ([59]; box 1).

3. Lessons to be learned from B – EF research
(a) Lesson 1: moving from species to functional traits
In contrast to B–ES research, the B–EF field has seen a greater

focus on species’ characteristics [3,44,46,51,60]. Increasing evi-

dence now shows that the key means by which species

influence EFs is through their functional traits (phenotypic

attributes that direct niche exploitation; [44]), which may not

always be well described by often-used measures of phylo-

genetic diversity [61]. While functional diversity (box 1) may

theoretically increase with species richness in some contexts

[3], taxonomic biodiversity measures (particularly species

richness) have been found to explain little variance in EFs

compared with functional trait indices [45].

(b) Lesson 2: considering the existence of multiple
mechanisms

In comparison to the B–ES field, which has focused almost

exclusively on the hypothesis that biodiversity drives ES (but
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Figure 2. Representation of observed static species richness-based B – EF
relationships. B – EF relationships can vary from linear to rapidly saturating,
where high levels of ecosystem functioning occurs in the presence of few
species [60,62]. Commonly observed saturating B – EF relationships show
complementarity between species at low species richness (complementarity
in niche partitioning resulting in increased overall resource use) driving
increased functionality, while at higher levels of species richness many species
may exhibit redundancy [60,62 – 64]. Note that static saturating curves do not
imply actual functional redundancy in some species; temporal heterogeneity
increases the insurance value of biodiversity through time [63 – 65].
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see [14,52,53]), B–EF research has explored multiple hypotheses

for how organisms promote EFs: (i) the diversity hypothesis:

mechanisms including niche complementarity and insurance

(compensatory dynamics through space and time) (figure 2)

and (ii) the mass ratio hypothesis (functional traits of dominant

species chiefly promote EFs) [3,51,66,67]. Experimental B–EF

research focusing on species richness has provided broad sup-

port for the diversity hypothesis [5,60,63,65–68]. Trait-based

research has, however, shown that many EFs are driven predo-

minantly by mass ratio (e.g. NPP, decomposition, nitrification,

carbon content; [43,45,46,69–72]). Yet high functional diversity

alongside dominant traits may additionally promote EFs

[44,69,71,73,74]; especially so by providing stability [63,65].

Greater levels of biodiversity may be required to support mul-

tiple EFs simultaneously [63,68,75–77], as the functional traits

and importance of complementarity may vary for different

EFs ([45]; but see [51]). Given the high functional distinctiveness

of rare species, biodiversity may thus remain paramount to

maintaining multifunctionality in space and time [78].

(c) Lesson 3: shifting from regional to within-ecosystem
scales

In complete contrast to B–ES research, B–EF studies have routi-

nely been conducted in controlled experimental settings at small

scales [60]. Observational B–EF investigation is becoming

increasingly common, and important studies now corroborate

experimental findings within real systems (e.g. [79–82]; but see

[83–85]). Data collection at small (i.e. plot-based) scales in both

experimental and observational studies means B–EF research

is conducted at meaningful extents across which biodiversity’s

linkages to EFs mechanistically operate, while simultaneously

enabling comparisons across large areas (e.g. [80,81,84]). Small

scales of data collection have importantly meant that B–EF

research examines biodiversity’s role in promoting EFs within
specific ecosystem types (e.g. [80,81]). This focus on within-

ecosystem type studies is crucial, as the nature of B–EF linkages,

and the final ES they underpin (e.g. in converted versus natural

systems; figure 1), can be highly context-dependent.
(d) Lesson 4: relationships are context-dependent
In addition to biodiversity effects per se, EFs are driven by other

interacting drivers: abiotic and climatic controls [44,63,80], dis-

turbance [86,87] and management [88] (figure 1). The interplay

between abiotic drivers, biodiversity and productivity is a key

control on multifunctionality [30,44,64]. Both the number and

identity of species promoting EFs differs according to the

environmental context (e.g. CO2 and N concentrations; [63]),

disturbance history [86] and ecosystem management [88],

thus both the strength and form of B–EF relationships may

vary strongly across contexts. Outside of experimental settings,

B–EF relationships can be stronger because of a greater fre-

quency of complementary species interactions [82,84,85]; or

distinct dominance structures can enhance dominant species’

influence in other systems [53]. It has been hypothesized that

beyond the lower end of a species richness gradient, the main

driver of EFs is community functional structure [70]. If the

static influence of biodiversity on EFs can be captured by satur-

ating positive curves [63,65,82], less productive, species-poor

systems ([89,90]; e.g. deserts, mangroves) may display com-

paratively low redundancy, being consistently towards the

left-hand side of these relationships (figure 2). However,

while positive B–EF relationships have been observed in

many species-poor systems (global drylands [81], boreal over

temperate forests [80], early- over late-successional forests

([87]; but see [91])), very strong positive relationships have

also been found in highly species-rich systems [84,85]. Further-

more, biodiversity remains the primary determinant of some

EFs globally (e.g. decomposition; [92]).
4. Towards a more integrated, mechanistic
understanding of B – ES relationships

We are beginning to acquire a good understanding of diver-

sity and dominance-based functional B–EF relationships in

given contexts [44,46,70]. However, substantial research is

required if we are to gain a more mechanistic and predictive

understanding of individual and multiple B–EF and B–ES

relationships. Efforts must now be made to (i) quantify how

multiple B–EF relationships scale up to final ES delivery

and (ii) elucidate the pathway of EF-generated trade-offs

between final ES across landscapes. Here we outline a step-

by-step research framework through which these connections

may begin to be explored.

(a) Understanding final ES as a product of multiple EFs
An important redefinition of biodiversity’s influence on ES

has recently been outlined as a ‘multi-layered relationship’

[4]. Some final ES are delivered by organisms directly: a cer-

tain group of organisms acting as a good or carrying out a

final ES (e.g. wild crop, fruit or game production, agricultural

pollination) [4]. For such final ES, an important avenue of

B–ES research explicitly links functional trait efficiency and

abundance to ES delivery (‘ecosystem service providers’

[14,52]). However, biodiversity across multiple trophic

levels facilitates many final regulating ES via the multitude

of key EFs underpinning them (table 1; [4,27,43,64]). This

full pathway of EF effects is not considered in B–ES research

(but see [20,93]). ES research is unintentionally moving

towards such a goal by examining ES ‘bundles’: identification

of groups of ES commonly positively associated in space
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Box 2. A framework for establishing EF portfolios.
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[15,19,94]. Synergies within ES bundles are a result of positive

connections with similar underlying EFs. For example, the

‘forest services’ (carbon storage, timber, air cleansing, erosion

control, recreation) and ‘soil and water services’ (water pro-

vision, soil carbon, infiltration) bundles across Europe [15]

are positively underpinned by many similar EFs (table 1).

However, we still lack quantitative understanding of inter-

linkages between multiple underlying EFs, and how separate

biodiversity effects may mediate these interrelationships [20].

Looking to underpinning EFs is an essential next step for

B–ES research if we are to ascertain biodiversity’s mechanistic

role. High levels of biodiversity may be required to drive those

final ES underpinned by multiple EFs in a given context as

(i) EFs positively promoting final ES are not always positively

correlated [32,95], (ii) different EFs may contribute both posi-

tively and negatively [20,27], (iii) some final ES are the sum

of contributions from multiple ecosystem compartments

(e.g. total ecosystem carbon storage; [27]), (iv) different EFs

are predominantly promoted by different groups of organisms

(trophic or functional groups; table 1; [14]), and (v) the main

mechanisms by which organisms promote different EFs may

vary (diversity versus dominance; [44,45]).
(b) Characterizing which EFs underpin ES delivery
A major future area for B–ES research lies in quantifying those

key EFs contributing to final ES [5,44]. The B–EF field has seen
much research into ecosystem multifunctionality, revealing the

greater role of biodiversity in supporting multiple over single

EFs [63,68,75–77,81]. Frameworks for quantifying ecosystem

multifunctionality are fast-developing [96], and may enable

exploration of B–EF linkages for groups of EFs underpinning

specific final ES. However, inference from multifunctionality

indices to identify key EFs underpinning final ES delivery is

limited, especially so as multifunctionality B–EF linkages do

not always reflect the strength, direction and mechanisms

of all component individual B–EF relationships [97]. At the

other end of the spectrum, ES research estimates ES via under-

lying EFs using ecological production functions [98]. However,

these can range in nature from simplistic (carbon storage) to

highly complex (water quality), ignore EF interlinkages and

rely on basic linkages to biodiversity [93].

For quantification of key EFs, we here define the concept

of ‘EF portfolios’ for given final ES, identifiable via plot-

based or landscape-scale assessment of multiple sites. The

process requires at each place simultaneously quantifying

all measurable EFs potentially underlying a given final ES

(table 1). This refers not only to positively contributing EFs

but also to those potentially negatively impacting final ES

delivery ([27]; e.g. herbivory for timber production, transpira-

tion for water availability). It is then possible to assess (i) the

average relative contribution of an EF and (ii) its ‘irreplace-

ability’ to final ES delivery (box 2). For the latter, threshold

levels of final ES can be set, based on, e.g. stakeholder
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surveys or market value information [21], and EFs examined

for their overall contribution to this threshold; i.e. do low

values of one or few EFs consistently result in final ES deliv-

ery below the set threshold, or do other EFs make up the

difference? Similarly to quantifying ‘ecosystem service provi-

ders’ [14], these two values of average relative contribution

and ‘irreplaceability’ are summed to create an importance

value for each EF. All EFs with high importance values are

then considered within a given ES’ EF portfolio (box 2).

Importantly, EF portfolios can be determined by combining

multiple proxy datasets, and may be central to identifying

the relative utility of commonly used ES proxies [26].
ES

EF1 EF2 EF3

ES

EF1+ EF2 EF3

biodiversity dominant
species

ES

EF1 EF2 EF3 EF4 EF5

trophic
level 1

trophic
level 2

(d )

Figure 3. Hypothetical variation in B – EF – ES relationships (see also [18]) as
driven by the main contributing EFs (within an EF portfolio). Black arrows
refer to positive effects (dashed arrows displaying less strong effects) while
grey arrows refer to negative effects.

oc.R.Soc.B
282:20151348
(c) Quantifying synergies and trade-offs between EFs
and final ES delivery

(i) Grouping EFs according to common traits and mechanisms
Can EFs be grouped according to the main groups of organ-

isms and traits underpinning them in a given context?

At least for some plant-mediated EFs key to underpinning

some final ES (e.g. timber production, erosion control;

table 1), the answer may be yes [20,45]. However, there

may exist fundamental trait-based trade-offs between EFs

[20], which may be severe if the main mechanism of their

promotion is via dominant functional traits. Furthermore,

diversity in some traits may positively influence EFs along-

side the dominance of others [45,78]. Thus from the cohort

of EFs in a given ecosystem, there may emerge a multitude

of ‘EF groupings’ identifiable by similarities in (i) the main

contributing group (trophic level or functional group),

(ii) functional traits, and (iii) biodiversity mechanisms

underpinning them.

More comprehensive study of diverse B–EF relation-

ships must first be conducted before EF groupings may be

confidently established. First, focus has been largely on EFs

promoted by primary producers, and many animal-mediated

EFs (excepting invertebrate pollinators and detritivores) are

currently understudied: e.g. herbivory, seed dispersal or

nutrient filtration [51]. At least for herbivorous [99] and seed-

dispersing vertebrates [100], functional redundancy may be

low; however, trait-based assessments of these B–EF relation-

ships are rarely conducted (but see [101]). This is a vital

future research area, as interactions across trophic levels are

key to promoting EFs [49,54,55]. For example, the impact of

herbivore diversity on grassland EFs may be substantial [68],

and intensive herbivory may impact the strength of observed

plant B–EF relationships [102]. Second, B–EF studies have

still mostly considered single or a few EFs (in particular,

e.g. NPP, biomass production; but see [69–71,81]), and few

have explored the relative influences of functional diversity

and dominant traits on multiple EFs. This should now be

a research priority; considering individual EFs separately

in multifunctionality studies (sensu [45]; see also [97]). Finally,

trait-based B–EF studies have been conducted in few eco-

system types (mostly grasslands and forests). Thus, we

currently have limited understanding of potential ecosystem

controls on the importance of complementarity mechanisms

(e.g. [44,45,80,87]). B–EF research must now look to further

trait-based study of the mechanisms promoting multiple

EFs across under-studied ecosystem types; in particular,

highly species-rich systems ([84,85,90]; see also [44] for an

important framework).
(ii) Comparing EF portfolios with multiple EF groupings to
examine EF trade-offs

Exploring potential trade-offs in underlying EFs enables us to

better understand mechanistic drivers of final ES and the

trade-offs that may exist in their delivery. While recent

work has illustrated trait-based pathways to underlying EF

trade-offs [20], to date there does not exist a framework

which (i) incorporates multiple mechanistic B–EF relation-

ships from multiple trophic levels (but see [49]), (ii) can

account for B–EF relationships from multiple ecosystem com-

ponents [27] and (iii) can contrast these B–EF relationships

across pairings of final ES and ecosystem types [18]. We pro-

pose that overlapping EF portfolios with EF groupings

identified through future B–EF research provides a rudi-

mentary means to assess final ES trade-offs through the full

mechanistic pathway.

In comparing EF portfolios with general EF groupings in a

specific context, a number of scenarios may emerge. First, the

EF portfolio for a final ES may be predominantly promoted

by one EF grouping (all key EFs promoted by the same func-

tional traits via the same main mechanism). Depending on

the mechanism driving the EF grouping (diversity or domi-

nance [44]), we can determine a strong positive (figure 3a) or
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a negligible influence (figure 3b) of biodiversity on final ES

delivery in a given context (e.g. agricultural pollination

[15,52,53]; timber production [16,71]). Second, an EF portfolio

may be promoted by multiple EF groupings according to

(i) different mechanisms and (ii) different functional traits of

the main contributing group of organisms: e.g. potential EF

trade-offs under different biodiversity scenarios [20]. For

example, dominance of high root : shoot ratio and height traits

(high rooting [103] and vertical biomass production) and diver-

sity in growth form traits (above-ground structural variation) in

vegetation communities may contribute positively to coastal

storm attenuation (figure 3c). Here high species richness and

distinctive traits of rare species [78] may provide additional

complementarity to driving key EFs [44,69,70, 73,74]. Finally,

multiple EF groupings may comprise the EF portfolio, pro-

moted by various trophic levels (both positively and

negatively): e.g. final ES (i) delivered via EFs pertaining to mul-

tiple ecosystem compartments (e.g. carbon storage [29,71]; see

also [27]; box 2), or (ii) controlled strongly by multi-trophic inter-

actions (e.g. timber or fodder production [44,68]). A plethora of

contributing EFs and strong species interactions may mean high

levels of biodiversity drive final ES (figure 3d; [85]), and further

work is required to understand relative trophic controls [49].

Overlapping EF portfolios and corresponding EF group-

ings may further enable us to establish mechanistic drivers

of trade-offs between final ES. Via simple comparison of

the overlap between the EF portfolios of two final ES and

the EF groupings encompassing them, we may begin to

identify differences in the traits and mechanisms chiefly pro-

moting them in given contexts. Rigorous continued multiple

B–EF research across a wide range of ecosystem types will

further enable comparison of how and when the traits and

biodiversity mechanisms promoting them result in synergies

and trade-offs in final ES delivery across contexts. Such an

approach may vastly improve current predictability of ES

synergies and trade-offs, and future findings may be com-

pared with those from ES bundles research [15,19,94] to
elucidate mechanistic underpinnings of observed B–ES

relationships in space.
5. Conclusion
Over the last decades, we have seen substantial research quan-

tifying biodiversity’s role in promoting EFs and ES [5,6,68,93];

we are rapidly gaining insight into (i) the mechanisms by

which organisms promote different EFs [44–46,85], (ii) the

tendency for synergies and trade-offs between ES across land-

scapes [15,19,94] and (iii) how scenarios of management and

land-use change interact with these associations [104]. Concep-

tual frameworks are emerging mechanistically linking multiple

facets of biodiversity to ES delivery [14,20,44,49], and the vul-

nerability of specific ES to biodiversity loss via these functional

linkages [14,49,105]. However, what is lacking is a means to

bring all of these avenues together to understand and predict

the ES impacts of biodiversity change. Vital research avenues

to work towards this goal lie in (i) improving coverage of

EFs, higher trophic levels and understudied ecosystems in

observational B–EF research, (ii) working to identify general-

ities in the traits and mechanisms involved in multiple B–EF

relationships, (iii) moving from proxies to considering final

ES as the net product of key underpinning EFs (EF portfolios),

(iv) identifying trait-based synergies and trade-offs between

EFs and how these extend to final ES trade-offs and finally

(v) exploring context-dependency to these mechanisms and

associations (and their implications for landscape management

[106]). The road ahead to establishing these goals is long and

data-intensive, but the outlook is that we may already possess

many of the tools required to reach a greater mechanistic

understanding and predictability of B–ES relationships.
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